Summary:
This is basically a revert of D16107 and parts of D10800, which were
trying to get vdso loading working. They did this by implementing a
generic load-an-elf-file from memory approach, which is not correct,
since we cannot assume that an elf file is loaded in memory in full (it
usually isn't, as there's no need to load section headers for example).
This meant that we would read garbage instead of section sizes, and if
that garbage happened to be a large number, we would crash while trying
to allocate a buffer to accomodate the hypothetical section.
Instead of this, I add a bit of custom code to load the vdso to
DynamicLoaderPOSIXDYLD (which already needed to handle the vdso
specially). I determine the size of the memory to read using
Process::GetMemoryRegionInfo, which is information coming from the OS,
and cannot be forged by a malicious/misbehaving application.
Reviewers: eugene, clayborg
Subscribers: lldb-commits, ravitheja, tberghammer, emaste
Differential Revision: https://reviews.llvm.org/D34352
llvm-svn: 305780
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
Summary:
NetBSD is a modern ELF UNIX-like system.
There is requires DynamicLoaderPOSIXDYLD e.g. for ELF AUXV reading from the client.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, kettenis
Reviewed By: labath
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D31192
llvm-svn: 298409
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
Summary:
This adds the jModulesInfo packet, which is the equivalent of qModulesInfo, but it enables us to
query multiple modules at once. This makes a significant speed improvement in case the
application has many (over a hundred) modules, and the communication link has a non-negligible
latency. This functionality is accessed by ProcessGdbRemote::PrefetchModuleSpecs(), which does
the caching. GetModuleSpecs() is modified to first consult the cache before asking the remote
stub. PrefetchModuleSpecs is currently only called from POSIX-DYLD dynamic loader plugin, after
it reads the list of modules from the inferior memory, but other uses are possible.
This decreases the attach time to an android application by about 40%.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: https://reviews.llvm.org/D24236
llvm-svn: 280919
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Summary:
The vdso is full of hand-written assembly which the instruction emulator has a hard time
understanding. Luckily, the kernel already provides us with correct unwind info for them. So
let's use it.
This fixes (at least) the AssertingInferiorTestCase.test_inferior_asserting_disassemble test on
android N i386.
Reviewers: tberghammer
Subscribers: tberghammer, danalbert, lldb-commits
Differential Revision: https://reviews.llvm.org/D24079
llvm-svn: 280264
@unittest2.expectedFailure("rdar://7796742")
Which was covering up the fact this was failing on linux and hexagon. I added back a decorator so we don't break any build bots.
llvm-svn: 274388
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
Summary:
There was a bug in linux core file handling, where if there was a running process with the same
process id as the id in the core file, the core file debugging would fail, as we would pull some
pieces of information (ProcessInfo structure) from the running process instead of the core file.
I fix this by routing the ProcessInfo requests through the Process class and overriding it in
ProcessElfCore to return correct data.
A (slightly convoluted) test is included.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18697
llvm-svn: 265391
Summary:
Virtual dynamic shared objects, or vdso files were
not loaded for Linux OS.In Bug 17384 the call
stack could not be unwinded from functions
residing in the vdso object.
This commit adds support for loading such files by
reading the Aux vectors since a vdso is invisibily
mapped to the inferiors address space and the
actual file is not present in the filesystem. The
presence of the vdso is detected by inspecting
the Aux vector for AT_SYSINFO_EHDR tag.
Reviewers: lldb-commits, ovyalov, tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14118
llvm-svn: 251505
Summary:
EnablePluginLogging, GetPluginCommandHelp and ExecutePluginCommand aren't
implemented or used anywhere, so remove them from the Hexagon and POSIX
Dynamic Loaders as well as the FreeBSD process.
Reviewers: clayborg, labath, emaste
Subscribers: lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D13581
llvm-svn: 249840
The POSIX linker generally reports the load bias for the loaded
libraries but in some case it is useful to handle a library based on
absolute load address. Example usecases:
* Windows linker uses absolute addresses
* Library list came from different source (e.g. /proc/<pid>/maps)
Differential revision: http://reviews.llvm.org/D12233
llvm-svn: 245834
Summary:
Update DYLDRendezvous and SOEntry to use FileSpecs instead of storing paths as
strings, which caused incorrect comparison results due to denormalization.
