Currently, the machine combiner can proceed matching when -ffast-math is on.
It should also match when only -ffp-contract=fast is specified as was the
case before when DAGCombiner was doing the job.
Patch by: Abderrazek Zaafrani <a.zaafrani@samsung.com>.
Differential Revision: https://reviews.llvm.org/D24366
llvm-svn: 281649
It was only really there as a sentinel when instructions had to have precisely
one type. Now that registers are typed, each register really has to have a type
that is sized.
llvm-svn: 281599
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
Cleanup/change the code that checks for possible tailcall conventions to
look the same as the one in the X86 target. This makes the distinction
between calling conventions that can guarnatee tailcalls and the ones
that may tailcall more obvious.
- Add Swift to the mayTailCall list
- PreserveMost seemed to be incorrectly part of the guarnteed tail call
list, move it to the mayTailCall list.
llvm-svn: 281376
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
We currently return 4 for stackmaps and patchpoints, which is very optimistic
and can in rare cases cause the branch relaxation pass to fail to relax certain
branches.
This patch causes getInstSizeInBytes to return a pessimistic estimate of the
size as the number of bytes requested in the stackmap/patchpoint. In the future,
we could provide a more accurate estimate by sharing some of the logic in
AArch64::LowerSTACKMAP/PATCHPOINT.
Fixes part of https://llvm.org/bugs/show_bug.cgi?id=28750
Differential Revision: https://reviews.llvm.org/D24073
llvm-svn: 281301
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
Fix the .arch asm parser to use the full set of features for the architecture
and any extensions on the command line. Add and update testcases accordingly
as well as add an extension that was used but not supported.
llvm-svn: 280971
They're another source of generic vregs, which are going to need a type on the
definition when we remove the register width from MachineRegisterInfo.
llvm-svn: 280412
More preparation for dropping source types from MachineInstrs: regsters coming
out of already-selected code (i.e. non-generic instructions) don't have a type,
but that information is needed so we must add it manually.
This is done via a new G_TYPE instruction.
llvm-svn: 280292
The former is simply wrong -- the code will either never be used or will
always be used, rather than being dependent upon whether it's built with
debug assertions enabled.
The macro DEBUG isn't ever set by the llvm build system. But, the macro
DEBUG(X) is defined (unconditionally) if you happen to include
llvm/Support/Debug.h.
The code in Value.h which was erroneously protected by the #ifdef DEBUG
didn't even compile -- you can't cast<> from an LLVMOpaqueValue
directly. Fortunately, it was never invoked, as Core.cpp included
Value.h before Debug.h.
The conditionalized code in AArch64CollectLOH.cpp was previously always
used, as it includes Debug.h.
llvm-svn: 280056
There should be no functional change here, I'm just making the implementation
of "frem" (to libcall) legalization easier for a followup.
llvm-svn: 279987
In the code to detect fixed-point conversions and make use of AArch64's special
instructions, we weren't prepared for weird types. The fptosi direction got
fixed recently, but not the similar sitofp code.
llvm-svn: 279852
MCContext already has many tasks, and separating CodeView out from it is
probably a good idea. The .cv_loc tracking was modelled on the DWARF
tracking which lived directly in MCContext.
Removes the inclusion of MCCodeView.h from MCContext.h, so now there are
only 10 build actions while I hack on CodeView support instead of 265.
llvm-svn: 279847
It's unclear how the old
%res(32) = G_ICMP { s32, s32 } intpred(eq), %0, %1
is actually different from an s1 verison
%res(1) = G_ICMP { s1, s32 } intpred(eq), %0, %1
so we'll remove it for now.
llvm-svn: 279843
The 32-bit variants of these operations don't depend on the bits not being
operated on, so they also naturally model operations narrower than the actual
register width.
llvm-svn: 279760
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.
llvm-svn: 279696
Instructions like G_ICMP have multiple types that may need to be legalized (the
boolean output and nearly arbitrary inputs in this case). So the legalizer must
be capable of deciding what to do for each of them separately.
llvm-svn: 279554
branches
Looping over all terminators exposed AArch64 tests hitting
an assert from analyzeBranch failing. I believe these cases
were miscompiled before.
e.g.
fcmp s0, s1
b.ne LBB0_1
b.vc LBB0_2
b LBB0_2
LBB0_1:
; Large block
LBB0_2:
; ...
Both of the individual conditional branches need to
be expanded, since neither can reach the final block.
Split the original block into ones which analyzeBranch
will be able to understand.
llvm-svn: 279499
The structs BarrierOp, PrefetchOp, PSBHintOp are in AArch64AsmParser.cpp
(inside anonymous namespace). This diff changes the order of fields and
removes the excessive padding (8 bytes).
Patch by Alexander Shaposhnikov!
llvm-svn: 279173
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
Remove an unnecessary round-trip:
iterator => operator->() => getIterator()
In some cases, the iterator is end(), so the dereference of operator->
is invalid (UB).
The testcase only crashes with r278974 (currently reverted to
investigate this), which adds an assertion for invalid dereferences of
ilist nodes.
Fixes PR29035.
llvm-svn: 279104
There is no REM instruction; that will require an expansion.
It's not obvious that should be done in select, rather than as a
(custom?) legalization.
llvm-svn: 279074
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
Trunk would try to create something like "stp x9, x8, [x0], #512", which isn't actually a valid instruction.
Differential revision: https://reviews.llvm.org/D23368
llvm-svn: 278559
This re-factoring could cause the following slight changes in generated
code, though none were observed during testing:
- MachineScheduler could decide not to cluster some loads/stores if
there are other load/stores with non-pairable opcodes that have the
same base register and offset as a pairable set of load/stores. One
case of different MachineScheduler pairing did show up in my testing,
but it wasn't due to this issue, but due
BaseMemOpClusterMutation::clusterNeighboringMemOps() being unstable
w.r.t. the order it considers memory operations. See PR28942.
- The ImplicitNullChecks optimization could be done for more load/store
opcodes. This optimization isn't done for C/C++ code, so it didn't
show up in my testing.
Reviewers: mcrosier, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D23365
llvm-svn: 278515
Summary:
The DAG combine transformation that was generating the
aarch64_neon_vcvtfp2fxs node was assuming that all
inputs where legal and wasn't accounting that the input
could be a v4f64 if we're trying to do the transformation
before legalization. We now bail out in this case.
All illegal types besides v4f64 were already rejected.
Fixes https://llvm.org/bugs/show_bug.cgi?id=28877.
Reviewers: jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23261
llvm-svn: 278002
These are the operations that are trivially identical. Division is omitted for
now because you need to use the correct sign/zero extension.
llvm-svn: 277775
We were relying on the misleadingly-names $status result to actually be the
status. Actually it's just a scratch register that may or may not be valid (and
is the inverse of the real ststus anyway). Success can be determined by
comparing the value loaded against the one we wanted to see for "cmpxchg
strong" loops like this.
Should fix PR28819.
llvm-svn: 277513
We currently use and test these, and select most of them. Mark them
as legal even though we don't go through the full ir->asm flow yet.
This doesn't currently have standalone tests, but the verifier will
soon learn to check that the regbankselect/select tests are legal.
llvm-svn: 277471
The branch relaxation pass is computing the wrong offsets because it assumes
TLSDESC_CALLSEQ eats up 4 bytes, when in fact it is lowered to an instruction
sequence taking up 16 bytes. This can become a problem in huge files with lots
of TLS accesses, as it may slowly move branch targets out of the range computed
by the branch relaxation pass.
Fixes PR24234 https://llvm.org/bugs/show_bug.cgi?id=24234
Differential Revision: https://reviews.llvm.org/D22870
llvm-svn: 277331
Initialize all AArch64-specific passes in the TargetMachine so they can be run
by llc. This can lead to conflicts in opt with some command line options that
share the same name as the pass, so I took this opportunity to do some cleanups:
* rename all relevant command line options from "aarch64-blah" to
"aarch64-enable-blah" and update the tests accordingly
* run clang-format on their declarations
* move all these declarations to a common place (the TargetMachine) as opposed
to having them scattered around (AArch64BranchRelaxation and
AArch64AddressTypePromotion were the only offenders)
llvm-svn: 277322
For MachineInstrBuilder, having to manually use RegState::Define is ugly and
makes register definitions clunkier than they need to be, so this adds two
convenience functions: addDef and addUse.
