Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.mul intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fmul reduction intrinsic also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fmul support this shouldn't affect the integer case.
Differential Revision: https://reviews.llvm.org/D117829
Compared to the old implementation:
* In C++, we only recurse into aggregate classes.
* Unnamed bit-fields are not printed.
* Constant evaluation is supported.
* Proper conversion is done when passing arguments through `...`.
* Additional arguments are supported and are injected prior to the
format string; this directly supports use with `fprintf`, for example.
* An arbitrary callable can be passed rather than only a function
pointer. In particular, in C++, a function template or overload set is
acceptable.
* All text generated by Clang is printed via `%s` rather than directly;
this avoids issues where Clang's pretty-printing output might itself
contain a `%` character.
* Fields of types that we don't know how to print are printed with a
`"*%p"` format and passed by address to the print function.
* No return value is produced.
Reviewed By: aaron.ballman, erichkeane, yihanaa
Differential Revision: https://reviews.llvm.org/D124221
If the operand to `sizeof` is an expression of VLA type, the operand is
still evaluated, so we should not issue a diagnostic about ignoring the
side effects in this case, as they're not actually ignored.
Fixes#48010
The flag was added when the C++20 draft did not allow for concept
caching. The final C++20 standard permits the caching, so flag is
redundant. See http://wg21.link/p2104r0.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D125014
Before C++20, MSVC was supporting not mentioning the template argument of the base class when initializing a class inheriting a templated base class.
So the following code compiled correctly:
```
template <class T>
class Base {
};
template <class T>
class Derived : public Base<T> {
public:
Derived() : Base() {}
};
void test() {
Derived<int> d;
}
```
See https://godbolt.org/z/Pxxe7nccx for a conformance view.
This patch adds support for such construct when in MSVC compatibility mode.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D124666
We'd nondeterministically assert (and later crash) when calculating the size or
alignment of a __bf16 type when the type isn't supported on a target because of
reading uninitialized values. Now we check whether the type is supported first.
Fixes#50171
We were failing to check if the controlling expression is dependent or
not when testing whether it has side effects. This would trigger an
assertion. Instead, if the controlling expression is dependent, we
suppress the check and diagnostic.
This fixes Issue 50227.
- Exit early when constraint caching is disabled.
- Use unique_ptr to manage temporary lifetime.
- Fix a typo in a comment (InsertPos instead of InsertNode).
The new code duplicates the forwarding call to CheckConstraintSatisfaction,
but reduces the number of interconnected if statements and simplifies lifetime
management.
This increases the overall readability.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D124923
C89 allowed a type specifier to be elided with the resulting type being
int, aka implicit int behavior. This feature was subsequently removed
in C99 without a deprecation period, so implementations continued to
support the feature. Now, as with implicit function declarations, is a
good time to reevaluate the need for this support.
This patch allows -Wimplicit-int to issue warnings in C89 mode (off by
default), defaults the warning to an error in C99 through C17, and
disables support for the feature entirely in C2x. It also removes a
warning about missing declaration specifiers that really was just an
implicit int warning in disguise and other minor related cleanups.
PseudoObjectExpr is only used for ObjC properties and subscripts.
For now, these assumptions are generally correct, but that's not part of
the design of PseudoObjectExpr. No functionality change intended.
If a randomized structure has an initializer with a dedicated
initializer in it, the field initialzed by that dedicated initializer
may end up at the end of the RecordDecl. This however may skip the
random layout initization check.
struct t {
int a, b, c, d, e;
} x = { .a = 2, 4, 5, 6 };
Let's say that "a" is lands as the last field after randomization. The
call to CheckDesignatedInitializer sets the iterator to the end of the
initializer list. During the next iteration of the initializer list
check, it detects that and fails to issue the error about initializing
a randomized struct with non-designated initializer. Instead, it issues
an error about "excess elements in struct initializer", which is
confusing under these circumstances.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124694
This patch adds support for the conditional (ternary) operator on SVE
scalable vector types in C++, matching the behaviour for NEON vector
types. Like the conditional operator for NEON types, this is disabled in
C mode.
Differential Revision: https://reviews.llvm.org/D124091
Before C++20, MSVC treated any friend function declaration as a function declaration, so the following code would compile despite funGlob being declared after its first call:
```
class Glob {
public:
friend void funGlob();
void test() {
funGlob();
}
};
void funGlob() {}
```
This proposed patch mimics the MSVC behavior when in MSVC compatibility mode
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D124613
This reverts commit a97899108e.
