This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
llvm-svn: 299875
Also, make the same change in and-of-icmps and remove a hack for detecting that case.
Finally, add some FIXME comments because the code duplication here is awful.
This should fix the remaining IR problem noted in:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 299851
We currently only fold scalar add of constants into selects. This improves this to support vectors too.
Differential Revision: https://reviews.llvm.org/D31683
llvm-svn: 299847
Summary:
This is my first time using the commutable matchers so wanted to make sure I was doing it right.
Are there any other matcher tricks to further shrink this? Can we commute the whole match so we don't have to LHS and RHS separately?
Reviewers: davide, spatel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31680
llvm-svn: 299840
Summary: I noticed in the select folding code that we copied fast math flags, but did not do the same for the similar handling in phi nodes. This patch fixes that to do the same thing as select
Reviewers: spatel, davide, majnemer, hfinkel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31690
llvm-svn: 299838
"PredicatesFoldable" returns false for signed/unsigned mismatched pairs,
so these cases should never exist. We'll default to 'unreachable' on those
predicate combos instead.
Most of what's left in these switches belongs in InstSimplify (and may
already be there), so there's probably more that can be done to reduce
this code.
llvm-svn: 299829
Calling computeKnownBits on the RHS should allows us to recurse one step further. isMask is equivalent to the isPowerOf2(C+1) except in the case where C is all ones. But that was already handled earlier by creating a not which is an Xor with all ones. So this should be fine.
llvm-svn: 299710
This combine is fully handled by SimplifyDemandedInstructionBits as of r299658 where I fixed this code to ensure the Add/Sub had only a single user. Otherwise it would fire and create additional instructions. That fix resulted in an improvement to code generated for tsan which is why I committed it before deleting.
Differential Revision: https://reviews.llvm.org/D31543
llvm-svn: 299704
There must be some opportunity to refactor big chunks of nearly duplicated code in FoldOrOfICmps / FoldAndOfICmps.
Also, none of this works with vectors, but it should.
llvm-svn: 299568
Currently we only fold with ConstantInt RHS. This generalizes to any Constant RHS.
Differential Revision: https://reviews.llvm.org/D31610
llvm-svn: 299466
It turns out that SimplifyDemandedInstructionBits will get called earlier and remove bits from C1 first. Effectively doing (X & (C1&C2)) | C2. So by the time it got to this check there could be no common bits.
I think the DAGCombiner has the same check but its check can be executed because it handles demanded bits later. I'll look at it next.
llvm-svn: 299384
1. Improve enum, function, and variable names.
2. Improve comments.
3. Fix variable capitalization.
4. Run clang-format.
As an existing code comment suggests, this should work with vector types / splat constants too,
so making this look right first will reduce the diffs needed for that change.
llvm-svn: 299365
This moves the isMask and isShiftedMask functions to be class methods. They now use the MathExtras.h function for single word size and leading/trailing zeros/ones or countPopulation for the multiword size. The previous implementation made multiple temorary memory allocations to do the bitwise arithmetic operations to match the MathExtras.h implementation.
Differential Revision: https://reviews.llvm.org/D31565
llvm-svn: 299362
The callers have already performed the necessary cast before calling. This allows us to remove a comment that says the instruction must be a BinaryOperator and make it explicit in the argument type.
Had to add a default case to the switch because BinaryOperator::getOpcode() returns a BinaryOps enum.
llvm-svn: 299339
As far as I can tell this combine is fully handled by SimplifyDemandedInstructionBits.
I was only looking at this because it is the only user of APIntOps::isShiftedMask which is itself broken. As demonstrated by r299187. I was going to fix isShiftedMask and needed to make sure we had coverage for the new cases it would expose to this combine. But looks like we can nuke it instead.
Differential Revision: https://reviews.llvm.org/D31543
llvm-svn: 299337
This removes a parameter from the routine that was responsible for a lot of the issue. It was a bit count that had to be set to the BitWidth of the APInt and would get passed to getLowBitsSet. This guaranteed the call to getLowBitsSet would create an all ones value. This was then compared to (V | (V-1)). So the only shifted masks we detected had to have the MSB set.
The one in tree user is a transform in InstCombine that never fires due to earlier transforms covering the case better. I've submitted a patch to remove it completely, but for now I've just adapted it to the new interface for isShiftedMask.
llvm-svn: 299273
This way we ensure we immediately revisit the instruction and do any additional optimizations before visiting the users. Otherwise we might visit the users, then the instruction, then users again, then instruction again.
llvm-svn: 299267
A common way to implement nearbyint is by fiddling with the floating
point environment and calling rint. This is used at least by the BSD
libm and musl. As such, canonicalizing the latter to the former will
create infinite loops for libm and generally pessimize performance, at
least when the generic C versions are used.