For MachineIRBuilder, we want to avoid BuildMI's first-reg-is-def rule because
it's hidden away and causes bugs. So this patch switches buildInstr to
returning a MachineInstrBuilder and adding *all* operands via addDef/addUse.
NFC.
llvm-svn: 277176
Mostly straightforward as we ignore addressing modes and just
use the base + unsigned immediate offset (always 0) variants.
This currently fails to select extloads because we have yet to
agree on a representation.
llvm-svn: 277171
This adds a target hook getInstSizeInBytes to TargetInstrInfo that a lot of
subclasses already implement.
Differential Revision: https://reviews.llvm.org/D22885
llvm-svn: 277126
LLT() has a particular meaning: it's one invalid type. But we really
want selected instructions to have no type whatsoever.
Also verify that types don't linger after ISel, and enable the verifier
on the AArch64 select test.
llvm-svn: 277001
Add unittest to {ARM | AArch64}TargetParser,and by the way correct problems as below:
1.Correct a incorrect indexing problem in AArch64TargetParser. The architecture enumeration
is shared across ARM and AArch64 in original implementation.But In the code,I just used the
index which was offset by the ARM, and this would index into the array incorrectly. To make
AArch64 has its own arch enum,or we will do a lot of slowly iterating.
2.Correct a spelling error. The parameter of llvm::AArch64::getArchExtName.
3.Correct a writing mistake, in llvm::ARM::parseArchISA.
Differential Revision: https://reviews.llvm.org/D21785
llvm-svn: 276957
They're basically i64 for AArch64, but we'll leave them intact for stranger
targets. Also add some tests for the (very few) other cases we can handle right
now.
llvm-svn: 276689
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
This adds the actual MachineLegalizeHelper to do the work and a trivial pass
wrapper that legalizes all instructions in a MachineFunction. Currently the
only transformation supported is splitting up a vector G_ADD into one acting on
smaller vectors.
llvm-svn: 276461
when constraint "w" is used on a 32-bit operand.
This enables compiling the following code, which used to error out in
the backend:
void foo1(int a) {
asm volatile ("sqxtn h0, %s0\n" : : "w"(a):);
}
Fixes PR28633.
llvm-svn: 276344
Summary:
This change also changes findMatchingInsn and
findMatchingUpdateInsnForward to take DBG_VALUE opcodes into account
when tracking register defs and uses, which could potentially inhibit
these optimizations in the presence of debug information.
Reviewers: mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22582
llvm-svn: 276293
At -O0, cmpxchg survives AtomicExpand: it's mostly straightforward
to select it in fast-isel, and let the pseudo be expanded later.
extractvalues on the result are the tricky part: the generic logic
only works for legal types (and it would be painful to make it
support illegal types), so we can only support i32/i64 cmpxchg.
llvm-svn: 276183
This should be all the low-level instruction selection needs to determine how
to implement an operation, with the remaining context taken from the opcode
(e.g. G_ADD vs G_FADD) or other flags not based on type (e.g. fast-math).
llvm-svn: 276158
Inference of the 'returned' attribute was fixed in r276008, lets try
turning the backend support back on.
This reverts commit r275677.
llvm-svn: 276081
r275042 reverted function-attribute inference for the 'returned' attribute
because the feature triggered self-hosting failures on ARM and AArch64. James
Molloy determined that the this-return argument forwarding feature, which
directly ties the returned input argument to the returned value, was the cause.
It seems likely that this forwarding code contains, or triggers, a subtle bug.
Disabling for now until we can track that down.
llvm-svn: 275677
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Summary:
Previously we took an unsigned.
Hooray for type-safety.
Reviewers: chandlerc
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D22282
llvm-svn: 275591
If a subtarget has both ZCZeroing and CustomCheapAsMoveHandling features (now
only Kryo has both), set COPY (W|X)ZR isAsCheapAsAMove.
Differential Revision: http://reviews.llvm.org/D22360
llvm-svn: 275503
Summary:
Make the target-specific flags in MachineMemOperand::Flags real, bona
fide enum values. This simplifies users, prevents various constants
from going out of sync, and avoids the false sense of security provided
by declaring static members in classes and then forgetting to define
them inside of cpp files.
Reviewers: MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22372
llvm-svn: 275451
Summary:
- Give it a shorter name (because we're going to refer to it often from
SelectionDAG and friends).
- Split the flags and alignment into separate variables.
- Specialize FlagsEnumTraits for it, so we can do bitwise ops on it
without losing type information.
- Make some enum values constants in MachineMemOperand instead.
MOMaxBits should not be a valid Flag.
- Simplify some of the bitwise ops for dealing with Flags.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22281
llvm-svn: 275438
If a subtarget has both ZCZeroing and CustomCheapAsMoveHandling features (now
only Kryo has both), set FMOVS0 and FMOVD0 isAsCheapAsAMove.
Differential Revision: http://reviews.llvm.org/D22256
llvm-svn: 275178
Avoid implicit conversions from MachineInstrBundleInstr to MachineInstr*
in the AArch64 backend, mainly by preferring MachineInstr& over
MachineInstr* when a pointer isn't nullable.
llvm-svn: 274924
Stop using an implicit conversion from the return of
MachineBasicBlock::getFirstTerminator to MachineInstr*. In two cases,
directly dereference to a MachineInstr& since later code assumes it's
valid. In a third case, change to an iterator since later code checks
against MachineBasicBlock::end.
Although the fix for the third case avoids undefined behaviour, I expect
this doesn't cause a functionality change in practice (since the basic
block already has a terminator).
llvm-svn: 274898
Support for the macro fusion of simple ALU ops with branches for the Vulcan sub-target.
Patch by Meador Inge <meadori@gmail.com>
Differential Revision: http://reviews.llvm.org/D22042
llvm-svn: 274837
The commit reinstates r273279, which was informally approved.
Original Review: http://reviews.llvm.org/D21414
This reverts commit ca632c91aaa7cafc50942f890c49f727a046ace1.
llvm-svn: 274790
On CPUs with the zero cycle zeroing feature enabled "movi v.2d" should
be used to zero a vector register. This was previously done at
instruction selection time, however the register coalescer sometimes
widened multiple vregs to the Q width because of that leading to extra
spills. This patch leaves the decision on how to zero a register to the
AsmPrinter phase where it doesn't affect register allocation anymore.
This patch also sets isAsCheapAsAMove=1 on FMOVS0, FMOVD0.
This fixes http://llvm.org/PR27454, rdar://25866262
Differential Revision: http://reviews.llvm.org/D21826
llvm-svn: 274686
findScratchNonCalleeSaveRegister() just needs a simple liveness
analysis, use LivePhysRegs for that as it is simpler and does not depend
on the kill flags.
This commit adds a convenience function available() to LivePhysRegs:
This function returns true if the given register is not reserved and
neither the register nor any of its aliases are alive.
Differential Revision: http://reviews.llvm.org/D21865
llvm-svn: 274685
I think the Ops filled out by Regex::match contain pointers into the temporary
std::string returned by StringRef::upper. Its lifetime is extended by the call
to match, but only until the end of that call (not to the uses of Ops later
on).
llvm-svn: 274586
The way the named arguments for various system instructions are handled at the
moment has a few problems:
- Large-scale duplication between AArch64BaseInfo.h and AArch64BaseInfo.cpp
- That weird Mapping class that I have no idea what I was on when I thought
it was a good idea.
- Searches are performed linearly through the entire list.
- We print absolutely all registers in upper-case, even though some are
canonically mixed case (SPSel for example).
- The ARM ARM specifies sysregs in terms of 5 fields, but those are relegated
to comments in our implementation, with a slightly opaque hex value
indicating the canonical encoding LLVM will use.
This adds a new TableGen backend to produce efficiently searchable tables, and
switches AArch64 over to using that infrastructure.
llvm-svn: 274576
This reverts commit r259387 because it inserts illegal code after legalization
in some backends where i64 OR type is illegal for example.
llvm-svn: 274573
The other use really does only care about the SDNode (it checks the
opcode against a whitelist), but bitFieldPlacement can be misled if
the node produces multiple results.
Patch by Ismail Badawi.
llvm-svn: 274567
For the most part this simplifies all callers. There were two places in X86 that needed an explicit makeArrayRef to shorten a statically sized array.
llvm-svn: 274337
TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
llvm-svn: 274304
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
Summary:
Code generation for Cortex-A72/Cortex-A73 was accidentally changed
by r271555, which was a NFCI. The isCortexA57() predicate was not true
for Cortex-A72/Cortex-A73 before r271555 (since it was checking the CPU
string). Because Cortex-A72/Cortex-A73 inherit all features from Cortex-A57,
all decisions previously guarded by isCortexA57() are now taken.
