This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
It makes it consistent with `size()` method return type and with
STL-like containers API.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97921
now -funique-internal-linkage-name flag is available, and we want to flip
it on by default since it is beneficial to have separate sample profiles
for different internal symbols with the same name. As a preparation, we
want to avoid regression caused by the flip.
When we flip -funique-internal-linkage-name on, the profile is collected
from binary built without -funique-internal-linkage-name so it has no uniq
suffix, but the IR in the optimized build contains the suffix. This kind of
mismatch may introduce transient regression.
To avoid such mismatch, we introduce a NameTable section flag indicating
whether there is any name in the profile containing uniq suffix. Compiler
will decide whether to keep uniq suffix during name canonicalization
depending on the NameTable section flag. The flag is only available for
extbinary format. For other formats, by default compiler will keep uniq
suffix so they will only experience transient regression when
-funique-internal-linkage-name is just flipped.
Another type of regression is caused by places where we miss to call
getCanonicalFnName. Those places are fixed.
Differential Revision: https://reviews.llvm.org/D96932
If every element is extracted from a G_BUILD_VECTOR, pass through the source
registers. This is different to the extract(build_vector) combine because this
one tolerates multiple users as long as they're exhaustive.
Differential Revision: https://reviews.llvm.org/D97890
All extractvalues of the same value at the same index will map to
the same register, so even if one specific extractvalue only has
one use, we should not mark it as a trivial kill, as there may be
more extractvalues later.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49467.
Differential Revision: https://reviews.llvm.org/D98145
The LiveDebugValues and LiveDebugVariables implementations for handling
DBG_VALUE_LIST instructions can be simplified significantly if they do not have
to deal with any duplicated operands, such as a DBG_VALUE_LIST that uses the
same register multiple times in its expression. This patch adds a function,
replaceArg, that can be used to simplify a DIExpression in the case of
duplicated operands.
Differential Revision: https://reviews.llvm.org/D83896
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.
For example:
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E> ; index
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count
These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.
This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker and Cullen Rhodes.
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94708
This patch adds partial support in Instruction Selection for dbg.values that use
a DIArgList. This patch does not add support for producing DBG_VALUE_LIST, but
adds the logic for processing DIArgLists within the ISel pass. This change is
largely focused on handleDebugValue and some of the functions that it calls.
Outside of this, salvageDebugInfo and transferDbgValues have been modified to
replace individual operands instead of the entire value; dangling debug info for
variadic debug values is not currently supported (but may be added later).
Differential Revision: https://reviews.llvm.org/D88589
This change was introduced by this fix:
a2a55def35.
This makes a submodule for ObjCARCUtil.h, because leaving it in
LLVM_intrinsic_gen causes a dependency cycle between LLVM_IR and
LLVM_intrinsic_gen.
Since P8 is the oldest machine supported by MASSV pass,
_massv place holder is removed and the oldest version of
MASSV functions is assumed. If the P9 vector specific is
detected in the compilation process, the P8 prefix will
be updated to P9.
Differential Revision: https://reviews.llvm.org/D98064
If we have
```
%vec = G_BUILD_VECTOR %reg, %reg, ..., %reg
```
Then lower it to
```
%vec = G_DUP %reg
```
Also update the selector to handle constant splats on G_DUP.
This will not combine when the splat is all zeros or ones. Tablegen-imported
patterns rely on these being G_BUILD_VECTOR.
Minor code size improvements on CTMark at -Os.
Also adds some utility functions to make it a bit easier to recognize splats,
and an AArch64-specific splat helper.
Differential Revision: https://reviews.llvm.org/D97731
Revert 3d8f842712
Revision triggers a miscompile sinking a store incorrectly outside a
threading loop. Detected by tsan.
Reverting while investigating.
Differential Revision: https://reviews.llvm.org/D89264
- Add the M68k-specific MC layer implementation
- Add ELF support for M68k
- Add M68k-specifc CC and reloc
TODO: Currently AsmParser and disassembler are not implemented yet.