This change preserves the rint in the libcall translation and also
handles the domain truncation logic, so that rint with float argument
will be reduced to rintf etc.
llvm-svn: 299247
Summary: Currently the VP metadata was dropped when InstCombine converts a call to direct call. This patch converts the VP metadata to branch_weights so that its hotness is recorded.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31344
llvm-svn: 299228
Some of the GEP combines (e.g., descaling) can't handle vector GEPs. We have an
existing check that attempts to bail out if given a vector GEP. However, the
check only tests the GEP's pointer operand. A GEP results in a vector of
pointers if at least one of its operands is vector-typed (e.g., its pointer
operand could be a scalar, but its index could be a vector). We should just
check the type of the GEP itself. This should fix PR32414.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32414
Differential Revision: https://reviews.llvm.org/D31470
llvm-svn: 299017
Summary:
We are incorrectly folding selects into phi nodes when the incoming value of a phi
node is a constant vector. This optimization is done in `FoldOpIntoPhi` when the
select condition is a phi node with constant incoming values.
Without the fix, we are miscompiling (i.e. incorrectly folding the
select into the phi node) when the vector contains non-zero
elements.
This patch fixes the miscompile and we will correctly fold based on the
select vector operand (see added test cases).
Reviewers: majnemer, sanjoy, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31189
llvm-svn: 298845
The first thing it did was get the User for the Use to get the instruction back. This requires looking through the Uses for the User using the waymarking walk. That's pretty fast, but its probably still better to just pass the Instruction we already had.
llvm-svn: 298772
SimplifyDemandedUseBits for Add/Sub already recursed down LHS and RHS for simplifying bits. If that didn't provide any simplifications we fall back to calling computeKnownBits which will recurse again. Instead just take the known bits for LHS and RHS we already have and call into a new function in ValueTracking that can calculate the known bits given the LHS/RHS bits.
llvm-svn: 298711
Now that we call ShrinkDemandedConstant on the RHS of sub this should be taken care of. This code doesn't trigger on any in tree regressions, but did before ShrinkDemandedConstant was added to the RHS.
llvm-svn: 298644
insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
As noted in the code comment and seen in the test changes, the motivation is that by pulling
constant insertion up, we may be able to constant fold some insertelement instructions.
Differential Revision: https://reviews.llvm.org/D31196
llvm-svn: 298520
Summary: Subtracts can have constants on the left side, but we don't shrink them based on demanded bits. This patch fixes that to match the right hand side.
Reviewers: davide, majnemer, spatel, sanjoy, hfinkel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31119
llvm-svn: 298478
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
InstCombine tries to constant fold instruction operands during worklist building, but we don't print that we're doing this.
We also set a change flag here that causes us to rebuild and rerun the worklist one more time even if processing the worklist itself created no additional changes. So in the log I saw two inst combine runs that visited all instructions without printing that anything was changed. I may be submitting another patch to remove the change flag unless I can find some reason why we should be doing that.
Differential Revision: https://reviews.llvm.org/D31091
llvm-svn: 298264
[Reapplies r297971 and punting on finding a better API for findDbgValues()]
This patch improves debug info quality in InstCombine by looking at
values that are about to be deleted, checking whether there are any
dbg.value instrinsics referring to them, and potentially encoding the
semantics of the deleted instruction into the dbg.value's
DIExpression.
In the example in the testcase (which was extracted from XNU) there is a sequence of
%4 = load %struct.entry*, %struct.entry** %next2, align 8, !dbg !41
%5 = bitcast %struct.entry* %4 to i8*, !dbg !42
%add.ptr4 = getelementptr inbounds i8, i8* %5, i64 -8, !dbg !43
%6 = bitcast i8* %add.ptr4 to %struct.entry*, !dbg !44
call void @llvm.dbg.value(metadata %struct.entry* %6, i64 0, metadata !20, metadata !21), !dbg 34
When these instructions are eliminated by instcombine one after
another, we can still salvage the otherwise dead debug info:
- Bitcasts have no effect, so have the dbg.value point to operand(0)
- Loads can be expressed via a DW_OP_deref
- Constant gep instructions can be replaced by DWARF expression arithmetic
The API introduced by this patch is not specific to instcombine and
can be useful in other places, too.
rdar://problem/30725338
Differential Revision: https://reviews.llvm.org/D30919
llvm-svn: 297994
As the related tests show, we're not canonicalizing to this form for scalars or vectors yet,
but this solves the immediate problem in:
https://bugs.llvm.org/show_bug.cgi?id=32306
llvm-svn: 297989
This patch improves debug info quality in InstCombine by looking at
values that are about to be deleted, checking whether there are any
dbg.value instrinsics referring to them, and potentially encoding the
semantics of the deleted instruction into the dbg.value's
DIExpression.