This change restores the behaviour before r271555 by adding separate
ProcA72/ProcA73, which have the required features to preserve code
generation.
Reviewers: kristof.beyls, aadg, mcrosier, rengolin
Subscribers: mcrosier, llvm-commits, aemerson, t.p.northover, MatzeB, rengolin
Differential Revision: http://reviews.llvm.org/D21182
llvm-svn: 273277
The backend has been around for years, it's pretty ridiculous that we can't
even use the preferred form for printing "MOV" aliases. Unfortunately, TableGen
can't handle the complex predicates when printing so it's a bunch of nasty C++.
Oh well.
llvm-svn: 272865
Of course the assembly was right but because the opcode was MOVZWi it was
encoded as "movz w16, #65535, lsl #32" which is an unallocated encoding and
would go horribly wrong on a CPU.
No idea how this bug survived this long. It seems nobody is using that aspect
of patchpoints.
llvm-svn: 272831
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Add support to the AArch64 IAS for the `.arch` directive. This allows the
assembly input to use architectural functionality in part of a file. This is
used in existing code like BoringSSL.
Resolves PR26016!
llvm-svn: 272241
Teach AArch64RegisterBankInfo that G_OR can be mapped on either GPR or
FPR for 64-bit or 32-bit values.
Add test cases demonstrating how this information is used to coalesce a
computation on a single register bank.
llvm-svn: 272170
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
The cost of a copy may be different based on how many bits we have to
copy around. E.g., a 8-bit copy may be different than a 32-bit copy.
llvm-svn: 272084
We were assuming all SBFX-like operations would have the shl/asr form, but often
when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead.
This is a port of r213754 from ARM to AArch64.
llvm-svn: 271677
new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
Testing for specific CPUs has a number of problems, better use subtarget
features:
- When some tweak is added for a specific CPU it is often desirable for
the next version of that CPU as well, yet we often forget to add it.
- It is hard to keep track of checks scattered around the target code;
Declaring all target specifics together with the CPU in the tablegen
file is a clear representation.
- Subtarget features can be tweaked from the command line.
To discourage people from using CPU checks in the future I removed the
isCortexXX(), isCyclone(), ... functions. I added an getProcFamily()
function for exceptional circumstances but made it clear in the comment
that usage is discouraged.
Reformat feature list in AArch64.td to have 1 feature per line in
alphabetical order to simplify merging and sorting for out of tree
tweaks.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D20762
llvm-svn: 271555
Summary:
If the target requests it, use emptry spaces in the fixed and
callee-save stack area to allocate local stack objects.
AArch64: Change last callee-save reg stack object alignment instead of
size to leave a gap to take advantage of above change.
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: rengolin, mcrosier, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D20220
llvm-svn: 271527
A constant pool holding the address of a variable in equivalent to
a got entry. It produces exactly the same instruction sequence as a
got use and unlike a got use this is not uniqued by the linker.
llvm-svn: 271311
Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the high
16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) to
(rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
test_rev_w_srl16: test_rev_w_srl16:
and w8, w0, #0xffff and w8, w0, #0xffff
rev w8, w8 ---> rev16 w0, w8
lsr w0, w8, #16
test_rev_x_srl32: test_rev_x_srl32:
rev x8, x8 ---> rev32 x0, x8
lsr x0, x8, #32
llvm-svn: 270896
If and only if the value being inserted sets only known zero bits.
This combine transforms things like
and w8, w0, #0xfffffff0
movz w9, #5
orr w0, w8, w9
into
movz w8, #5
bfxil w0, w8, #0, #4
The combine is tuned to make sure we always reduce the number of instructions.
We avoid churning code for what is expected to be performance neutral changes
(e.g., converted AND+OR to OR+BFI).
Differential Revision: http://reviews.llvm.org/D20387
llvm-svn: 270846
Summary:
As this optimization converts two loads into one load with two shift instructions,
it could potentially hurt performance if a loop is arithmetic operation intensive.
Reviewers: t.p.northover, mcrosier, jmolloy
Subscribers: evandro, jmolloy, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20172
llvm-svn: 270251
Mask0Imm and ~Mask1Imm must be equivalent and one of the MaskImms is a shifted
mask (e.g., 0x000ffff0). Both 'and's must have a single use.
This changes code like:
and w8, w0, #0xffff000f
and w9, w1, #0x0000fff0
orr w0, w9, w8
into
lsr w8, w1, #4
bfi w0, w8, #4, #12
llvm-svn: 270063
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
Summary:
Fix bug in MachO path where a frame index offset would not be reserved
for handling large frames when an extra non-used callee-save register
was saved. In the case where the extra register is reserved or not a
GPR (e.g. %FP in the MachO case), this would lead to the register
scavenger later failing when called from PrologEpilogInserter.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20185
llvm-svn: 269697
Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.
Implementation contains following rules:
- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
(for negative values 'formatImm' macro prints the value as i.e -0x01
which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
of -print-imm-hex
Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>
Differential Revision: http://reviews.llvm.org/D16929
llvm-svn: 269446
This one has a lot of code churn, but it's all mechanical and
straightforward.
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269379
For narrow stores (e.g., strb, srth) we know the upper bits of the register are
unused/not useful. In some cases we can use this information to eliminate
unnecessary instructions.
For example, without this patch we generate (from the 2nd test case):
ldr w8, [x0]
and w8, w8, #0xfff0
bfxil w8, w2, #16, #4
strh w8, [x1]
and after the patch the 'and' is removed:
ldr w8, [x0]
bfxil w8, w2, #16, #4
strh w8, [x1]
ret
During the lowering of the bitfield insert instruction the 'and' is eliminated
because we know the upper 16-bits that are masked off are unused and the lower
4-bits that are masked off are overwritten by the insert itself. Therefore, the
'and' is unnecessary.
Differential Revision: http://reviews.llvm.org/D20175
llvm-svn: 269226
Summary: When emitting comparison for fp16, in addition to promote the LHS and RHS to fp32, we need to change the VT as well.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D19922
llvm-svn: 269151
Unlike xN/wN, the size of vN is genuinely ambiguous in the assembly, so we
should try to infer what was intended from the type. But only down to 64-bits
(vN can never represent sN, hN or bN).
llvm-svn: 269132
SystemZ (and probably other targets as well) can fold a memory operand
by changing the opcode into a new instruction that as a side-effect
also clobbers the CC-reg.
In order to do this, liveness of that reg must first be checked. When
LIS is passed, getRegUnit() can be called on it and the right
LiveRange is computed on demand.
Reviewed by Matthias Braun.
http://reviews.llvm.org/D19861
llvm-svn: 269026
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
Summary:
This implements the lowering of the X constraint on
AArch64.
The default behaviour of the X constraint lowering is to
restrict it to "f". This is a problem because the "f"
constraint is not implemented on AArch64 and would be too
restrictive anyway. Therefore, the AArch64 hook will
lower this to "w" (if the operand is a floating point or
vector) or "r" otherwise.
The implementation is similar with the one added for
ARM (r267411).
This is the AArch64 side of the fix for http://llvm.org/PR26493
Reviewers: rengolin
Subscribers: aemerson, rengolin, llvm-commits, t.p.northover
Differential Revision: http://reviews.llvm.org/D19967
llvm-svn: 268907
Summary:
If a function needs to allocate both callee-save stack memory and local
stack memory, we currently decrement/increment the SP in two steps:
first for the callee-save area, and then for the local stack area. This
changes the code to allocate them both at once at the very beginning/end
of the function. This has two benefits:
1) there is one fewer sub/add micro-op in the prologue/epilogue
2) the stack adjustment instructions act as a scheduling barrier, so
moving them to the very beginning/end of the function increases post-RA
scheduler's ability to move instructions (that only depend on argument
registers) before any of the callee-save stores
This change can cause an increase in instructions if the original local
stack SP decrement could be folded into the first store to the stack.
This occurs when the first local stack store is to stack offset 0. In
this case we are trading off one more sub instruction for one fewer sub
micro-op (along with benefits (2) and (3) above).
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18619
llvm-svn: 268746
Summary: This change refactors to decouple the zero store promotion from the narrow ld merge and add a flag (enable-narrow-ld-merge=true) to control the narrow ld merge optimization.