Please use this bug to track the status:
https://bugs.llvm.org/show_bug.cgi?id=48976
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88390
- Add new callback in `TargetInstrInfo` --
`isPCRelRegisterOperandLegal` -- to query whether pc-rel
register MachineOperand is legal.
- Add new function to search DebugLoc in a reverse ordering
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88386
- Add a new TableGen backend: CodeBeads
- Add support to generate logical operand information
For the first item, it is currently a workaround of M68k's (complex)
instruction encoding. A typical architecture, especially CISC one like
X86, normally uses `MCInstrDesc::TSFlags` to carry instruction encoding
info. However, at the early days of M68k backend development, we found
it difficult to fit every possible encoding into the 64-bit
`MCInstrDesc::TSFlags`. Therefore CodeBeads was invented to provide
an alternative, arbitrary length container for instruciton encoding
info. However, in the long term we incline not to use a new TG
backend for less common pattern like what we encountered in M68k. A bug
has been created to host to discussion on migrating from CodeBeads to
more concise solution: https://bugs.llvm.org/show_bug.cgi?id=48792
The second item was also served for similar purpose. It created utility
functions that tell you the index of a `MachineOperand` in a
`MachineInst` given a logical operand index. In normal cases a logical
operand is the same as `MachineOperand`, but for operands using complex
addressing mode a logical operand might be consisting of multiple
`MachineOperand`. The TableGen-ed `getLogicalOperandIdx`, for instance,
can give you the mapping between these two concepts. Nevertheless, we
hope to remove this feature in the future if possible. Since it's not
really useful for the targets supported by LLVM now either.
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88385
This patch adds the assert check inside the constructor for the csect (MCSectionXCOFF) to ensure
valid csect type used for the storage mappping class XCOFF:XMC_UL.
This `R_WASM_MEMORY_ADDR_SELFREL_I32` relocation represents an offset
between its relocating address and the symbol address. It's very similar
to `R_X86_64_PC32` but restricted to be used for only data segments.
```
S + A - P
```
A: Represents the addend used to compute the value of the relocatable
field.
P: Represents the place of the storage unit being relocated.
S: Represents the value of the symbol whose index resides in the
relocation entry.
Proposal: https://github.com/WebAssembly/tool-conventions/issues/162
Differential Revision: https://reviews.llvm.org/D96659
If we have a recurrence of the form <Start, And, Step> we know that the value taken by the recurrence stabilizes on the first iteration (provided step is loop invariant). We can exploit that fact to remove the loop carried dependence in the recurrence.
Differential Revision: https://reviews.llvm.org/D97578 (and part)
The code used for propagating equalities (e.g. assume facts) was conservative in two ways - one of which this patch fixes. Specifically, it shifts the code reasoning about whether a use is dominated by the end of the assume block to consider phi uses to exist on the predecessor edge. This matches the dominator tree handling for dominates(Edge, Use), and simply extends it to dominates(BB, Use).
Note that the decision to use the end of the block is itself a conservative choice. The more precise option would be to use the later of the assume and the value, and replace all uses after that. GVN handles that case separately (with the replace operand mechanism) because it used to be expensive to ask dominator questions within blocks. With the new instruction ordering support, we should probably rewrite this code at some point to simplify.
Differential Revision: https://reviews.llvm.org/D98082
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
The check `tightlyNested()` in `LoopInterchange` is similar to the one in `LoopNest`.
In fact, the former misses some cases where loop-interchange is not feasible and results in incorrect behaviour.
Replacing it with the much robust version provided by `LoopNest` reduces code duplications and fixes https://bugs.llvm.org/show_bug.cgi?id=48113.
`LoopInterchange` has a weaker definition of tightly or perfectly nesting-ness than the one implemented in `LoopNest::arePerfectlyNested()`.
