Summary:
Relocations are required for unconditional branches to function symbols with
different execution mode. Without this patch, incorrect branches are
generated for tail calls between functions with different execution
mode.
Reviewers: peter.smith, rafael, echristo, kristof.beyls
Reviewed By: peter.smith
Subscribers: aemerson, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33898
llvm-svn: 304882
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
My previous commit r304702 introduced a new case into a switch statement.
This case defined a variable but I forgot to add the curly brackets around the
case to limit the scope.
This change puts the curly braces back in so that the next person that adds a
case doesn't get a build failure. Thanks to avieira for the spot.
Differential Revision: https://reviews.llvm.org/D33931
llvm-svn: 304785
When lowering calls, we generate instructions with machine opcodes
rather than generic ones. Therefore, we need to constrain the register
classes of the operands.
Also enable the machine verifier on the arm-irtranslator.ll test, since
that would've caught this issue.
Fixes (part of) PR32146.
llvm-svn: 304712
This change adds a new fixup fixup_t2_so_imm for the t2_so_imm_asmoperand
"T2SOImm". The fixup permits code such as:
.L1:
sub r3, r3, #.L2 - .L1
.L2:
to assemble in Thumb2 as well as in ARM state.
The operand predicate isT2SOImm() explicitly doesn't match expressions
containing :upper16: and :lower16: as expressions with these operators
must match the movt and movw instructions.
The test mov r0, foo2 in thumb2-diagnostics is moved to a new file as the
fixup delays the error message till after the assembler has quit due to
the other errors.
As the mov instruction shares the t2_so_imm_asmoperand mov instructions
with a non constant expression now match t2MOVi rather than t2MOVi16 so the
error message is slightly different.
Fixes PR28647
Differential Revision: https://reviews.llvm.org/D33492
llvm-svn: 304702
Very very similar to the support for arrays. As with arrays, we don't
support returning large structs that wouldn't fit in R0-R3. Most
front-ends would likely use sret arguments for that anyway.
The only significant difference is that when splitting a struct, we need
to make sure we set the correct original alignment on each member,
otherwise it may get split incorrectly between stack and registers.
llvm-svn: 304536
Summary:
Without using a fixup in this case, BL will be used instead of BLX to
call internal ARM functions from Thumb functions.
Reviewers: rafael, t.p.northover, peter.smith, kristof.beyls
Reviewed By: peter.smith
Subscribers: srhines, echristo, aemerson, rengolin, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33436
llvm-svn: 304413
This adds a callback to the LLVMTargetMachine that lets target indicate
that they do not pass the machine verifier checks in all cases yet.
This is intended to be a temporary measure while the targets are fixed
allowing us to enable the machine verifier by default with
EXPENSIVE_CHECKS enabled!
Differential Revision: https://reviews.llvm.org/D33696
llvm-svn: 304320
This is the equivalent of r304048 for ARM:
- Rewrite livein calculation to use the computeLiveIns() helper
function. This is slightly less efficient but easier to reason about
and doesn't unnecessarily add pristine and reserved registers[1]
- Zero the status register at the beginning of the loop to make sure it
has a defined value.
- Remove kill flags of values that need to stay alive throughout the loop.
[1] An upcoming commit of mine will tighten the MachineVerifier to catch
these.
llvm-svn: 304267
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
Create a helper to deal with the common code for merging incoming values
together after they've been split during call lowering. There's likely
more stuff that can be commoned up here, but we'll leave that for later.
llvm-svn: 304143
Clang coerces structs into arrays, so it's a good idea to support them.
Most of the support boils down to getting the splitToValueTypes helper
to actually split types. We then use G_INSERT/G_EXTRACT to deal with the
parts.
llvm-svn: 304132
Currently getOptimalMemOpType returns i32 for large enough sizes without
checking for alignment, leading to poor code generation when misaligned accesses
aren't permitted as we generate a word store then later split it up into byte
stores. This means we inadvertantly go over the MaxStoresPerMemcpy limit and for
memset we splat the memset value into a word then immediately split it up
again.
Fix this by leaving it up to FindOptimalMemOpLowering to figure out which type
to use, but also fix a bug there where it wasn't correctly checking if
misaligned memory accesses are allowed.
Differential Revision: https://reviews.llvm.org/D33442
llvm-svn: 303990
Summary:
Thumb code generation is controlled by ARMSubtarget and the concrete
ThumbLETargetMachine and ThumbBETargetMachine are not needed.