Reviewers: jmolloy, t.p.northover, mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19885
llvm-svn: 268744
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
This patch adds support for estimating the square root, its reciprocal and
division or reciprocal using the combiner generic reciprocal machinery.
llvm-svn: 268539
Remove the AddPristinesAndCSRs parameters from
addLiveIns()/addLiveOuts().
We need to respect pristine registers after prologue epilogue insertion,
Seeing that we got this wrong in at least two commits already, we should
rather pay the small price to query MachineFrameInfo for it.
There are three cases that did not set AddPristineAndCSRs to true even
after register allocation:
- ExecutionDepsFix: live-out registers are used as a hint that the
register is used soon. This is not true for pristine registers so
use the new addLiveOutsNoPristines() to maintain this behaviour.
- SystemZShortenInst: Not setting AddPristineAndCSRs to true looks like
a bug, should do the right thing automatically now.
- StackMapLivenessAnalysis: Not adding pristine registers looks like a
bug to me. Added a FIXME comment but maintain the current behaviour
as a change may need to get coordinated with GC runtimes.
llvm-svn: 268336
transferSuccessors() would LoadCmpBB a successor of DoneBB,
whereas it should be a successor of the original MBB.
Follow-up to r266339.
Unfortunately, it's tricky to catch this in the verifier.
llvm-svn: 267779
This change adds a new hook for estimating the cost of vector extracts followed
by zero- and sign-extensions. The motivating example for this change is the
SMOV and UMOV instructions on AArch64. These instructions move data from vector
to general purpose registers while performing the corresponding extension
(sign-extend for SMOV and zero-extend for UMOV) at the same time. For these
operations, TargetTransformInfo can assume the extensions are free and only
report the cost of the vector extract. The SLP vectorizer has been updated to
make use of the new hook.
Differential Revision: http://reviews.llvm.org/D18523
llvm-svn: 267725
Summary:
We don't use MinLatency any more since r184032.
Reviewers: atrick, hfinkel, mcrosier
Differential Revision: http://reviews.llvm.org/D19474
llvm-svn: 267502
log2(Mask) is smaller than 32, we must use the 32-bit variant because the 64-bit
variant cannot encode it. Therefore, set the subreg part accordingly.
[AArch64] Fix optimizeCondBranch logic.
The opcode for the optimized branch does not depend on the size
of the activate bits in the AND masks, but the AND opcode itself.
Indeed, we need to use a X or W variant based on the AND variant
not based on whether the mask fits into the related variant.
Otherwise, we may end up using the W variant of the optimized branch
for 64-bit register inputs!
This fixes the last make check verifier issues for AArch64: PR27479.
llvm-svn: 267465
The original patch caused crashes because it could derefence a null pointer
for SelectionDAGTargetInfo for targets that do not define it.
Evaluates fmul+fadd -> fmadd combines and similar code sequences in the
machine combiner. It adds support for float and double similar to the existing
integer implementation. The key features are:
- DAGCombiner checks whether it should combine greedily or let the machine
combiner do the evaluation. This is only supported on ARM64.
- It gives preference to throughput over latency: the heuristic used is
to combine always in loops. The targets decides whether the machine
combiner should optimize for throughput or latency.
- Supports for fmadd, f(n)msub, fmla, fmls patterns
- On by default at O3 ffast-math
llvm-svn: 267328
The opcode for the optimized branch does not depend on the size
of the activate bits in the AND masks, but the AND opcode itself.
Indeed, we need to use a X or W variant based on the AND variant
not based on whether the mask fits into the related variant.
Otherwise, we may end up using the W variant of the optimized branch
for 64-bit register inputs!
This fixes the last make check verifier issues for AArch64: PR27479.
llvm-svn: 267206
We used to simply set the kill flags to true when transforming a scalar
instruction to a vector one.
SrcScalar1 = copy SrcVector1
... = opScalar SrcScalar1
=>
SrcScalar1 = copy SrcVector1
... = opVector SrcVector1<kill>
This is obviously wrong. The proper update consists in:
1. Propagate the kill status from the copy to the new opVector
2. Reset the kill status on the copy, since the live-range of
SrcVector1 got extended.
This fixes some of the machine verifier errors for AArch64 with make check.
llvm-svn: 267180
Evaluates fmul+fadd -> fmadd combines and similar code sequences in the
machine combiner. It adds support for float and double similar to the existing
integer implementation. The key features are:
- DAGCombiner checks whether it should combine greedily or let the machine
combiner do the evaluation. This is only supported on ARM64.
- It gives preference to throughput over latency: the heuristic used is
to combine always in loops. The targets decides whether the machine
combiner should optimize for throughput or latency.
- Supports for fmadd, f(n)msub, fmla, fmls patterns
- On by default at O3 ffast-math
llvm-svn: 267098
AArch64InstrInfo::optimizeCompareInstr has bug PR27158 which causes generation of incorrect code.
A compare instruction is substituted with another instruction which does not
produce the same flags as the original compare instruction.
This patch contains:
1. Fix of the bug.
2. A regression test in MIR.
3. A new test to check that SUBS is replaced by SUB.
Differential Revision: http://reviews.llvm.org/D18838
llvm-svn: 266969
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer. I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.
This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.
Differential Revision: http://reviews.llvm.org/D19098
llvm-svn: 266818
With this change, ideally IR pass can always generate llvm.stackguard
call to get the stack guard; but for now there are still IR form stack
guard customizations around (see getIRStackGuard()). Future SSP
customization should go through LOAD_STACK_GUARD.
There is a behavior change: stack guard values are not CSEed anymore,
since we should never reuse the value in case that it has been spilled (and
corrupted). See ssp-guard-spill.ll. This also cause the change of stack
size and codegen in X86 and AArch64 test cases.
Ideally we'd like to know if the guard created in llvm.stackprotector() gets
spilled or not. If the value is spilled, discard the value and reload
stack guard; otherwise reuse the value. This can be done by teaching
register allocator to know how to rematerialize LOAD_STACK_GUARD and
force a rematerialization (which seems hard), or check for spilling in
expandPostRAPseudo. It only makes sense when the stack guard is a global
variable, which requires more instructions to load. Anyway, this seems to go out
of the scope of the current patch.
llvm-svn: 266806
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This improves AA in the MI schduler when reason about paired instructions.
Phabricator Revision: http://reviews.llvm.org/D17098
PR26358
llvm-svn: 266462
Summary:
Without MMOs, the callee-save load/store instructions were treated as
volatile by the MI post-RA scheduler and AArch64LoadStoreOptimizer.
Reviewers: t.p.northover, mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17661
llvm-svn: 266439
Perform store clustering just like load clustering. This change add
StoreClusterMutation in machine-scheduler. To control StoreClusterMutation,
added enableClusterStores() in TargetInstrInfo.h. This is enabled only on
AArch64 for now.
This change also add support for unscaled stores which were not handled in
getMemOpBaseRegImmOfs().
llvm-svn: 266437
FastRegAlloc works only at the basic-block level and spills all live-out
registers. Unfortunately for a stack-based cmpxchg near the spill slots, this
can perpetually clear the exclusive monitor, which means the cmpxchg will never
succeed.
I believe the only way to handle this within LLVM is by expanding the loop
post-regalloc. We don't want this in general because it severely limits the
optimisations that can be done, so we limit this to -O0 compilations.
It's an ugly hack, and about the one good point in the whole mess is that we
can treat all cmpxchg operations in the most naive way possible (seq_cst, no
clrex faff) without affecting correctness.
Should fix PR25526.
llvm-svn: 266339
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D19007
llvm-svn: 266251
Disable LDP/STP for quads on Exynos M1 as they are not as efficient as pairs
of regular LDR/STR.
Patch by Abderrazek Zaafrani <a.zaafrani@samsung.com>.
llvm-svn: 266223
This is a cleanup patch for SSP support in LLVM. There is no functional change.
llvm.stackprotectorcheck is not needed, because SelectionDAG isn't
actually lowering it in SelectBasicBlock; rather, it adds check code in
FinishBasicBlock, ignoring the position where the intrinsic is inserted
(See FindSplitPointForStackProtector()).
llvm-svn: 265851
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
when GISel is not built.
The positive side effects are:
- We do not have to define dummy implementation
- We do not have to do weird gymnastic to avoid like issues (like
missing constructor or vtable for the base classes)
llvm-svn: 265570
Rework the access to GlobalISel APIs to contain how much of
the APIs we need to access for the final executable to build when
GlobalISel is not built.