Therefore, `tightlyNested()` is instead implemented with `LoopNest::checkLoopsStructure` and additional checks for unsafe instructions.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D97290
This reverts commit 99108c791d.
Clang is miscompiling LLVM with this change, a stage-2 build hits
multiple failures.
As a repro, I built clang in a stage1 directory and used it this way:
cmake -G Ninja ../llvm \
-DCMAKE_CXX_COMPILER=`pwd`/../build-stage1/bin/clang++ \
-DCMAKE_C_COMPILER=`pwd`/../build-stage1/bin/clang \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX;AMDGPU" \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=ON \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=On
ninja check-mlir
This patch makes FoldBranchToCommonDest merge branch conditions into `select i1` rather than `and/or i1` when it is called by SimplifyCFG.
It is known that merging conditions into and/or is poison-unsafe, and this is towards making things *more* correct by removing possible miscompilations.
Currently, InstCombine simply consumes these selects into and/or of i1 (which is also unsafe), so the visible effect would be very small. The unsafe select -> and/or transformation will be removed in the future.
There has been efforts for updating optimizations to support the select form as well, and they are linked to D93065.
The safe transformation is fired when it is called by SimplifyCFG only. This is done by setting the new `PoisonSafe` argument as true.
Another place that calls FoldBranchToCommonDest is LoopSimplify. `PoisonSafe` flag is set to false in this case because enabling it has a nontrivial impact in performance because SCEV is more conservative with select form and InductiveRangeCheckElimination isn't aware of select form of and/or i1.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95026
For many directives, the following diagnostics
* `error: unexpected token`
* `error: unexpected token in '.abort' directive"`
are replaced with `error: expected newline`.
`unexpected token` may make the user think a different token is needed.
`expected newline` is clearer about the expected token.
For `in '...' directive`, the directive name is not useful because the next line
replicates the error line which includes the directive.
As a resolution to https://sourceware.org/bugzilla/show_bug.cgi?id=25295 , GNU as
from binutils 2.35 supports the optional third argument for the .symver directive.
'remove' for a non-default version is useful:
`.symver def_v1, def@v1, remove` => def_v1 is not retained in the symbol table.
Previously the user has to strip the original symbol or specify a `local:`
version node in a version script to localize the symbol.
`.symver def, def@@v1, remove` and `.symver def, def@@@v1, remove` are supported
as well, though they are identical to `.symver def, def@@@v1`.
local/hidden are not useful so this patch does not implement them.
[llvm-exegesis] Disable the LBR check on AMD
https://bugs.llvm.org/show_bug.cgi?id=48918
The bug reported a hang (or very very slow runtime) on a Zen2. Unfortunately, we don't have the hardware right now to debug it and I was not able to reproduce the bug on a HSW.
Theory we've got is that the lbr-checking code could be confused on AMD.
Differential Revision: https://reviews.llvm.org/D97504
New change:
- Surround usages of x86 helper in llvm-exegesis/X86/Target.cpp with ifdef
- Fix bug which caused the caller of getVendorSignature to not have a copy of EAX that it expected.
For some reason, we had been marking gc.relocates as reading memory. There's no known reason for this, and I suspect it to be a legacy of very early implementation conservatism. gc.relocate and gc.result are simply projections of the return values from the associated statepoint. Note that the LangRef has always declared them readnone.
The EarlyCSE change is simply moving the special casing from readonly to readnone handling.
As noted by the test diffs, this does allow some additional CSE when relocates are separated by stores, but since we generate gc.relocates in batches, this is unlikely to help anything in practice.
This was reviewed as part of https://reviews.llvm.org/D97974, but split at reviewer request before landing. The motivation is to enable the GVN changes in that patch.
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d0.
With reference types, tables can have non-zero table numbers. This
commit adds support for element sections against these tables.
Differential Revision: https://reviews.llvm.org/D97923
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
sample loader pass.