In the example in the testcase (which was extracted from XNU) there is a sequence of
%4 = load %struct.entry*, %struct.entry** %next2, align 8, !dbg !41
%5 = bitcast %struct.entry* %4 to i8*, !dbg !42
%add.ptr4 = getelementptr inbounds i8, i8* %5, i64 -8, !dbg !43
%6 = bitcast i8* %add.ptr4 to %struct.entry*, !dbg !44
call void @llvm.dbg.value(metadata %struct.entry* %6, i64 0, metadata !20, metadata !21), !dbg 34
When these instructions are eliminated by instcombine one after
another, we can still salvage the otherwise dead debug info:
- Bitcasts have no effect, so have the dbg.value point to operand(0)
- Loads can be expressed via a DW_OP_deref
- Constant gep instructions can be replaced by DWARF expression arithmetic
The API introduced by this patch is not specific to instcombine and
can be useful in other places, too.
rdar://problem/30725338
Differential Revision: https://reviews.llvm.org/D30919
llvm-svn: 297971
Summary:
The call to canEvaluateZExtd in InstCombiner::visitZExt may
return with BitsToClear == SrcTy->getScalarSizeInBits(), but
there is an assert that BitsToClear should be smaller than
SrcTy->getScalarSizeInBits().
I have a test case that triggers the assert, but it only happens
for my downstream target. I've not been able to trigger it for
any upstream target.
The assert triggered for a piece of code such as this
%shr1 = lshr i16 undef, 15
...
%shr2 = lshr i16 %shr1, 1
%conv = zext i16 %shr2 to i32
Normally the lshr instructions are constant folded before we
visit the zext (that is why it is so hard to reproduce).
The original pattern, before instcombine, is of course a lot more
complicated in my test case. The shift count in the second lshr
is for example determined by the outcome of a PHI instruction.
It seems like other rewrites by instcombine leads up to
the pattern above. And then the zext is pulled from the
worklist, and visited (hitting the assert), before we detect
that the lshr instrucions can be constant folded.
Anyway, since the canEvaluateZExtd may return with BitsToClear
equal to SrcTy->getScalarSizeInBits(), and since the rewrite
that converts the expression type to avoid a zero extend works
also for the case where SrcBitsKept ends up being zero, then
it should be OK to liberate the assert to
assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D30993
llvm-svn: 297952
This was committed at r297155 and reverted at r297166 because of an
over-reaching clang test. That should be fixed with r297189.
This is one part of solving a recent bug report:
http://lists.llvm.org/pipermail/llvm-dev/2017-February/110293.html
This keeps with our general approach: changing arbitrary shuffles is off-limts,
but changing splat is ok. The transform is very similar to the existing
shrinkBitwiseLogic() canonicalization.
Differential Revision: https://reviews.llvm.org/D30123
llvm-svn: 297232
Summary:
When InstCombine is optimizing certain select-cmp-br patterns
it replaces the result of the select in uses outside of the
basic block containing the select. This is only legal if the
path from the select to the outside use is disjoint from all
other paths out from the originating basic block.
The problem found was that InstCombiner::replacedSelectWithOperand
did not consider the case when both edges out from the br pointed
to the same label. In that case the paths aren't disjoint and the
transformation is illegal. This patch avoids the faulty rewrites
by verifying that there is a single flow to the successor where
we want to replace uses.
Reviewers: llvm-commits, spatel, majnemer
Differential Revision: https://reviews.llvm.org/D30455
llvm-svn: 296752
Summary:
Solves PR 31990.
The bad rewrite could replace a memcpy of one word with
store i4 -1
while it should actually be
store i8 -1
Hopefully opt and llc has improved enough so the original optimization
done by the code isn't needed anymore.
One already existing testcase is affected. It originally tested that
the memcpy was replaced with
load double
but since we now remove that rewrite it will be
load i64
instead.
Patch suggestion by Eli Friedman.
Reviewers: eli.friedman, majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D30254
llvm-svn: 296585
This optimisation was crashing when there was a chain of more than one bitcast
instruction to replace, as a result of the changes in D27283.
Patch by James Price.