This prevents massive usage of ifdefs in various places. Now, all the
GlobalISel ifdefs will be happing only in AArch64TargetMachine.cpp.
llvm-svn: 265567
This will avoid link-time error as the defautl constructor of RegisterBankInfo is
the only one available when GlobalISel is not built.
llvm-svn: 265549
AArch64InstrInfo::optimizeCompareInstr has a bug which causes generation of incorrect code (PR#27158).
The patch refactors the function to simplify reviewing the fix of the bug.
1. Function name ‘modifiesConditionCode’ is changed to ‘areCFlagsAccessedBetweenInstrs’
to reflect that the function can check modifying accesses, reading accesses or both.
2. Function ‘AArch64InstrInfo::optimizeCompareInstr’
- Documented the function
- Cmp_NZCV is DeadNZCVIdx to reflect that it is an operand index of dead NZCV
- The code for the case of substituting CmpInstr is put into separate
functions the main of them is ‘substituteCmpInstr’.
Differential Revision: http://reviews.llvm.org/D18609
llvm-svn: 265531
Bionic has a defined thread-local location for the stack protector
cookie. Emit a direct load instead of going through __stack_chk_guard.
llvm-svn: 265481
We can only perform a tail call to a callee that preserves all the
registers that the caller needs to preserve.
This situation happens with calling conventions like preserver_mostcc or
cxx_fast_tls. It was explicitely handled for fast_tls and failing for
preserve_most. This patch generalizes the check to any calling
convention.
Related to rdar://24207743
Differential Revision: http://reviews.llvm.org/D18680
llvm-svn: 265329
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
Add support for the AArch64 .cpu directive. This is a slightly involved
directive since the parameter is actually a variable encoded string. The
general structure is:
<cpu>[[+-]<feature>]*
We now map some of the supported string names for features for internal
representation of feature flags. If we encounter one which we do not support,
bail out as we cannot validate the assembly any longer.
Resolves PR27010.
llvm-svn: 265240
When a fixup that can be resolved by the assembler is out of range, we should
report an error in the source, rather than crashing.
Differential Revision: http://reviews.llvm.org/D18402
llvm-svn: 265120
Summary:
This change will allow loads with imp-def to be clustered in machine-scheduler pass.
areMemAccessesTriviallyDisjoint() can also handle loads with imp-def.
Reviewers: mcrosier, jmolloy, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18665
llvm-svn: 265051
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Summary:
This change will handle missing store pair opportunity where the first store
instruction stores zero followed by the non-zero store. For example, this change
will convert :
str wzr, [x8]
str w1, [x8, #4]
into:
stp wzr, w1, [x8]
Reviewers: jmolloy, t.p.northover, mcrosier
Subscribers: flyingforyou, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18570
llvm-svn: 265021
This is effectively NFC, minus the renaming of the options
(-cyclone-prefetch-distance -> -prefetch-distance).
The change was requested by Tim in D17943.
llvm-svn: 264806
If we can't handle a relocation type, report it as an error in the source,
rather than asserting. I've added a more descriptive message and a test for the
only cases of this that I've been able to trigger.
Differential Revision: http://reviews.llvm.org/D18388
llvm-svn: 264156
Avoid modifying other modules in `AArch64PromoteConstant` when the
constant is `ConstantData` (a horrible accident, I'm sure, caught by an
experimental follow-up to r261464).
Previously, this walked through all the users of a constant, but that
reaches into other modules when the constant doesn't depend transitively
on a `GlobalValue`! Since we're walking instructions anyway, just
modify the instructions we actually see.
As a drive-by, instead of storing `Use` and getting the instructions
again via `Use::getUser()` (which is not a constantant time lookup),
store `std::pair<Instruction, unsigned>`. Besides being cheaper, this
makes it easier to drop use-lists form `ConstantData` in the future.
(I threw this in because I was touching all the code anyway.)
Because the patch completely changes the traversal logic, it looks
like a rewrite of the pass, but the core logic is all the same (or
should be, minus the out-of-module changes). In other words, there
should be NFC as long as the LLVMContext only has a single Module.
I didn't think of a good way to test this, but I hope to submit a patch
eventually that makes walking these use-lists illegal/impossible.
llvm-svn: 263853
This patch adds unscaled loads and sign-extend loads to the TII
getMemOpBaseRegImmOfs API, which is used to control clustering in the MI
scheduler. This is done to create more opportunities for load pairing. I've
also added the scaled LDRSWui instruction, which was missing from the scaled
instructions. Finally, I've added support in shouldClusterLoads for clustering
adjacent sext and zext loads that too can be paired by the load/store optimizer.
Differential Revision: http://reviews.llvm.org/D18048
llvm-svn: 263819
Summary:
It can hurt performance to prefetch ahead too much. Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.
Reviewers: hfinkel
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17949
llvm-svn: 263772
Summary:
And use this TTI for Cyclone. As it was explained in the original RFC
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758), the HW
prefetcher work up to 2KB strides.
I am also adding tests for this and the previous change (D17943):
* Cyclone prefetching accesses with a large stride
* Cyclone not prefetching accesses with a small stride
* Generic Aarch64 subtarget not prefetching either
Reviewers: hfinkel
Subscribers: aemerson, rengolin, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17945
llvm-svn: 263771
Summary:
This wires up the pass for Cyclone but keeps it off for now because we
need a few more TTIs.
The getPrefetchMinStride value is not very well tuned right now but it
works well with CFP2006/433.milc which motivated this.
Tests will be added as part of the upcoming large-stride prefetching
patch.
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, hfinkel, rengolin
Differential Revision: http://reviews.llvm.org/D17943
llvm-svn: 263770
When the SP in not changed because of realignment/VLAs etc., we restore the SP
by using the previous value of SP and not the FP. Breaking the dependency will
help in cases when the epilog of a callee is close to the epilog of the caller;
for then "sub sp, fp, #" depends on the load restoring the FP in the epilog of
the callee.
http://reviews.llvm.org/D18060
Patch by Aditya Kumar and Evandro Menezes.
llvm-svn: 263458
Summary:
Peephole optimization that generates a single TBZ/TBNZ instruction
for test and branch sequences like in the example below. This handles
the cases that miss folding of AND into TBZ/TBNZ during ISelLowering of BR_CC
Examples:
and w8, w8, #0x400
cbnz w8, L1
to
tbnz w8, #10, L1
Reviewers: MatzeB, jmolloy, mcrosier, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17942
llvm-svn: 263136
This change adds a support for a preserve_most calling convention to the AArch64 backend, similar to how it was done for X86-64.
There is also a subsequent patch on top of this one to add a tail-calls support for this calling convention.
Differential Revision: http://reviews.llvm.org/D18016
llvm-svn: 263092
Summary:
This change enables frame pointer elimination in non-leaf functions.
The -fomit-frame-pointer option still needs to be used when compiling
via clang (or an equivalent method of not setting the
'no-frame-pointer-elim*' function attributes if generating llvm IR via
some other method) to take advantage of this optimization.
This change should be NFC when compiling via clang without
-fomit-frame-pointer.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, tberghammer, qcolombet, llvm-commits, danalbert, mcrosier, srhines
Differential Revision: http://reviews.llvm.org/D17730
llvm-svn: 262495
This adds some missing generic schedule info definitions, enables
completeness checking for cyclone and fixes a typo uncovered by that.
Differential Revision: http://reviews.llvm.org/D17748
llvm-svn: 262393
Revert r262248 in an attempt to fix the clang-native-aarch64-full
bot and to investigate a performance regression in
SingleSource/Benchmarks/CoyoteBench/huffbench
llvm-svn: 262388
TableGen checks at compiletime that for scheduling models with
"CompleteModel = 1" one of the following holds:
- Is marked with the hasNoSchedulingInfo flag
- The instruction is a subclass of Sched
- There are InstRW definitions in the scheduling model
Typical steps necessary to complete a model:
- Ensure all pseudo instructions that are expanded before machine
scheduling (usually everything handled with EmitYYY() functions in
XXXTargetLowering).
- If a CPU does not support some instructions mark the corresponding
resource unsupported: "WriteRes<WriteXXX, []> { let Unsupported = 1; }".
- Add missing scheduling information.