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
to prevent repeated indirect call promotion for the same indirect call
and the same target, we used zero-count value profile to indicate an
indirect call has been promoted for a certain target. We removed
PromotedInsns cache in the same patch. However, there was a problem in
that patch described below, and that problem led me to add PromotedInsns
back as a mitigation in
https://reviews.llvm.org/rG4ffad1fb489f691825d6c7d78e1626de142f26cf.
When we get value profile from metadata by calling getValueProfDataFromInst,
we need to specify the maximum possible number of values we expect to read.
We uses MaxNumPromotions in the last patch so the maximum number of value
information extracted from metadata is MaxNumPromotions. If we have many
values including zero-count values when we write the metadata, some of them
will be dropped when we read them because we only read MaxNumPromotions
values. It will allow repeated indirect call promotion again. We need to
make sure if there are values indicating promoted targets, those values need
to be saved in metadata with higher priority than other values.
The patch fixed that problem. We change to use -1 to represent the count
of a promoted target instead of 0 so it is easier to sort the values.
When we prepare to update the metadata in updateIDTMetaData, we will sort
the values in the descending count order and extract only MaxNumPromotions
values to write into metadata. Since -1 is the max uint64_t number, if we
have equal to or less than MaxNumPromotions of -1 count values, they will
all be kept in metadata. If we have more than MaxNumPromotions of -1 count
values, we will only save MaxNumPromotions such values maximally. In such
case, we have logic in place in doesHistoryAllowICP to guarantee no more
promotion in sample loader pass will happen for the indirect call, because
it has been promoted enough.
With this change, now we can remove PromotedInsns without problem.
Differential Revision: https://reviews.llvm.org/D97350
This is included from IR files, and IR doesn't/can't depend on Analysis
(because Analysis depends on IR).
Also fix the implementation - don't use non-member static in headers, as
it leads to ODR violations, inaccurate "unused function" warnings, etc.
And fix the header protection macro name (we don't generally include
"LIB" in the names, so far as I can tell).
This enhances the auto-init remark with information about the variable
that is auto-initialized.
This is based of debug info if available, or alloca names (mostly for
development purposes).
```
auto-init.c:4:7: remark: Call to memset inserted by -ftrivial-auto-var-init. Memory operation size: 4096 bytes.Variables: var (4096 bytes). [-Rpass-missed=annotation-remarks]
int var[1024];
^
```
This allows to see things like partial initialization of a variable that
the optimizer won't be able to completely remove.
Differential Revision: https://reviews.llvm.org/D97734
This reverts commit 7479a2e00b.
This commit causes compile errors on clang-x64-windows-msvc, so I'm
reverting the patch for now.
For reference, the error in question is:
```
error C2280: 'llvm::raw_ostream_iterator<char,char>
&llvm::raw_ostream_iterator<char,char>::operator =(const
llvm::raw_ostream_iterator<char,char> &)': attempting to reference a deleted
function
note: compiler has generated 'llvm::raw_ostream_iterator<char,char>::operator ='
here
note: 'llvm::raw_ostream_iterator<char,char>
&llvm::raw_ostream_iterator<char,char>::operator =(const
llvm::raw_ostream_iterator<char,char> &)': function was implicitly deleted
because 'llvm::raw_ostream_iterator<char,char>' has a data member
'llvm::raw_ostream_iterator<char,char>::OutStream' of reference type
```
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Adds a class `raw_ostream_iterator` that behaves like
std::ostream_iterator, but can be used with raw_ostream.
This is useful for using raw_ostream with std algorithms.
For example, it can be used to output std containers as follows:
```
std::vector<int> V = { 1, 2, 3 };
std::copy(V.begin(), V.end(), raw_ostream_iterator<int>(outs(), ", "));
// Output: "1, 2, 3, "
```
The API tries to follow std::ostream_iterator as closely as is
practically possible.