Differential Revision: https://reviews.llvm.org/D30347
llvm-svn: 296163
This one seems more obvious than D30270 that it can't make improvements because an extension always needs
all of the incoming bits. There's one specific transform in SimplifyDemandedInstructionBits of converting
a sext to a zext when the sign-bit is known zero, but that is handled explicitly in visitSext() with
ComputeSignBit().
Like D30270, there are no IR differences (other than instruction names) for the case in PR32037:
https://bugs.llvm.org//show_bug.cgi?id=32037
...and no regression test differences.
Zext/sext are a smaller part of the profile, but this still appears to shave off another 0.5% or so from
'opt -O2'.
Differential Revision: https://reviews.llvm.org/D30280
llvm-svn: 296129
Notably, no regression tests change when we remove these calls, and these are expensive calls.
The motivation comes from the general acknowledgement that the compiler is getting slower:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109188.htmlhttp://lists.llvm.org/pipermail/llvm-dev/2016-December/108279.html
And specifically the test case attached to PR32037:
https://bugs.llvm.org//show_bug.cgi?id=32037
Profiling the middle-end (opt) part of the compile:
$ ./opt -O2 row_common.bc -o /dev/null
...visitAdd and visitSub are near the top of the instcombine list, and the calls to SimplifyDemandedInstructionBits()
are high within each of those. Those calls account for 1%+ of the opt time in either debug or release profiles. And
that's the rough win I see from this patch when testing opt built release from r295864 on an iMac with Haswell 4GHz
(model 4790K).
It seems unlikely that we'd be able to eliminate add/sub or change their operands given that add/sub normally affect
all bits, and the PR32037 example shows no IR difference after this change using -O2.
Also worth noting - the code comment in visitAdd:
// This handles stuff like (X & 254)+1 -> (X&254)|1
...isn't true. That transform is handled later with a call to haveNoCommonBitsSet().
Differential Revision: https://reviews.llvm.org/D30270
llvm-svn: 295898
This is part of trying to clean up our handling of min/max patterns in IR.
By converting these to canonical form, we're more likely to recognize them
because there are various places in InstCombine that don't use
matchSelectPattern or m_SMax and friends.
The backend fixups referenced in the now deleted TODO comment were added with:
https://reviews.llvm.org/rL291392https://reviews.llvm.org/rL289738
If there's any codegen fallout from this change, we should be able to address
it in DAGCombiner or target-specific lowering.
llvm-svn: 295758
Summary:
This is a fix for assertion failure in
`getInverseMinMaxSelectPattern` when ABS is passed in as a select pattern.
We should not be invoking the simplification rule for
ABS(MIN(~ x,y))) or ABS(MAX(~x,y)) combinations.
Added a test case which would cause an assertion failure without the patch.
Reviewers: sanjoy, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30051
llvm-svn: 295719
Changing to 'or' (rather than 'xor' when no wrapping flags are set)
allows icmp simplifies to happen as expected.
Differential Revision: https://reviews.llvm.org/D29729
llvm-svn: 295574
This is necessary to avoid warnings from GCC.
InstCombineLoadStoreAlloca.cpp:238:7: error: 'PointerReplacer' declared
with greater visibility than the type of its field 'PointerReplacer::IC'
llvm-svn: 294794
For function-scope variables with large initialisation list, FE usually
generates a global variable to hold the initializer, then generates
memcpy intrinsic to initialize the alloca. InstCombiner::visitAllocaInst
identifies such allocas which are accessed only by reading and replaces
them with the global variable. This is done by casting the global variable
to the type of the alloca and replacing all references.
However, when the global variable is in a different address space which
is disjoint with addr space 0 (e.g. for IR generated from OpenCL,
global variable cannot be in private addr space i.e. addr space 0), casting
the global variable to addr space 0 results in invalid IR for certain
targets (e.g. amdgpu).
To fix this issue, when the global variable is not in addr space 0,
instead of casting it to addr space 0, this patch chases down the uses
of alloca until reaching the load instructions, then replaces load from
alloca with load from the global variable. If during the chasing
bitcast and GEP are encountered, new bitcast and GEP based on the global
variable are generated and used in the load instructions.
Differential Revision: https://reviews.llvm.org/D27283
llvm-svn: 294786
This fold already existed for vectors but only when 'C1' was a splat
constant (but 'C2' could be any constant).
There were no tests for any vector constants, so I'm adding a test
that shows non-splat constants for both operands.
llvm-svn: 294650
This patch is based on the llvm-dev discussion here:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109631.html
Folding to i1 should always be desirable because that's better for value tracking
and we have special folds for i1 types.
I checked for other users of shouldChangeType() where this might have an effect,
but we already handle the i1 case differently than other types in all of those cases.