Reviewers: clayborg, vharron, ovyalov
Reviewed By: ovyalov
Subscribers: jwolfe, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10267
llvm-svn: 239195
For PIE executables the type of the main executable is shared object
so we can't force that the main executable should have the type of
executable.
llvm-svn: 236870
This continues the effort to reduce header footprint and improve
build speed by removing clang and other unnecessary headers
from Target.h. In one case, some headers were included solely
for the purpose of declaring a nested class in Target, which was
not needed by anybody outside the class. In this case the
definition and implementation of the nested class were isolated
in the .cpp file so the header could be removed.
llvm-svn: 231107
Summary:
This adds preliminary support for PowerPC/PowerPC64, for FreeBSD. There are
some issues still:
* Breakpoints don't work well on powerpc64.
* Shared libraries don't yet get loaded for a 32-bit process on powerpc64 host.
* Backtraces don't work. This is due to PowerPC ABI using a backchain pointer
in memory, instead of a dedicated frame pointer register for the backchain.
* Breakpoints on functions without debug info may not work correctly for 32-bit
powerpc.
Reviewers: emaste, tfiala, jingham, clayborg
Reviewed By: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D5988
llvm-svn: 220944
This change adds some logging around dynamic loader handling.
It also fixes an issue where the dynamic loader entry breakpoint can end
up being re-inserted, showing the wrong (i.e. software breakpoint) instruction
at the stop location when a backtrace is displayed at program startup.
I discussed with Jim Ingham a few weeks back. Essentially the
one-hit breakpoints need to make it back to public state handling before
the software breakpoint gets cleared. The flow I was hitting was that
the breakpoint would get set, it would get hit, it would get cleared to
step over, then it would get reapplied, when we never wanted it reapplied.
Stops at the beginning of execution would then show backtraces with
software breakpoint instructions in it, erroneously. This change fixes it.
There might be a more elegant way to do this, or a flow change somewhere else
to avoid, but it does fix an issue I experienced in startup breakpoint handling.
llvm-svn: 219371
Covers more of the behavior of rendezvous breakpoint handling and other
dynamic loader aspects, all on the 'enable log lldb dyld' log channel.
llvm-svn: 217283
This was primarily working around problems where we weren't able
to identify trap handlers for different environments -- but instead,
I'm working to make it easier to specify those trap handler function
names.
llvm-svn: 201366
They were enforcing 16-byte alignment on stack frames for Darwin x86 programs.
But we've found that trap handlers typically don't have the stack pointer
aligned correctly when a trap happens and lldb wasn't backtracing all
the way through. This method is only used as a safety guard to prevent
lldb's unwinder from using a bogus address as a stack frame - we'll still
enforce word-size alignment on stack frames so that should be fine.
Also rolled back akaylor's changes from August 2013 in r188952 which changed
the i386 ABI plugin to relax the CallFrameAddressIsValid offsets for non-Darwin
targets where only 4-byte alignment is enforced. Now Darwin is the same as
those environments.
<rdar://problem/15982682>
llvm-svn: 201292
Move some code that was in DynamicLoaderPOSIXDLYD into the
base class DynamicLoader. In the case of UpdateLoadedSections(),
the test to see whether a file is loadable (its address is zero)
is not generally applicable so that test is changed to a more
universally applicable check for the SHF_ALLOC flag on the section.
Also make it explicit that the reading of the module_id in
DynamicLoaderPOSIXDYLD::GetThreadLocalData() is using a hardcoded
size (of module_id) of 4, which might not be appropriate on
big-endian 64-bit systems, leaving a FIXME comment in place.
llvm-svn: 200939
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
Fixed the test case for "test/functionalities/exec/TestExec.py" on Darwin.
The issue was breakpoints were persisting and causing problems. When we exec, we need to clear out the process and target and start fresh with nothing and let the breakpoints populate themselves again. This patch correctly clears out the breakpoints and also flushes the process so that the objects (process/thread/frame) give out valid information.
llvm-svn: 194106
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
To make this work this patch extends LLDB to:
- Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list.
- Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines.
- Make DWARF expressions track which module they originated from.
- Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here.
- Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here:
1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target.
2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out.
3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized.
However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used.
Test case included.
llvm-svn: 192922
Added a way to set hardware breakpoints from the "breakpoint set" command with the new "--hardware" option. Hardware breakpoints are not a request, they currently are a requirement. So when breakpoints are specified as hardware breakpoints, they might fail to be set when they are able to be resolved and should be used sparingly. This is currently hooked up for GDB remote debugging.
Linux and FreeBSD should quickly enable this feature if possible, or return an error for any breakpoints that are hardware breakpoint sites in the "virtual Error Process::EnableBreakpointSite (BreakpointSite *bp_site);" function.
llvm-svn: 192491
1. existing breakpoints weren't being re-resolved after the sections of a library were loaded (ie. through dlopen).
2. loaded sections weren't being removed after a shared library had been unloaded.
llvm-svn: 190727