Reviewed By: dblaikie, mkitzan
Differential Revision: https://reviews.llvm.org/D78795
This patch updates the scope line to point to the suspend point. This
makes the first address in the function point to the first source line
in the resume function rather than the function declaration. Without
this the line table "jumps" from the beginning of the function to the
suspend point at the beginning.
rdar://73386346
Differential Revision: https://reviews.llvm.org/D97345
Implemented the option to omit Power10 instructions from save stubs via the
option --no-power10-stubs or --power10-stubs=no on lld. --power10-stubs= will
override the other option. --power10-stubs=auto also exists to use the default
behaviour (ie allow Power10 instructions in stubs).
Differential Revision: https://reviews.llvm.org/D94627
As stated in the CMake manual, we are supposed to use MODULE rules to generate
plugin libraries:
"MODULE libraries are plugins that are not linked into other targets but may be
loaded dynamically at runtime using dlopen-like functionality"
Besides, LLVM's plugin infrastructure fits with the AIX treatment of .so
shared objects more than it fits with the AIX treatment of .a library archives
(which may contain shared objects).
Differential revision: https://reviews.llvm.org/D96282
https://bugs.llvm.org/show_bug.cgi?id=48918
The bug reported a hang (or very very slow runtime) on a Zen2. Unfortunately, we don't have the hardware right now to debug it and I was not able to reproduce the bug on a HSW.
Theory we've got is that the lbr-checking code could be confused on AMD.
Differential Revision: https://reviews.llvm.org/D97504
Similar to b3a33553ae, but this shows a TODO and a potential
miscompile is already present.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification may be possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
The new test shows that there is an existing bug somewhere in
the callers. We assumed that the original code was fully 'fast'
and so we produced IR with 'fast' even though it was just 'reassoc'.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification seems possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
This patch adds a pipeline to support in-order CPUs such as ARM
Cortex-A55.
In-order pipeline implements a simplified version of Dispatch,
Scheduler and Execute stages as a single stage. Entry and Retire
stages are common for both in-order and out-of-order pipelines.
Differential Revision: https://reviews.llvm.org/D94928
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
Dangling probes are the probes associated to an empty block. This usually happens when all real instructions are optimized away from the block. There is a problem with dangling probes during the offline counts processing. The way the sample profiler works is that samples collected on the first physical instruction following a probe will be counted towards the probe. This logically equals to treating the instruction next to a probe as if it is from the same block of the probe. In the dangling probe case, the real instruction following a dangling probe actually starts a new block, and samples collected on the new block may cause issues when counted towards the empty block.
To mitigate this issue, we first try to move around a dangling probe inside its owning block. If there are still native instructions preceding the probe in the same block, we can then use them as a place holder to collect samples for the probe. A pass is added to walk each block backwards looking for probes not followed by any real instruction and moving them before the first real instruction. This is done right before the object emission.
If we are unlucky to find such in-block preceding instructions for a probe, the solution we are taking is to tag such probe as dangling so that the samples reported for them will not be trusted by the compiler. We leave it up to the counts inference algorithm to get such probes a reasonable count. The number `UINT64_MAX` is used to mark sample count as collected for a dangling probe.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95962
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
This was pointed out in review of D97520 by Nikita, but existed in the original code as well.
The basic issue is that a decomposed GEP expression describes (potentially) more than one getelementptr. The "inbounds" derived UB which justifies this aliasing rule requires that the entire offset be composed of "inbounds" geps. Otherwise, as can be seen in the recently added and changes in this patch test, we can end up with a large commulative offset with only a small sub-offset actually being "inbounds". If that small sub-offset lies within the object, the result was unsound.
We could potentially be fancier here, but for the moment, simply be conservative when any of the GEPs parsed aren't inbounds.
Before we used the same argument as the entry point. The resume partial
function might want to use a different ABI for its context argument
Differential Revision: https://reviews.llvm.org/D97333
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
Refactor insertion of the asserting ops. This enables using them for
AMDGPU.