The patch caused some problems with the libc++ `__range_adaptor_closure`
that I haven't been able to figure out the cause of, so I am reverting
while I figure out whether this is a solvable problem/issue with the
CFE, or libc++ depending on an older 'incorrect' behavior.
This reverts commit 0c31da4838.
I've solved the issue with the PointerUnion by making the
`FunctionTemplateDecl` pointer be a NamedDecl, that could be a
`FunctionDecl` or `FunctionTemplateDecl` depending. This is enforced
with an assert.
This reverts commit 4b6c2cd647.
The patch caused numerous ARM 32 bit build failures, since we added a
5th item to the PointerUnion, and went over the 2-bits available in the
32 bit pointers.
As reported here: https://github.com/llvm/llvm-project/issues/44178
Concepts are not supposed to be instantiated until they are checked, so
this patch implements that and goes through significant amounts of work
to make sure we properly re-instantiate the concepts correctly.
Differential Revision: https://reviews.llvm.org/D119544
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.add intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fadd reduction intrinsics also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fadd support this shouldn't affect the integer case.
(Split off from D117829)
Differential Revision: https://reviews.llvm.org/D124741
In C++ and C2x, we would avoid calling ImplicitlyDefineFunction at all,
but in OpenCL mode we would still call the function and have it produce
an error diagnostic. Instead, we now have a helper function to
determine when implicit function definitions are allowed and we use
that to determine whether to call ImplicitlyDefineFunction so that the
behavior is more consistent across language modes.
This changes the diagnostic behavior from telling the users that an
implicit function declaration is not allowed in OpenCL to reporting use
of an unknown identifier and going through typo correction, as done in
C++ and C2x.
If no capability is held, or the capability expression is invalid, there
is obviously no capability kind and so none would be reported.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124132
Strutures of function pointers are a good surface area for attacks. We
should therefore randomize them unless explicitly told not to.
Reviewed By: aaron.ballman, MaskRay
Differential Revision: https://reviews.llvm.org/D123544
This flag is redundant -- it's true iff `savedAttrs` is empty.
Querying `savedAttrs.empty()` should not take any more time than querying the
`trivial` flag, so this should not have a performance impact either.
I noticed this while working on https://reviews.llvm.org/D111548.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123783
A record may have more than just FieldDecls in it. If so, then we're
likely to drop them if we only randomize the FieldDecls.
We need to be careful about anonymous structs/unions. Their fields are
made available in the RecordDecl as IndirectFieldDecls, which are listed
after the anonymous struct/union. The ordering doesn't appear to be
super important, however we place them unrandomized at the end of the
RecordDecl just in case. There's also the possiblity of
StaticAssertDecls. We also want those at the end.
All other non-FieldDecls we place at the top, just in case we get
something like:
struct foo {
enum e { BORK };
enum e a;
};
Link: https://github.com/KSPP/linux/issues/185
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123958
HLSL doesn't support access specifiers. This change has two components:
1) Make default access for classes public
2) Diagnose the use of access specifiers as a clang HLSL extension
As long as the default behavior for access specifiers matches HLSL,
allowing them to be used doesn't cause sourece incompatability with
valid code. As such enabling them as a clang extension seems like a
reasonable approach.
Fixes#55124
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124487
This reverts commit b0bc93da92.
Changes: `s/_WIN32/_WIN64/g` in clang/test/SemaCXX/attr-trivial-abi.cpp.
The calling convention is specific to 64-bit windows. It's even in the name: `CCK_MicrosoftWin64`.
After this, the test passes with both `-triple i686-pc-win32` and `-triple x86_64-pc-win32`. Phew!
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D123059
When doing overload resolution, we have to check that candidates' parameter types are equal before trying to find a better candidate through checking which candidate is more constrained.
This revision adds this missing check and makes us diagnose those cases as ambiguous calls when the types are not equal.
Fixes GitHub issue https://github.com/llvm/llvm-project/issues/53640
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D123182
Shader attribute is for shader library identify entry functions.
Here's an example,
[shader("pixel")]
float ps_main() : SV_Target {
return 1;
}
When compile this shader to library target like -E lib_6_3, compiler needs to know ps_main is an entry function for pixel shader. Shader attribute is to offer the information.
A new attribute HLSLShader is added to support shader attribute. It has an EnumArgument which included all possible shader stages.