Side note: the default datalayout includes i1, so it seems we only find this gap in
shouldChangeType + phi folding for the case when there is (1) an explicit datalayout
without i1, (2) casting to i1 from a legal type, and (3) a phi with exactly 2 incoming
casted operands (as Björn mentioned).
Differential Revision: https://reviews.llvm.org/D29336
llvm-svn: 294066
The code comments didn't match the code logic, and we didn't actually distinguish the fake unary (not/neg/fneg)
operators from arguments. Adding another level to the weighting scheme provides more structure and can help
simplify the pattern matching in InstCombine and other places.
I fixed regressions that would have shown up from this change in:
rL290067
rL290127
But that doesn't mean there are no pattern-matching logic holes left; some combines may just be missing regression tests.
Should fix:
https://llvm.org/bugs/show_bug.cgi?id=28296
Differential Revision: https://reviews.llvm.org/D27933
llvm-svn: 294049
Although this is 'no-functional-change-intended', I'm adding tests
for shl-shl and lshr-lshr pairs because there is no existing test
coverage for those folds.
It seems like we should be able to remove some code from foldShiftedShift()
at this point because we're handling those patterns on the general path.
llvm-svn: 293814
Summary:
If there are two adjacent guards with different conditions, we can
remove one of them and include its condition into the condition of
another one. This patch allows InstCombine to merge them by the
following pattern:
guard(a); guard(b) -> guard(a & b).
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29378
llvm-svn: 293778
transformToIndexedCompare
If they don't have the same type, the size of the constant
index would need to be adjusted (and this wouldn't be always
possible).
Alternatively we could try the analysis with the initial
RHS value, which would guarantee that the two sides have
the same type. However it is unlikely that in practice this
would pass our transformation requirements.
Fixes PR31808 (https://llvm.org/bugs/show_bug.cgi?id=31808).
llvm-svn: 293629
The original shift is bigger, so this may qualify as 'obvious',
but here's an attempt at an Alive-based proof:
Name: exact
Pre: (C1 u< C2)
%a = shl i8 %x, C1
%b = lshr exact i8 %a, C2
=>
%c = lshr exact i8 %x, C2 - C1
%b = and i8 %c, ((1 << width(C1)) - 1) u>> C2
Optimization is correct!
llvm-svn: 293498
This is a minimal patch to avoid the infinite loop in:
https://llvm.org/bugs/show_bug.cgi?id=31751
But the general problem is bigger: we're not canonicalizing all of the min/max forms reported
by value tracking's matchSelectPattern(), and we don't define min/max consistently. Some code
uses matchSelectPattern(), other code uses matchers like m_Umax, and others have their own
inline definitions which may be subtly different from any of the above.
The reason that the test cases in this patch need a cast op to trigger is because we don't
(yet) canonicalize all min/max forms based on matchSelectPattern() in
canonicalizeMinMaxWithConstant(), but we do make min/max+cast transforms based on
matchSelectPattern() in visitSelectInst().
The location of the icmp transforms that trigger the inf-loop seems arbitrary at best, so
I'm moving those behind the min/max fence in visitICmpInst() as the quick fix.
llvm-svn: 293345
Summary:
There are many NVVM intrinsics that we can't entirely get rid of, but
that nonetheless often correspond to target-generic LLVM intrinsics.
For example, if flush denormals to zero (ftz) is enabled, we can convert
@llvm.nvvm.ceil.ftz.f to @llvm.ceil.f32. On the other hand, if ftz is
disabled, we can't do this, because @llvm.ceil.f32 will be lowered to a
non-ftz PTX instruction. In this case, we can, however, simplify the
non-ftz nvvm ceil intrinsic, @llvm.nvvm.ceil.f, to @llvm.ceil.f32.
These transformations are particularly useful because they let us
constant fold instructions that appear in libdevice, the bitcode library
that ships with CUDA and essentially functions as its libm.
Reviewers: tra
Subscribers: hfinkel, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D28794
llvm-svn: 293244
This change reverts:
r293061: "[InstCombine] Canonicalize guards for NOT OR condition"
r293058: "[InstCombine] Canonicalize guards for AND condition"
They miscompile cases like:
```
declare void @llvm.experimental.guard(i1, ...)
define void @test_guard_not_or(i1 %A, i1 %B) {
%C = or i1 %A, %B
%D = xor i1 %C, true
call void(i1, ...) @llvm.experimental.guard(i1 %D, i32 20, i32 30)[ "deopt"() ]
ret void
}
```
because they do transfer the `i32 20, i32 30` parameters to newly
created guard instructions.
llvm-svn: 293227
We already have this fold when the lshr has one use, but it doesn't need that
restriction. We may be able to remove some code from foldShiftedShift().