Eric Christopher suggested removing the unneeded target machines in
https://reviews.llvm.org/D33287.
I think it still makes sense to keep separate TargetMachines for big and
little endian as we probably do not want to have different endianess for
difference functions in a single compilation unit. The MIPS backend has
two separate TargetMachines for big and little endian as well.
Reviewers: echristo, rengolin, kristof.beyls, t.p.northover
Reviewed By: echristo
Subscribers: aemerson, javed.absar, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D33318
llvm-svn: 303733
This patch adds missing scheds for Neon VLDx/VSTx instructions.
This will help one write schedulers easier/faster in the future for ARM sub-targets.
Existing models will not affected by this patch.
Reviewed by: Renato Golin, Diana Picus
Differential Revision: https://reviews.llvm.org/D33120
llvm-svn: 303717
Summary:
A temporary workaround for PR32780 - rematerialized instructions accessing the same promoted global through different constant pool entries.
The patch turns off the globals promotion optimization leaving all its code in place, so that it can be easily turned on once PR32780 is fixed.
Since this is a miscompilation issue causing generation of misbehaving code, and the problem is very subtle, the patch might be valuable enough to get into 4.0.1.
Reviewers: efriedma, jmolloy
Reviewed By: efriedma
Subscribers: aemerson, javed.absar, llvm-commits, rengolin, asl, tstellar
Differential Revision: https://reviews.llvm.org/D33446
llvm-svn: 303679
Re-applying now that PR32825 which was raised on the commit this fixed up is now known to have also been fixed by this commit.
Original commit message:
Multiple ldr pseudoinstructions with the same constant value will
reuse the same constant pool entry. However, if the constant pool
is explicitly flushed with a .ltorg directive, we should not try
to reference constants in the previous pool any longer, since they
may be out of range.
This fixes assembling hand-written assembler source which repeatedly
loads the same constant value, across a binary size larger than the
pc-relative fixup range for ldr instructions (4096 bytes). Such
assembler source already uses explicit .ltorg instructions to emit
constant pools with regular intervals. However if we try to reuse
constants emitted in earlier pools, they end up out of range.
This makes the output of the testcase match what binutils gas does
(prior to this patch, it would fail to assemble).
Differential Revision: https://reviews.llvm.org/D32847
llvm-svn: 303540
This reverts commit r302416. This was a fixup for r286006, which has now been reverted so this doesn't apply (either in concept or in code).
This commit itself has no problems, but the underlying issue it was fixing has now disappeared from the codebase.
llvm-svn: 303536
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
It only failed on llvm-clang-x86_64-expensive-checks-win, probably
because the TableGen stuff hasn't been regenerated.
Requires a clean build.
llvm-svn: 303252
Doing this means that if an LEApcrel is used in two places we will rematerialize
instead of generating two MOVs. This is particularly useful for printfs using
the same format string, where we want to generate an address into a register
that's going to get corrupted by the call.
Differential Revision: https://reviews.llvm.org/D32858
llvm-svn: 303054
Doing this lets us hoist it out of loops, and I've also marked it as
rematerializable the same as the thumb1 and thumb2 counterparts.
It looks like it being marked as such was just a mistake, as the commit that
made that change only mentions LEApcrelJT and in thumb1 and thumb2 only the
LEApcrelJT instructions were marked as having side-effects, so it looks like
the intent was to only mark LEApcrelJT as having side-effects but LEApcrel was
accidentally marked as such also.
Differential Revision: https://reviews.llvm.org/D32857
llvm-svn: 303053
This is the same as r292827 for AArch64: we widen 8- and 16-bit ADD, SUB
and MUL to 32 bits since we only have TableGen patterns for 32 bits.
See the commit message for r292827 for more details.
At this point we could just remove some of the tests for regbankselect
and instruction-select, since we're not going to see any narrow
operations at those levels anymore. Instead I decided to update them
with G_ANYEXT/G_TRUNC operations, so we can validate the full sequences
generated by the legalizer.
llvm-svn: 302782
G_ANYEXT can be introduced by the legalizer when widening scalars. Add
support for it in the register bank info (same mapping as everything
else) and in the instruction selector.
When selecting it, we treat it as a COPY, just like G_TRUNC. On this
occasion we get rid of some assertions in selectCopy so we can reuse it.
This shouldn't be a problem at the moment since we're not supporting any
complicated cases (e.g. FPR, different register banks). We might want to
separate the paths when we do.
llvm-svn: 302778
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
Now both emitLeadingFence and emitTrailingFence take the instruction
itself, instead of taking IsLoad/IsStore pairs.