This code should essentially be the same for every target. Mips, X86
and ARM all have different code there now, but this seems to be an
accident. The assignment functions are called with different types
than they would be in the DAG, so this is all likely an assortment of
hacks to get around that.
* Add amdgcn_strict_wqm intrinsic.
* Add a corresponding STRICT_WQM machine instruction.
* The semantic is similar to amdgcn_strict_wwm with a notable difference that not all threads will be forcibly enabled during the computations of the intrinsic's argument, but only all threads in quads that have at least one thread active.
* The difference between amdgc_wqm and amdgcn_strict_wqm, is that in the strict mode an inactive lane will always be enabled irrespective of control flow decisions.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96258
* Introduce the new intrinsic amdgcn_strict_wwm
* Deprecate the old intrinsic amdgcn_wwm
The change is done for consistency as the "strict"
prefix will become an important, distinguishing factor
between amdgcn_wqm and amdgcn_strictwqm in the future.
The "strict" prefix indicates that inactive lanes do not
take part in control flow, specifically an inactive lane
enabled by a strict mode will always be enabled irrespective
of control flow decisions.
The amdgcn_wwm will be removed, but doing so in two steps
gives users time to switch to the new name at their own pace.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96257
While the underlying instruction is called image_msaa_load,
the resource must be x component only.
Rename the intrinsic for clarity.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D97829
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
Even when MemorySSA-based LICM is used, an AST is still populated
for scalar promotion. As the AST has quadratic complexity, a lot
of time is spent in this step despite the existing access count
limit. This patch optimizes the identification of promotable stores.
The idea here is pretty simple: We're only interested in must-alias
mod sets of loop invariant pointers. As such, only populate the AST
with loop-invariant loads and stores (anything else is definitely
not promotable) and then discard any sets which alias with any of
the remaining, definitely non-promotable accesses.
If we promoted something, check whether this has made some other
accesses loop invariant and thus possible promotion candidates.
This is much faster in practice, because we need to perform AA
queries for O(NumPromotable^2 + NumPromotable*NumNonPromotable)
instead of O(NumTotal^2), and NumPromotable tends to be small.
Additionally, promotable accesses have loop invariant pointers,
for which AA is cheaper.
This has a signicant positive compile-time impact. We save ~1.8%
geomean on CTMark at O3, with 6% on lencod in particular and 25%
on individual files.
Conceptually, this change is NFC, but may not be so in practice,
because the AST is only an approximation, and can produce
different results depending on the order in which accesses are
added. However, there is at least no impact on the number of promotions
(licm.NumPromoted) in test-suite O3 configuration with this change.
Differential Revision: https://reviews.llvm.org/D89264
To do this while supporting the existing functionality in SelectionDAG of using
PGO info, we add the ProfileSummaryInfo and LazyBlockFrequencyInfo analysis
dependencies to the instruction selector pass.
Then, use the predicate to generate constant pool loads for f32 materialization,
if we're targeting optsize/minsize.
Differential Revision: https://reviews.llvm.org/D97732
Currently, it was delibrately impleneted to not handle this case, but as it has turnt out, we need this feature.
The concrete use case is
`System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa` reexports
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit , which then rexports
/System/Library/PrivateFrameworks/UIFoundation.framework/Versions/A/UIFoundation
The current implemention uses a global currentTopLevelTapi, which is not reset until it finishes loading the whole tree.
This is a problem because if the top-level is set to Cocoa, then when we get to UIFoundation, it will try to find UIFoundation in the current top level, which is Cocoa and will not find it.
The right thing should be:
- When loading a library from a TBD file, re-exports need to be looked up in the auxiliary documents within the same TBD.
- When loading from an actual dylib, no additional TBD documents need to be examined.
- In no case does a re-export mentioned in one TBD file need to be looked up in a document in an auxiliary document from a different TBD file
Differential Revision: https://reviews.llvm.org/D97438