Also, move the similar:
(X << C) >>u C --> X & (-1 >>u C)
...directly into visitLShr to help clean up foldShiftByConstOfShiftByConst().
That whole function seems questionable since it is called by commonShiftTransforms(),
but there's really not much in common if we're checking the shift opcodes for every
fold.
llvm-svn: 293215
This intrinsic uses bit 0 and bit 4 of an immediate argument to determine which bits of its inputs to read. This patch uses this information to simplify the demanded elements of the input vectors.
Differential Revision: https://reviews.llvm.org/D28979
llvm-svn: 293151
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29075
Patch by Maxim Kazantsev.
llvm-svn: 293061
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29074
Patch by Maxim Kazantsev.
llvm-svn: 293058
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: majnemer, apilipenko
Differential Revision: https://reviews.llvm.org/D29071
Patch by Maxim Kazantsev.
llvm-svn: 293056
Summary: As per title. This will add the instructiions we are interested in in the worklist.
Reviewers: mehdi_amini, majnemer, andreadb
Differential Revision: https://reviews.llvm.org/D29081
llvm-svn: 292957
Added early out for single undef input - we were already supporting (and testing) this in the constant folding code, we just do it quicker now
Drop undef handling from demanded elts code now that we handle it fully in InstCombiner::visitCallInst
llvm-svn: 292913
We may be able to assert that no shl-shl or lshr-lshr pairs ever get here
because we should have already handled those in foldShiftedShift().
llvm-svn: 292726
Simplify a packss/packus truncation based on the elements of the mask that are actually demanded.
Differential Revision: https://reviews.llvm.org/D28777
llvm-svn: 292591
As discussed on D28777 - we don't need to handle 'all element' shuffles inside InstCombiner::visitCallInst as InstCombiner::SimplifyDemandedVectorElts will do everything we need.
llvm-svn: 292365
Add missing fabs(fpext) optimzation that worked with the call,
and also fixes it creating a second fpext when there were multiple
uses.
llvm-svn: 292172
It's not clear what 'First' and 'Second' mean, so use 'Inner' and 'Outer'
to match foldShiftedShift() and add comments with formulas, so it's easier
to see what's going on.
llvm-svn: 292153
Simplify a pshufb shuffle mask based on the elements of the mask that are actually demanded.
Differential Revision: https://reviews.llvm.org/D28745
llvm-svn: 292101
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
llvm-svn: 292039
cover domtree and alias analysis. These are the pretty clear analyses
that we would always want to survive this pass.
To make these survive, we also need to preserve the assumption cache.
Added a test that verifies the important bits of this preservation.
llvm-svn: 292037
Allows LLVM to optimize sequences like the following:
%add = add nuw i32 %x, 1
%cmp = icmp ugt i32 %add, %y
Into:
%cmp = icmp uge i32 %x, %y
Previously, only signed comparisons were being handled.
Decrements could also be handled, but 'sub nuw %x, 1' is currently canonicalized to
'add %x, -1' in InstCombineAddSub, losing the nuw flag. Removing that canonicalization
seems like it might have far-reaching ramifications so I kept this simple for now.
Patch by Matti Niemenmaa!
Differential Revision: https://reviews.llvm.org/D24700
llvm-svn: 291975
Here's my second try at making @llvm.assume processing more efficient. My
previous attempt, which leveraged operand bundles, r289755, didn't end up
working: it did make assume processing more efficient but eliminating the
assumption cache made ephemeral value computation too expensive. This is a
more-targeted change. We'll keep the assumption cache, but extend it to keep a
map of affected values (i.e. values about which an assumption might provide
some information) to the corresponding assumption intrinsics. This allows
ValueTracking and LVI to find assumptions relevant to the value being queried
without scanning all assumptions in the function. The fact that ValueTracking
started doing O(number of assumptions in the function) work, for every
known-bits query, has become prohibitively expensive in some cases.
As discussed during the review, this is a pragmatic fix that, longer term, will
likely be replaced by a more-principled solution (perhaps based on an extended
SSA form).
Differential Revision: https://reviews.llvm.org/D28459
llvm-svn: 291671
Some of the callers are artificially limiting this transform to integer types;
this should make it easier to incrementally remove that restriction.
llvm-svn: 291620
We can perform the following:
(add (zext (add nuw X, C1)), C2) -> (zext (add nuw X, C1+C2))
This is only possible if C2 is negative and C2 is greater than or equal to negative C1.
llvm-svn: 290927
I wrote this patch before seeing the comment in:
https://reviews.llvm.org/D27114
...that suggests we should actually be canonicalizing the other way.