Instruction::mayReadFromMemory and Instrucion::mayWriteToMemory are used
for determining those two booleans.
The instruction argument is also useful for later D32763, in
emitTrailingFence. For emitLeadingFence, it seems to have cleaner
interface with the proposed change.
Differential Revision: https://reviews.llvm.org/D32762
llvm-svn: 302539
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Statistic compile to always be 0 in release build so this compare would always return false. And in the debug builds Statistic are global variables and remember their values across pass runs. So this compare returns true anytime the pass runs after the first time it modifies something.
This was found after reviewing all usages of comparison operators on a Statistic object. We had some internal code that did a compare with a statistic that caused a mismatch in output between debug and release builds. So we did an audit out of paranoia.
llvm-svn: 302450
Multiple ldr pseudoinstructions with the same constant value will
reuse the same constant pool entry. However, if the constant pool
is explicitly flushed with a .ltorg directive, we should not try
to reference constants in the previous pool any longer, since they
may be out of range.
This fixes assembling hand-written assembler source which repeatedly
loads the same constant value, across a binary size larger than the
pc-relative fixup range for ldr instructions (4096 bytes). Such
assembler source already uses explicit .ltorg instructions to emit
constant pools with regular intervals. However if we try to reuse
constants emitted in earlier pools, they end up out of range.
This makes the output of the testcase match what binutils gas does
(prior to this patch, it would fail to assemble).
Differential Revision: https://reviews.llvm.org/D32847
llvm-svn: 302416
This is a step toward having statically allocated instruciton mapping.
We are going to tablegen them eventually, so let us reflect that in
the API.
NFC.
llvm-svn: 302316
This exposes a method in MachineFrameInfo that calculates
MaxCallFrameSize and calls it after instruction selection in the ARM
target.
This avoids
ARMBaseRegisterInfo::canRealignStack()/ARMFrameLowering::hasReservedCallFrame()
giving different answers in early/late phases of codegen.
The testcase shows a particular nasty example result of that where we
would fail to properly align an alloca.
Differential Revision: https://reviews.llvm.org/D32622
llvm-svn: 302303
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
Recently support was added for substituting one intruction for another by
negating or inverting the immediate, but ORR and ORN were missed so this patch
adds them.
This one is slightly different to the others in that ORN only exists in thumb,
so we only do the substitution in thumb.
Differential Revision: https://reviews.llvm.org/D32534
llvm-svn: 302224
Added the integer data processing intrinsics from ACLE v2.1 Chapter 9
but I have missed out the saturation_occurred intrinsics for now. For
the instructions that read and write the GE bits, a chain is included
and the only instruction that reads these flags (sel) is only
selectable via the implemented intrinsic.
Differential Revision: https://reviews.llvm.org/D32281
llvm-svn: 302126
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
When we replaced the multiplicand the destination node might already exist.
When that happens the original gets CSEd and deleted. However, it's actually
used as the offset so nonsense is produced.
Should fix PR32726.
llvm-svn: 301983
I doubt anyone actually uses it, and I'm not even entirely convinced it exists
myself; but it is our default for "clang -arch armv6". Functionally, if it does
exist it's identical to the arm1176jz-f from LLVM's point of view (the
difference is apparently in the "Security Extensions").
llvm-svn: 301962
Emit and use the TableGen instruction selector for ARM. At the moment,
this allows us to remove the hand-written code for selecting G_SDIV and
G_UDIV.
Future commits will focus on increasing the code coverage for it and
removing more dead code from the current instruction selector.
llvm-svn: 301905
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
Declare the ARMInstructionSelector in an anonymous namespace, to make it
more in line with the other targets which were migrated to this in
r299637 in order to avoid TableGen'erated headers being included in
non-GlobalISel builds.
llvm-svn: 301632
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Fix a crash when trying to extend a value passed as a sign- or
zero-extended stack parameter. The cause of the crash was that we were
setting the size of the loaded value to 32 bits, and then tyring to
extend again to 32 bits.
This patch addresses the issue by also introducing a G_TRUNC after the
load. This will leave the unused bits to their original values set by
the caller, while being consistent about the types. For values that are
not extended, we just use a smaller load.
llvm-svn: 301531
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
We have to widen the operands to 32 bits and then we can either use
hardware division if it is available or lower to a libcall otherwise.