Reviewed By: aaron.ballman, MaskRay
Differential Revision: https://reviews.llvm.org/D123907
Now the implementation would accept following code:
```
//--- impl.cppm
module M:impl;
class A {};
//--- M.cppm
export module M;
import :impl;
//--- Use.cpp
import M;
void test() {
A a; // Expected error. A is not visible here.
}
```
which is clearly wrong. The root cause is the implementation of
`isInCurrentModule` would return true if the module is a partition! So
in the above example, although Use.cpp is not a module unit,
`isInCurrentModule ` would still return true when the compiler tries to
see if the owning module of `A` is the current module. I believe this is
an oversight. This patch tries to fix this problem.
Reviewed By: iains
Differential Revision: https://reviews.llvm.org/D123837
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
Under the hood this prints the same as `QualType::getAsString()` but cuts out the middle-man when that string is sent to another raw_ostream.
Also cleaned up all the call sites where this occurs.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123926
This reverts commit 69dd89fdcb.
This reverts commit 04000c2f92.
The current states breaks libstdc++ usage (https://reviews.llvm.org/D119136#3455423).
The fixup has been reverted as it caused other valid code to be disallowed.
I think we should start from the clean state by reverting all relevant commits.
The previous code unneccessarily duplicated the creation of a diagnostic
where the only difference was the `AssignmentAction` being passed.
rdar://88664722
Differential Revision: https://reviews.llvm.org/D124054
WG14 has elected to remove support for K&R C functions in C2x. The
feature was introduced into C89 already deprecated, so after this long
of a deprecation period, the committee has made an empty parameter list
mean the same thing in C as it means in C++: the function accepts no
arguments exactly as if the function were written with (void) as the
parameter list.
This patch implements WG14 N2841 No function declarators without
prototypes (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2841.htm)
and WG14 N2432 Remove support for function definitions with identifier
lists (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2432.pdf).
It also adds The -fno-knr-functions command line option to opt into
this behavior in other language modes.
Differential Revision: https://reviews.llvm.org/D123955
C89 had a questionable feature where the compiler would implicitly
declare a function that the user called but was never previously
declared. The resulting function would be globally declared as
extern int func(); -- a function without a prototype which accepts zero
or more arguments.
C99 removed support for this questionable feature due to severe
security concerns. However, there was no deprecation period; C89 had
the feature, C99 didn't. So Clang (and GCC) both supported the
functionality as an extension in C99 and later modes.
C2x no longer supports that function signature as it now requires all
functions to have a prototype, and given the known security issues with
the feature, continuing to support it as an extension is not tenable.
This patch changes the diagnostic behavior for the
-Wimplicit-function-declaration warning group depending on the language
mode in effect. We continue to warn by default in C89 mode (due to the
feature being dangerous to use). However, because this feature will not
be supported in C2x mode, we've diagnosed it as being invalid for so
long, the security concerns with the feature, and the trivial
workaround for users (declare the function), we now default the
extension warning to an error in C99-C17 mode. This still gives users
an easy workaround if they are extensively using the extension in those
modes (they can disable the warning or use -Wno-error to downgrade the
error), but the new diagnostic makes it more clear that this feature is
not supported and should be avoided. In C2x mode, we no longer allow an
implicit function to be defined and treat the situation the same as any
other lookup failure.
Differential Revision: https://reviews.llvm.org/D122983
The checkBuiltinArgument helper takes an integer ArgIndex and is
documented as performing normal type-checking on that argument. However,
it mistakenly hardcodes the argument index to zero when retrieving the
argument from the call expression.
This hadn't been noticed previously as all in-tree uses typecheck the
0th argument anyway.
D119136 changed how captures are handled in a lambda call operator
declaration, but did not properly handled dependant context,
which led to crash when refering to init-captures in
a trailing return type.
We fix that bug by making transformations more symetric with parsing,
ie. we first create the call operator, then transform the capture,
then compute the type of the lambda call operaror.
This ensures captures exist and have the right type when
we parse a trailing requires-clause / return type.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124012
Motivation: The intent here is for use in Swift.
When building a clang module for swift consumption, swift adds an
extension block to the module for name lookup purposes. Swift calls
this a SwiftLookupTable. One purpose that this serves is to handle
conflicting names between ObjC classes and ObjC protocols. They exist in
different namespaces in ObjC programs, but in Swift they would exist in
the same namespace. Swift handles this by appending a suffix to a
protocol name if it shares a name with a class. For example, if you have
an ObjC class named "Foo" and a protocol with the same name, the
protocol would be renamed to "FooProtocol" when imported into swift.