So just in case we decide this is the right way, we might as well
have a cleaner implementation.
llvm-svn: 290912
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
We bypassed the intrinsic and returned the passthru operand, but we should also add the intrinsic to the worklist since its now dead. This can allow DCE to find it sooner and remove it. Similar was done for InsertElement when the inserted element isn't demanded.
llvm-svn: 290704
This adds a combine that canonicalizes a chain of inserts which broadcasts
a value into a single insert + a splat shufflevector.
This fixes PR31286.
Differential Revision: https://reviews.llvm.org/D27992
llvm-svn: 290641
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
This builds on r290554 which added supported for 128 and 256-bit.
llvm-svn: 290582
An earlier commit added support for unmasked scalar operations. At that time isel wouldn't generate an optimal sequence for masked operations, but that has now been fixed.
llvm-svn: 290566
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
Differential Revision: https://reviews.llvm.org/D28119
llvm-svn: 290554
Summary:
I only do this for unmasked cases for now because isel is failing to fold the mask. I'll try to fix that soon.
I'll do the same thing for packed add/sub/mul/div in a future patch.
Reviewers: delena, RKSimon, zvi, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27879
llvm-svn: 290535
Summary:
This patch adds support for converting the masked vpermv intrinsics into shufflevector instructions if the indices are constants.
We also need to wrap a select instruction around the shuffle to take care of the masking part. InstCombine will take care of optimizing the select if the mask is constant so I didn't bother checking for that.
Reviewers: zvi, delena, spatel, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27825
llvm-svn: 290530
We're currently doing nearly the same thing for @llvm.objectsize in
three different places: two of them are missing checks for overflow,
and one of them could subtly break if InstCombine gets much smarter
about removing alloc sites. Seems like a good idea to not do that.
llvm-svn: 290214
Background/motivation - I was circling back around to:
https://llvm.org/bugs/show_bug.cgi?id=28296
I made a simple patch for that and noticed some regressions, so added test cases for
those with rL281055, and this is hopefully the minimal fix for just those cases.
But as you can see from the surrounding untouched folds, we are missing commuted patterns
all over the place, and of course there are no regression tests to cover any of those cases.
We could sprinkle "m_c_" dust all over this file and catch most of the missing folds, but
then we still wouldn't have test coverage, and we'd still miss some fraction of commuted
patterns because they require adjustments to the match order.
I'm aware of the concern about the potential compile-time performance impact of adding
matches like this (currently being discussed on llvm-dev), but I don't think there's any
evidence yet to suggest that handling commutative pattern matching more thoroughly is not
a worthwhile goal of InstCombine.
Differential Revision: https://reviews.llvm.org/D24419
llvm-svn: 290067
Min/max canonicalization (r287585) exposes the fact that we're missing combines for min/max patterns.
This patch won't solve the example that was attached to that thread, so something else still needs fixing.
The line between InstCombine and InstSimplify gets blurry here because sometimes the icmp instruction that
we want to fold to already exists, but sometimes it's the swapped form of what we want.
Corresponding changes for smax/umin/umax to follow.
Differential Revision: https://reviews.llvm.org/D27531
llvm-svn: 289855
A number of new patterns for simplifying and/xor of icmp:
(icmp ne %x, 0) ^ (icmp ne %y, 0) => icmp ne %x, %y if the following is true:
1- (%x = and %a, %mask) and (%y = and %b, %mask)
2- %mask is a power of 2.
(icmp eq %x, 0) & (icmp ne %y, 0) => icmp ult %x, %y if the following is true:
1- (%x = and %a, %mask1) and (%y = and %b, %mask2)
2- Let %t be the smallest power of 2 where %mask1 & %t != 0. Then for any
%s that is a power of 2 and %s & %mask2 != 0, we must have %s <= %t.
For example if %mask1 = 24 and %mask2 = 16, setting %s = 16 and %t = 8
violates condition (2) above. So this optimization cannot be applied.
llvm-svn: 289813
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
There was an efficiency problem with how we processed @llvm.assume in
ValueTracking (and other places). The AssumptionCache tracked all of the
assumptions in a given function. In order to find assumptions relevant to
computing known bits, etc. we searched every assumption in the function. For
ValueTracking, that means that we did O(#assumes * #values) work in InstCombine
and other passes (with a constant factor that can be quite large because we'd
repeat this search at every level of recursion of the analysis).