At the moment it is not enough to set the Legalizer action to
WidenScalar, since for libcalls it won't know what to do (it won't be
able to find what size to widen to, because it will find Libcall and not
Legal for 32 bits). To hack around this limitation, we request Custom
lowering, and as part of that we widen first and then we run another
legalizeInstrStep on the widened DIV.
llvm-svn: 301166
Add support for both targets with hardware division and without. For
hardware division we have to add support throughout the pipeline
(legalizer, reg bank select, instruction select). For targets without
hardware division, we only need to mark it as a libcall.
llvm-svn: 301164
When selecting a G_CONSTANT to a MOVi, we need the value to be an Imm
operand. We used to just leave the G_CONSTANT operand unchanged, which
works in some cases (such as the GEP offsets that we create when
referring to stack slots). However, in many other places the G_CONSTANTs
are created with CImm operands. This patch makes sure to handle those as
well, and to error out gracefully if in the end we don't end up with an
Imm operand.
Thanks to Oliver Stannard for reporting this issue.
llvm-svn: 301162
Summary:
Some targets need to be able to do more complex rendering than just adding an
operand or two to an instruction. For example, it may need to insert an
instruction to extract a subreg first, or it may need to perform an operation
on the operand.
In SelectionDAG, targets would create SDNode's to achieve the desired effect
during the complex pattern predicate. This worked because SelectionDAG had a
form of garbage collection that would take care of SDNode's that were created
but not used due to a later predicate rejecting a match. This doesn't translate
well to GlobalISel and the churn was wasteful.
The API changes in this patch enable GlobalISel to accomplish the same thing
without the waste. The API is now:
InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const;
where Root is the root of the match. The return value can be omitted to
indicate that the predicate failed to match, or a function with the signature
ComplexRendererFn can be returned. For example:
return OptionalComplexRendererFn(
[=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); });
adds two immediate operands to the rendered instruction. Immed and ShVal are
captured from the predicate function.
As an added bonus, this also reduces the amount of information we need to
provide to GIComplexOperandMatcher.
Depends on D31418
Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar
Reviewed By: ab
Subscribers: dberris, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31761
llvm-svn: 301079
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows. This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.
llvm-svn: 301047
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.
We had a terrific bug due to this in Chromium.
It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.
Differential Revision: https://reviews.llvm.org/D32330
llvm-svn: 301040
Otherwise there's some mismatch, and we'll either form an illegal type or an
illegal node.
Thanks to Eli Friedman for pointing out the problem with my original solution.
llvm-svn: 301036
DAG combine was mistakenly assuming that the step-up it was looking at was
always a doubling, but it can sometimes be a larger extension in which case
we'd crash.
llvm-svn: 301002
Select them as copies. We only select if both the source and the
destination are on the same register bank, so this shouldn't cause any
trouble.
llvm-svn: 300971
The condition in isSupportedType didn't handle struct/array arguments
properly. Fix the check and add a test to make sure we use the fallback
path in this kind of situation. The test deals with some common cases
where the call lowering should error out. There are still some issues
here that need to be addressed (tail calls come to mind), but they can
be addressed in other patches.
llvm-svn: 300967
Single-threaded fences aren't required to provide any synchronization with
other processing elements so there's no need for a DMB. They should still be a
barrier for compiler optimizations though.
llvm-svn: 300904
Before, we assumed that any ConstantInt offset was precisely the access width,
so we could use the "[rN]!" form. ISelLowering only ever created that kind, but
further simplification during combining could lead to unexpected constants and
incorrect codegen.
Should fix PR32658.
llvm-svn: 300878
This will become asan errors once the patch lands that poisons the
memory after free. The x86 change is a hack, but I don't see how to
solve this properly at the moment.
llvm-svn: 300867
ChangeSection incorrectly registers LastEMSInfo as belonging to the previous
section, not the current section. This happens to work when changing sections
using .section, as the previous section is set to the current section before
the call to ChangeSection, but not when using .popsection.
Differential Revision: https://reviews.llvm.org/D32225
llvm-svn: 300831
The hardware div feature refers only to Thumb, but because of its name
it is tempting to use it to check for hardware division in general,
which may cause problems in ARM mode. See https://reviews.llvm.org/D32005.
This patch adds "Thumb" to its name, to make its scope clear. One
notable place where I haven't made the change is in the feature flag
(used with -mattr), which is still hwdiv. Changing it would also require
changes in a lot of tests, including clang tests, and it doesn't seem
like it's worth the effort.