Differential Revision: http://reviews.llvm.org/D17747
llvm-svn: 262384
Update APIs in MachineInstrBundle.h to take and return MachineInstr&
instead of MachineInstr* when the instruction cannot be null. Besides
being a nice cleanup, this is tacking toward a fix for PR26753.
llvm-svn: 262141
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
llvm-svn: 262115
Instead of the convoluted if-statment we can just use getColor. This also fixes
a bug where we relied upon the parity of tablegen-generated register indexes
(instead of using the machine encoding).
llvm-svn: 261990
Summary:
Avoid special case for FP, LR CFI emission and just allow general
AArch64FrameLowering::emitCalleeSavedFrameMoves() to handle them. Also,
stop recalculating the stack offsets in emitCalleeSavedFrameMoves()
since we can just reuse the previously calculated offset stored in the
MachineFrameInfo.
Depends on D17000
Reviewers: t.p.northover, rengolin, mcrosier, jmolloy
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17004
llvm-svn: 261885
Looks like the global rename last year was a bit over-zealous. These things
really are referred to with ARM64 elsewhere (ld64, libunwind, ...).
llvm-svn: 261698
Summary:
Fix a bug in epilog generation where the incoming stack arguments were
not being popped for fastcc functions when -tailcallopt was passed.
Reviewers: t.p.northover, mcrosier, jmolloy, rengolin
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16894
llvm-svn: 261650
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
This reverts commit r261510, effectively reapplying r261509. The
original commit missed a caller in AArch64ConditionalCompares.
Original commit message:
Pass non-null arguments by reference in MachineTraceMetrics::Trace,
simplifying future work to remove implicit iterator => pointer
conversions.
llvm-svn: 261511
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
After r261154, we were only clearing flags if the known-zero register was
originally live-in to the basic block, but we have to do it even if not when
more than one COPY has been eliminated, otherwise the user of the first COPY
may still have <kill> marked.
E.g.
BB#N:
%X0 = COPY %XZR
STRXui %X0<kill>, <fi#0>
%X0 = COPY %XZR
STRXui %X0<kill>, <fi#1>
We can eliminate both copies, X0 is not live-in, but we must clear the kill on
the first store.
Unfortunately, I've been unable to come up with a non-fragile test for this.
I've only seen it in the wild with regalloc-created spills, and attempts to
reproduce that in a reasonable way run afoul of COPY coalescing. Even volatile
asm clobbers were moved around. Should fix the aarch64 bot though.
llvm-svn: 261175
Mostly, this fixes the bug that if the CBZ guaranteed Xn but Wn was used, we
didn't sort out the use-def chain properly.
I've also made it check more than just the last instruction for a compatible
CBZ (so it can cope without fallthroughs). I'd have liked to do that
separately, but it's helps writing the test.
Finally, I removed some custom loops in favour of MachineInstr helpers and
refactored the control flow to flatten it and avoid possibly quadratic
iterations in blocks with many copies. NFC for these, just a general tidy-up.
llvm-svn: 261154
Summary:
This change will add a pass to remove unnecessary zero copies in target blocks
of cbz/cbnz instructions. E.g., the copy instruction in the code below can be
removed because the cbz jumps to BB1 when x0 is zero :
BB0:
cbz x0, .BB1
BB1:
mov x0, xzr
Jun
Reviewers: gberry, jmolloy, HaoLiu, MatzeB, mcrosier
Subscribers: mcrosier, mssimpso, haicheng, bmakam, llvm-commits, aemerson, rengolin
Differential Revision: http://reviews.llvm.org/D16203
llvm-svn: 261004
Original message:
Get rid of the ifdefs in TargetLowering.
Introduce a new API used only by GlobalISel: CallLowering.
This API will contain target hooks dedicated to call lowering.
llvm-svn: 260998
Summary:
Before this change, callee-save registers would be rounded up to even
pairs of GPRs and FPRs. This change eliminates these extra padding
load/stores, though it does keep the stack allocation the same size
unless both the GPR and FPR sets have an odd size, in which case one
full pair stack slot (16 bytes) is saved.
This optimization cannot currently be done for MachO targets since they
rely on a fast-path .debug_frame equivalent that can only encode
callee-save registers as pairs.
Reviewers: t.p.northover, rengolin, mcrosier, jmolloy
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17000
llvm-svn: 260689
This is just a trivial implementation:
- Support only arguments passed in registers.
- Support only "plain" arguments, i.e., no sext/zext attribute.
At this point, it is possible to play with the IRTranslator on AArch64:
llc -mtriple arm64-<vendor>-<os> -print-machineinstrs <input.ll> -o - -global-isel
For now, we only support the translation of program with adds and returns.
Follow-up patches are on their way to add a test case (the MIRParser is
not ready as it is).
llvm-svn: 260600
This patch allows the mixing of scaled and unscaled load/stores to form
load/store pairs.
This is a reapplication of r259812, which had an incorrect assert. The
test_stur_str_no_assert() test is a reduced version of the issue hit in
the AArch64 self-host.
PR24465
llvm-svn: 260523
Summary:
Fix case where a pre-inc/dec load/store would not be formed if the
add/sub that forms the inc/dec part of the operation was the first
instruction in the block being examined.
Reviewers: mcrosier, jmolloy, t.p.northover, junbuml
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16785
llvm-svn: 260275
The logic to pair instructions and merge narrow instructions has become cloogy
and error prone. This patch beings to unravel these two similar, but distinct
optimizations.
llvm-svn: 260242
This only impacts the creation of pre-/post-index instructions. The bound was
set high enough such that it did not change code generation for SPEC200X.
llvm-svn: 259828
This patch allows the mixing of scaled and unscaled load/stores to form
load/store pairs.
PR24465
http://reviews.llvm.org/D12116
Many thanks to Ahmed and Michael for fixes and code review.
This is a reapplication of r246769 and r259790. The tramp3d failure was caused
by an incorrect refactoring in the patch. Specifically, we weren't always
properly clearing the SExtIdx flag.
llvm-svn: 259812
During instruction selection, the AArch64 backend can recognise the
following pattern and generate an [U|S]MADDL instruction, i.e. a
multiply of two 32-bit operands with a 64-bit result:
(mul (sext i32), (sext i32))
However, when one of the operands is constant, the sign extension
gets folded into the constant in SelectionDAG::getNode(). This means
that the instruction selection sees this:
(mul (sext i32), i64)
...which doesn't match the pattern. Sign-extension and 64-bit
multiply instructions are generated, which are slower than one 32-bit
multiply.
Add a pattern to match this and generate the correct instruction, for
both signed and unsigned multiplies.
Patch by Chris Diamand!
llvm-svn: 259800
This patch allows the mixing of scaled and unscaled load/stores to form
load/store pairs.
PR24465
http://reviews.llvm.org/D12116
Many thanks to Ahmed and Michael for fixes and code review.
This is a reapplication of r246769, which was reverted in r246782 due to a
test-suite failure. I'm unable to reproduce the issue at this time.
llvm-svn: 259790
Summary:
This is an extension to the existing implementation of r242436 which
restricts to only select inputs. This version fixes missed opportunities
in pr26084 by attempting to lower conditional compare sequences of
and/or trees with setcc leafs. This will additionaly handle the case
when a tree with select input is not a conjunction-disjunction tree
but some of the sub trees are conjunction-disjunction trees.
Reviewers: jmolloy, t.p.northover, mcrosier, MatzeB
Subscribers: mcrosier, llvm-commits, junbuml, haicheng, mssimpso, gberry
Differential Revision: http://reviews.llvm.org/D16291
llvm-svn: 259387
Summary:
Factor out common code for callee-save register pair calculation. This
is intended to simplify follow-on changes that reduce the number of
registers saved/restored.
Depends on D16732
Reviewers: mcrosier, jmolloy, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16734
llvm-svn: 259384
Summary:
Simplify callee-save register save/restore code generation by
remembering the size of the callee-save area when it is computed so we
don't have to scan the prologue/epilogue instructions again later to
reconstruct it.
This is intended to simplify follow-on changes that reduce the number of
registers saved/restored.
Reviewers: mcrosier, jmolloy, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16732
llvm-svn: 259365
Since we only have pair - not single - nontemporal store instructions,
we have to extract the high part into a separate register to be able
to use them.
When the initial nontemporal codegen support was added, I wrote the
extract using the nonsensical UBFX [0,32[.
Use the correct LSR form instead.
llvm-svn: 259134
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Some of the conditions necessary to produce ccmp sequences were only
checked in recursive calls to emitConjunctionDisjunctionTree() after
some of the earlier expressions were already built. Move all checks over
to isConjunctionDisjunctionTree() so they are all checked before we
start emitting instructions.