Several of us discussed this situation at the last developers' meeting, and
this implements the discussed solution: Make the values that an assume might
affect operands of the assume itself. To avoid exposing this detail to
frontends and passes that need not worry about it, I've used the new
operand-bundle feature to add these extra call "operands" in a way that does
not affect the intrinsic's signature. I think this solution is relatively
clean. InstCombine adds these extra operands based on what ValueTracking, LVI,
etc. will need and then those passes need only search the users of the values
under consideration. This should fix the computational-complexity problem.
At this point, no passes depend on the AssumptionCache, and so I'll remove
that as a follow-up change.
Differential Revision: https://reviews.llvm.org/D27259
llvm-svn: 289755
If all the operands to a phi node are compares that have a RHS constant,
instcombine will try to pull them through the phi node, combining them into
a single operation. When it does this, the debug location of the new op
should be the merged debug locations of the phi node arguments.
Patch 8 of 8 for D26256. Folding of a compare that has a RHS constant.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289704
If all the operands to a phi node are a binop with a RHS constant, instcombine
will try to pull them through the phi node, combining them into a single
operation. When it does this, the debug location of the new op should be the
merged debug locations of the phi node arguments.
Patch 7 of 8 for D26256. Folding of a binop with RHS constant.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289699
If all the operands to a phi node are a cast, instcombine will try to pull
them through the phi node, combining them into a single cast. When it does
this, the debug location of the new cast should be the merged debug locations
of the phi node arguments.
Patch 6 of 8 for D26256. Folding of a cast operation.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289693
If all the operands to a phi node are a load, instcombine will try to pull
them through the phi node, combining them into a single load. When it does
this, the debug location of the new load should be the merged debug locations
of the phi node arguments.
Patch 5 of 8 for D26256. Folding of a load operation.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289688
If all the operands to a phi node are getelementptr, instcombine
will try to pull them through the phi node, combining them into a single
operation. When it does this, the debug location of the new getelementptr
should be the merged debug locations of the phi node arguments.
Patch 4 of 8 for D26256. Folding of a getelementptr operation.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289684
If all the operands to a phi node are of the same operation, instcombine
will try to pull them through the phi node, combining them into a single
operation. When it does this, the debug location of the operation should
be the merged debug locations of the phi node arguments.
Patch 3 of 8 for D26256. Folding of a compare operation.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289681
If all the operands to a phi node are of the same operation, instcombine
will try to pull them through the phi node, combining them into a single
operation. When it does this, the debug location of the operation should
be the merged debug locations of the phi node arguments.
Patch 2 of 8 for D26256. Folding of a binary operation.
Differential Revision: https://reviews.llvm.org/D26256
llvm-svn: 289679
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Now we only pass bit 0 of the DemandedElts to optimize operand 1 as we recurse since the upper bits are unused. Similarly we clear bit 0 for optimizing operand 0.
Also calculate UndefElts correctly.
Simplify InstCombineCalls for these instrinics to just call SimplifyDemandedVectorElts for the call instrution to reuse this support.
llvm-svn: 289629
Now we only pass bit 0 of the DemandedElts to optimize operand 1 as we recurse since the upper bits are unused.
Also calculate UndefElts correctly.
Simplify InstCombineCalls for these instrinics to just call SimplifyDemandedVectorElts for the call instrution to reuse this support.
llvm-svn: 289628
Only the lower bits of the input element are used. And only the lower element can be undef since the upper bits are zeroed.
Have InstCombineCalls call SimplifyDemandedVectorElts for these intrinsics to reuse this support.
llvm-svn: 289523
We could truncate the condition and then try to fold the add into the
original condition value causing wrong case constants to be used.
Move the offset transform ahead of the truncate transform and return
after each transform, so there's no chance of getting confused values.
Fix for:
https://llvm.org/bugs/show_bug.cgi?id=31260
llvm-svn: 289442
This teaches SimplifyDemandedElts that the FMA can be removed if the lower element isn't used. It also teaches it that if upper elements of the first operand aren't used then we can simplify them.
llvm-svn: 289377
These intrinsics don't read the upper elements of their first and second input. These are slightly different the the SSE version which does use the upper bits of its first element as passthru bits since the result goes to an XMM register. For AVX-512 the result goes to a mask register instead.
llvm-svn: 289371
These intrinsics don't read the upper bits of their second input. And the third input is the passthru for masking and that only uses the lower element as well.
llvm-svn: 289370
This solves a secondary problem seen in PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137#c6
This is similar to the bitwise logic op fold added with:
https://reviews.llvm.org/rL287707
And like that patch, I'm artificially restricting the
transform from vector <-> scalar types until we're sure
that the backend can handle that.
llvm-svn: 288584
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458