Differential Revision: https://reviews.llvm.org/D32160
llvm-svn: 300827
Re-commit after revert in r300668. Changed getMaxFPOffset() to a
more conservative heuristic instead of trying to be clever and missing
for some exotic calling conventions.
We need to reserve an emergency spill slot in cases with large argument
types that could overflow immediate offsets for FP relative address
calculations.
rdar://31317893
Differential Revision: https://reviews.llvm.org/D31643
llvm-svn: 300761
Move the BFI logic to computeKnownBitsForTargetNode, and delete
the redundant CMOV logic.
This is intended as a cleanup, but it's probably possible to construct
a case where moving the BFI logic allows more combines.
Differential Revision: https://reviews.llvm.org/D31795
llvm-svn: 300752
Support G_MUL, very similar to G_ADD and G_SUB. The only difference is
in the instruction selector, where we have to select either MUL or MULv5
depending on the target.
llvm-svn: 300665
In r300196 several methods were added to TarfetInstrInfo to access
data stored with call frame setup/destroy instructions. This change
replaces calls to getOperand with calls to such special methods in
ARM target.
Differential Revision: https://reviews.llvm.org/D32127
llvm-svn: 300655
We need to reserve an emergency spill slot in cases with large argument
types that could overflow immediate offsets for FP relative address
calculations.
rdar://31317893
Differential Revision: https://reviews.llvm.org/D31643
llvm-svn: 300639
In the assembler, we should emit build attributes based on the target
selected with command-line options. This matches the GNU assembler's
behaviour. We only do this for build attributes which describe the
hardware that is expected to be available, not the ones that describe
ABI compatibility.
This is done by moving some of the attribute emission code to
ARMTargetStreamer, so that it can be shared between the assembly and
code-generation code paths. Since the assembler only creates a
MCSubtargetInfo, not an ARMSubtarget, the code had to be changed to
check raw features, and not use the convenience functions in
ARMSubtarget.
If different attributes are later specified using the .eabi_attribute
directive, then they will take precedence, as happens when the same
.eabi_attribute is specified twice.
This must be enabled by an option, because we don't want to do this when
parsing inline assembly. The attributes would match the ones emitted at
the start of the file, so wouldn't actually change the emitted object
file, but the extra directives would be added to every inline assembly
block when emitting assembly, which we'd like to avoid.
The majority of the changes in the build-attributes.ll test are just
re-ordering the directives, because the hardware attributes are now
emitted before the ABI ones. However, I did fix one bug which I spotted:
Tag_CPU_arch_profile was not being emitted for v6M.
Differential revision: https://reviews.llvm.org/D31812
llvm-svn: 300547
For subtargets that use the custom lowering for divmod, e.g. gnueabi,
we used to check if the subtarget has hardware divide and then lower to
a div-mul-sub sequence if true, or to a libcall if false.
However, judging by the usage of hasDivide vs hasDivideInARMMode, it
seems that hasDivide only refers to Thumb. For instance, in the
ARMTargetLowering constructor, the code that specifies whether to use
libcalls for (S|U)DIV looks like this:
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
: Subtarget->hasDivideInARMMode();
In the case of divmod for arm-gnueabi, using only hasDivide() to
determine what to do means that instead of lowering to __aeabi_idivmod
to get the remainder, we lower to div-mul-sub and then further lower the
div to __aeabi_idiv. Even worse, if we have hardware divide in ARM but
not in Thumb, we generate a libcall instead of using it (this is not an
issue in practice since AFAICT none of the cores that we support have
hardware divide in ARM but not Thumb).
This patch fixes the code dealing with custom lowering to take into
account the mode (Thumb or ARM) when deciding whether or not hardware
division is available.
Differential Revision: https://reviews.llvm.org/D32005
llvm-svn: 300536
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
Use the same handling in the generic legalizer code as for the other
libcalls (G_FREM, G_FPOW).
Enable it on ARM for float and double so we can test it.
llvm-svn: 299931
This patch refactors and strengthens the type checks performed for interleaved
accesses. The primary functional change is to ensure that the interleaved
accesses have valid element types. The added test cases previously failed
because the element type is f128.
Differential Revision: https://reviews.llvm.org/D31817
llvm-svn: 299864
BIC is generally faster, and it can put the output in a different
register from the input.
We already do this in Thumb2 mode; not sure why the equivalent fix
never got applied to ARM mode.
Differential Revision: https://reviews.llvm.org/D31797
llvm-svn: 299803