Also rename some variable to better reflect their usage.
llvm-svn: 258605
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
We verify that the op tree is eligible for CCMP emission in
isConjunctionDisjunctionTree, but it's also possible that
emitConjunctionDisjunctionTree fails later.
The initial check is useful, as it avoids building nodes
that will get discarded.
Still, make sure that inconsistencies don't happen with
an assert.
llvm-svn: 258532
Summary:
SETCC with f16 vectors has OperationAction set to Expand but still gets
lowered to FCM* intrinsics based on its result type. This patch skips
lowering of VSETCC if the operand is an f16 vector.
v4 and v8 tests included.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15361
llvm-svn: 258471
There was support for writing the AArch64 big endian data fixup entries in
the .eh_frame section in BE. This is changed to write all such fixup
entries in BE with no restriction on the section. This is similar to
the existing support for fixup entries for ARM.
A test is added to check the length field in the .debug_line section as
this is an example of where such a fixup occurs.
Differential Revision: http://reviews.llvm.org/D16064
llvm-svn: 258320
The AArch64 .inst directive was implemented using EmitIntValue, which resulted
in both $x and $d (code and data) mapping symbols being emitted at the same
address. This fixes it to only emit the $x mapping symbol.
EmitIntValue also emits the value in big-endian order when targeting big-endian
systems, but instructions are always emitted in little-endian order for
AArch64.
Differential Revision: http://reviews.llvm.org/D16349
llvm-svn: 258308
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.
GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16275
llvm-svn: 258145
When we have a single basic block, the explicit copy-back instructions should
be inserted right before the terminator. Before this fix, they were wrongly
placed at the beginning of the basic block.
I will commit fixes to other platforms as well.
PR26136
llvm-svn: 257929
Summary:
This pass may modify the Cmp operands. However, the flag reg may be used by both the branch and CSEL.
Modifying CMP will have side effect on CSEL.
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, rengolin
Differential Revision: http://reviews.llvm.org/D16147
llvm-svn: 257844
In the discussion on http://reviews.llvm.org/D15730, Andy pointed out we had a utility function for merging MMO lists. Since it turned we actually had two copies and there's another review in progress (http://reviews.llvm.org/D15230) which needs the same, extract it into a utility function and clean up the interfaces to make it easier to use with a MachineInstBuilder.
I introduced a pair here to track size and allocation together. I think we should probably move in the direction of the MachineOperandsRef helper class, but I'm leaving that for further work. I want to get the poison state introduced before I make major changes to the interface.
Differential Revision: http://reviews.llvm.org/D15757
llvm-svn: 256909
This is a recommit of r256004 which was reverted in r256160. The issue was the
incorrect promotion for half and byte loads transformed into mov instructions.
This fix will replace half and byte type loads only with bit field extracts.
Original commit message:
This change promotes load instructions which directly read from stored by
replacing them with mov instructions. If the store is wider than the load,
the load will be replaced with a bitfield extract.
For example :
STRWui %W1, %X0, 1
%W0 = LDRHHui %X0, 3
becomes
STRWui %W1, %X0, 1
%W0 = UBFMWri %W1, 16, 31
llvm-svn: 256249
This patch adds to the target description two additional patterns for matching
extract-extend operations to SMOV. The patterns catch the v16i8-to-i64 and
v8i16-to-i64 cases. The existing patterns miss these cases because the
extracted elements must first be legalized to i32, resulting in any_extend
nodes.
This was originally implemented as a DAG combine (r255895), but was reverted
due to failing out-of-tree tests.
llvm-svn: 256176
Disable post-ra scheduler for perturbed tests to appease the bots and to
preserve the history of the tests.
http://reviews.llvm.org/D15652
llvm-svn: 256158
This change promotes load instructions which directly read from stores by
replacing them with mov instructions. If the store is wider than the load,
the load will be replaced with a bitfield extract.
For example :
STRWui %W1, %X0, 1
%W0 = LDRHHui %X0, 3
becomes
STRWui %W1, %X0, 1
%W0 = UBFMWri %W1, 16, 31
llvm-svn: 256004
This patch enables PostRAScheduler specifically for AArch64 generic build,
which is beneficial from the performance perspective.
Speedups up to 2 to 7% for some benchmarks on A57 and A53 are observed.
Also benchmarks from LLVM test-suite did not regress.
Differential Revision: http://reviews.llvm.org/D15557
llvm-svn: 255896
This patch adds a DAG combine for (any_extend (extract_vector_elt v, i)) ->
(extract_vector_elt v, i). The combine enables us to better match some SMOV
patterns.
Differential Revision: http://reviews.llvm.org/D15515
llvm-svn: 255895
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given machine function and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
The target independent portion was committed as r255353.
rdar://problem/23557469
Differential Revision: http://reviews.llvm.org/D15341
llvm-svn: 255821
This patch adds some missing calls to MBB::normalizeSuccProbs() in several
locations where it should be called. Those places are found by checking if the
sum of successors' probabilities is approximate one in MachineBlockPlacement
pass with some instrumented code (not in this patch).
Differential revision: http://reviews.llvm.org/D15259
llvm-svn: 255455
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
llvm-svn: 255387
computeRegisterLiveness() was broken in that it reported dead for a
register even if a subregister was alive. I assume this was because the
results of analayzePhysRegs() are hard to understand with respect to
subregisters.
This commit: Changes the results of analyzePhysRegs (=struct
PhysRegInfo) to be clearly understandable, also renames the fields to
avoid silent breakage of third-party code (and improve the grammar).
Fix all (two) users of computeRegisterLiveness() in llvm: By reenabling
it and removing workarounds for the bug.
This fixes http://llvm.org/PR24535 and http://llvm.org/PR25033
Differential Revision: http://reviews.llvm.org/D15320
llvm-svn: 255362
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).
DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.
One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.
Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.
Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!
llvm-svn: 255089
Summary:
This fixes failure when trying to select
insertelement <4 x half> undef, half %a, i64 0
which gets transformed to a scalar_to_vector node.
The accompanying v4 and v8 tests fail instruction selection without this
patch.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15322
llvm-svn: 255072
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
The ".2h" vector type specifier is now legal (for the scalar pairwise
reduction instructions), so some unrelated tests have been modified as
different error messages are emitted. This is not a problem as the
invalid operands are still caught.
llvm-svn: 255010
When the notion of target specific memory intrinsics was introduced to EarlyCSE, the commit confused the notions of volatile and simple memory access. Since I'm about to start working on this area, cleanup the naming so that patches aren't horribly confusing. Note that the actual implementation was always bailing if the load or store wasn't simple.
Reminder:
- "volatile" - C++ volatile, can't remove any memory operations, but in principal unordered
- "ordered" - imposes ordering constraints on other nearby memory operations
- "atomic" - can't be split or sheared. In LLVM terms, all "ordered" operations are also atomic so the predicate "isAtomic" is often used.
- "simple" - a load which is none of the above. These are normal loads and what most of the optimizer works with.
llvm-svn: 254805
In the case of a conditional branch without a preceding cmp we used to emit
a "and; cmp; b.eq/b.ne" sequence, use tbz/tbnz instead.
Differential Revision: http://reviews.llvm.org/D15122
llvm-svn: 254621
We mustn't introduce a shift of exactly 64-bits for any inputs, since that's an
UNDEF value (and worse, it's not what you want with the natural Arch64
implementation).
The generated code is pretty horrific, but I couldn't come up with an obviously
better alternative (if the amount is constant EXTR could help). Turns out
128-bit shifts are just nasty.
rdar://22491037
llvm-svn: 254475
Summary:
When not useful bits, BitWidth becomes 0 and APInt will not be happy.
See https://llvm.org/bugs/show_bug.cgi?id=25571
We can just mark the operand as IMPLICIT_DEF is none bits of it is used.
Reviewers: t.p.northover, jmolloy
Subscribers: gberry, jmolloy, mgrang, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14803
llvm-svn: 254440
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Most of these instructions are the same as the 32- and 64-bit versions,
but with the type field (bits 23-22) set to 0b11. Previously the top bit
of the size field was always 0, so the instruction classes only provided
a 1-bit size field, which I have widened to 2 bits.
Differential Revision: http://reviews.llvm.org/D15014
llvm-svn: 254198
ARMv8.2-A adds new variants of the "at" (address translate) system
instruction, which take the PSTATE.PAN bit (added in ARMv8.1-A). These
are a required part of ARMv8.2-A, so no additional subtarget features
are required.
Differential Revision: http://reviews.llvm.org/D15018
llvm-svn: 254159
ARMv8.2-A adds a new PSTATE bit, PSTATE.UAO, which allows the LDTR/STTR
instructions to behave the same as LDR/STR with respect to execute-only
pages at higher privilege levels. New variants of the MSR/MRS
instructions are added to allow reading and writing this bit. It is a
required part of ARMv8.2-A, so no additional subtarget features are
required.
Differential Revision: http://reviews.llvm.org/D15020
llvm-svn: 254157
ARMv8.2-A adds the "dc cvap" instruction, which is a system instruction
that cleans caches to the point of persistence (for systems that have
persistent memory). It is a required part of ARMv8.2-A, so no additional
subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15016
llvm-svn: 254156
ARMv8.2-A adds a new ID register, ID_A64MMFR2_EL1, which behaves in the
same way as ID_A64MMFR0_EL1 and ID_A64MMFR1_EL1. It is a required part
of ARMv8.2-A, so no additional subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15017
llvm-svn: 254155
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature. There
is also one large, optional feature, which adds 16-bit floating point
versions of all existing floating-point instructions (VFP and SIMD),
this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15013
llvm-svn: 254154
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
llvm-svn: 253965
This change merges adjacent zero stores into a wider single store.
For example :
strh wzr, [x0]
strh wzr, [x0, #2]
becomes
str wzr, [x0]
This will fix PR25410.
llvm-svn: 253711
Summary :
* Rename isSmallTypeLdMerge() to isNarrowLoad().
* Rename NumSmallTypeMerged to NumNarrowTypePromoted.
* Use Subtarget defined as a member variable.
llvm-svn: 253587
This change extends r251438 to handle more narrow load promotions
including byte type, unscaled, and signed. For example, this change will
convert :
ldursh w1, [x0, #-2]
ldurh w2, [x0, #-4]
into
ldur w2, [x0, #-4]
asr w1, w2, #16
and w2, w2, #0xffff
llvm-svn: 253577
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This patch adds a cost estimate for some missing sign and zero extensions. The
costs were determined by counting the number of shift instructions generated
without context for each new extension.
Differential Revision: http://reviews.llvm.org/D14730
llvm-svn: 253482
SELECT_CC has the nasty property of having operands with unrelated
types. So if you do something like:
f32 = select_cc f16, f16, f32, f32, cc
You'd only look for the action for <select_cc, f32>, but never f16.
If the types are all legal, but the op isn't (as for f16 on AArch64,
or for f128 on x86_64/AArch64?), then you get into trouble.
For f128, we have softenSetCCOperands to handle this case.
Similarly, for f16, we can directly promote the CC operands.
llvm-svn: 253344
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
Storing the source location of the expression that created a constant pool
entry allows us to emit better error messages if we later discover that the
expression cannot be represented by a relocation.
Differential Revision: http://reviews.llvm.org/D14646
llvm-svn: 253220
The MCValue class can store a SMLoc to allow better error messages to be
emitted if an error is detected after parsing. The ARM and AArch64 assembly
parsers were not setting this, so error messages did not have source
information.
Differential Revision: http://reviews.llvm.org/D14645
llvm-svn: 253219
The AArch64 assembler was silently ignoring instructions like this:
ldr foo, =bar
AArch64AsmParser::parseOperand was returning true as the parse failed, but was
not calling AArch64AsmParser::Error to report this to the user, so the
instruction was ignored without printing an error message.
Differential Revision: http://reviews.llvm.org/D14651
llvm-svn: 253193
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
Darwin reserves x18, so it's never ABI compliant to generate code that
uses it. Set the default value based on the OS part of the triple
rather than forcing front-ends to set the +reserve-x18 target feature
in order to build correct code for Darwin.
This will make r243310 redundant, so I'll revert that shortly.
llvm-svn: 253102
AArch64 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any AArch64
implementation.
The net result of allowing this speculation for the regression tests in this
patch is that we get this code:
ctlz:
clz w0, w0
ret
cttz:
rbit w8, w0
clz w0, w8
ret
Instead of:
ctlz:
cbz w0, .LBB0_2
clz w0, w0
ret
.LBB0_2:
orr w0, wzr, #0x20
ret
cttz:
cbz w0, .LBB1_2
rbit w8, w0
clz w0, w8
ret
.LBB1_2:
orr w0, wzr, #0x20
ret
See D14469 for the larger motivation.
Differential Revision: http://reviews.llvm.org/D14505
llvm-svn: 252625
For big-endian targets, when we merge two halfword loads into a word load, the
order of the halfwords in the loaded value is reversed compared to
little-endian, so the load-store optimiser needs to swap the destination
registers.
This does not affect merging of two word loads, as we use ldp, which treats the
memory as two separate 32-bit words.
llvm-svn: 252597
AArch64 has the ability to use the top 8-bits of an "address" for extra
information, with the memory subsystem automatically masking them off for loads
and stores. When that's happening, we can sometimes skip masks on memory
operations in the compiler.
However, this requires the host OS and support stack to preserve those bits so
it can't be enabled everywhere. In principle iOS 8.0 and above do take the
required precautions and but we'll put it under a flag for now.
llvm-svn: 252573
Summary:
This matches the sum-of-absdiff patterns emitted by the vectoriser using log2 shuffles.
Relies on D14207 to be able to match the `extract_subvector(..., 0)`
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14208
llvm-svn: 252465
Summary:
Lowering this pattern early to an `EXTRACT_SUBREG` was making it impossible to match larger patterns in tblgen that use `extract_subvector(..., 0)` as part of the their input pattern.
It seems like there will exist somewhere a better way of specifying this pattern over all relevant register value types, but I didn't manage to find it.
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14207
llvm-svn: 252464
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
We used to try to constant-fold them to i32 immediates.
Given that fast-isel doesn't otherwise support vNi1, when selecting
the result users, we'd fallback to SDAG anyway.
However, if the users were in another block, we'd insert broken
cross-class copies (GPR32 to FPR64).
Give up, let SDAG agree with itself on a vNi1 legalization strategy.
llvm-svn: 252364
The benefit from converting narrow loads into a wider load (r251438) could be
micro-architecturally dependent, as it assumes that a single load with two bitfield
extracts is cheaper than two narrow loads. Currently, this conversion is
enabled only in cortex-a57 on which performance benefits were verified.
llvm-svn: 252316
Also, remove an enum hack where enum values were used as indexes into an array.
We may want to make this a real class to allow pattern-based queries/customization (D13417).
llvm-svn: 252196
Summary:
This review is related to another review request http://reviews.llvm.org/D11268, does the same and merely fixes a couple of issues with it.
D11268 is quite old and has merge conflicts against the current trunk.
This request
- rebases D11268 onto the new trunk;
- resolves the merge conflicts;
- fixes the prologue_end tests, which do not pass due to the subprogram definitions not marked as distinct.
Reviewers: echristo, rengolin, kubabrecka
Subscribers: aemerson, rengolin, jyknight, dsanders, llvm-commits, asl
Differential Revision: http://reviews.llvm.org/D14338
llvm-svn: 252177
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
llvm-svn: 251490
This recommits r250719, which caused a failure in SPEC2000.gcc
because of the incorrect insert point for the new wider load.
Convert two halfword loads into a single 32-bit word load with bitfield extract
instructions. For example :
ldrh w0, [x2]
ldrh w1, [x2, #2]
becomes
ldr w0, [x2]
ubfx w1, w0, #16, #16
and w0, w0, #ffff
llvm-svn: 251438
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
llvm-svn: 251429
Summary: After D13851 landed, we saw backend crashes when compiling the reduced test case included in this patch. The right fix seems to be to allow these vector types for expansion in instruction selection.
Reviewers: rengolin, t.p.northover
Subscribers: RKSimon, t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14082
llvm-svn: 251401
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
llvm-svn: 251382
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
It turned out not to improve any of our benchmarks but occasionally led
to increased register pressure and spilling.
Only enabling for the Cyclone CPU as the results on the cortex CPUs
give mixed results.
Differential Revision: http://reviews.llvm.org/D13708
llvm-svn: 251038
Convert two halfword loads into a single 32-bit word load with bitfield extract
instructions. For example :
ldrh w0, [x2]
ldrh w1, [x2, #2]
becomes
ldr w0, [x2]
ubfx w1, w0, #16, #16
and w0, w0, #ffff
llvm-svn: 250719