When constructing the previously mentioned SwiftLookupTable, we use
Sema::LookupName to look up name conflicts for the previous problem.
By this time, the Parser has long finished its job so the call to
LookupName gets nullptr for its Scope (TUScope will be nullptr
by this point). The C/ObjC path does not have this problem because it
only uses the Scope in specific scenarios. The C++ codepath uses the
Scope quite extensively and will fail early on if the Scope it gets is
null. In our very specific case of looking up ObjC classes with a
specific name, we want to force sema::LookupName to take the C/ObjC
codepath even if C++ or ObjC++ is enabled.
When doing overload resolution, we have to check that candidates' parameter types are equal before trying to find a better candidate through checking which candidate is more constrained.
This revision adds this missing check and makes us diagnose those cases as ambiguous calls when the types are not equal.
Fixes GitHub issue https://github.com/llvm/llvm-project/issues/53640
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D123182
Partially implement the proposed resolution to CWG2569.
D119136 broke some libstdc++ code, as P2036R3, implemented as a DR to
C++11 made ill-formed some previously valid and innocuous code.
We resolve this issue to allow decltype(x) - but not decltype((x)
to appear in the parameter list of a lambda that capture x by copy.
Unlike CWG2569, we do not extend that special treatment to
sizeof/noexcept yet, as the resolution has not been approved yet
and keeping the review small allows a quicker fix of impacted code.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123909
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50, and
64c045e25b
which were reverted in
e75d8b7037
due to a crasher bug where CodeGen would emit a builtin glvalue as an
rvalue if it constant-folds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
A randomized structure needs to use a designated or default initializer.
Using a non-designated initializer will result in values being assigned
to the wrong fields.
Differential Revision: https://reviews.llvm.org/D123763
std::addressof, plus the libstdc++-specific std::__addressof.
This brings us to parity with the corresponding GCC behavior.
Remove STDBUILTIN macro that ended up not being used.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
A randomized structure needs to use a designated or default initializer.
Using a non-designated initializer will result in values being assigned
to the wrong fields.
Differential Revision: https://reviews.llvm.org/D123763
Given the declaration:
typedef void func_t(unsigned);
__attribute__((noreturn)) func_t func;
we would incorrectly determine that `func` had no prototype because the
`noreturn` attribute would convert the underlying type directly into a
FunctionProtoType, but the declarator for `func` itself was not one for
a function with a prototype. This adds an additional check for when the
declarator is a type representation for a function with a prototype.
When emitting a "conflicting types" warning for a function declaration,
it's more clear to diagnose the previous declaration specifically as
being a builtin if it one.
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
Clang should no longer incorrectly diagnose a variable declaration inside of a
lambda expression that shares the name of a variable in a containing
if/while/for/switch init statement as a redeclaration.
After this patch, clang is supposed to accept code below:
void foo() {
for (int x = [] { int x = 0; return x; }(); ;) ;
}
Fixes https://github.com/llvm/llvm-project/issues/54913
Differential Revision: https://reviews.llvm.org/D123840
This patch changes the return type of `PreprocessorLexer::getFileEntry()` so that its clients may stop using the deprecated APIs of `FileEntry`.
Reviewed By: bnbarham
Differential Revision: https://reviews.llvm.org/D123772
This catches places where a function without a prototype is
accidentally used, potentially passing an incorrect number of
arguments, and is a follow-up to the work done in
https://reviews.llvm.org/D122895 and described in the RFC
(https://discourse.llvm.org/t/rfc-enabling-wstrict-prototypes-by-default-in-c).
The diagnostic is grouped under the new -Wdeprecated-non-prototypes
warning group and is enabled by default.
The diagnostic is disabled if the function being called was implicitly
declared (the user already gets an on-by-default warning about the
creation of the implicit function declaration, so no need to warn them
twice on the same line). Additionally, the diagnostic is disabled if
the declaration of the function without a prototype was in a location
where the user explicitly disabled deprecation warnings for functions
without prototypes (this allows the provider of the API a way to
disable the diagnostic at call sites because the lack of prototype is
intentional).
Flexible array initialization is a C/C++ extension implemented in many
compilers to allow initializing the flexible array tail of a struct type
that contains a flexible array. In clang, this is currently restricted
to C. But this construct is used in the Microsoft SDK headers, so I'd
like to extend it to C++.
For now, this doesn't handle dynamic initialization; probably not hard
to implement, but it's extra code, and I don't think it's necessary for
the expected uses. And we explicitly fail out of constant evaluation.
I've added some additional code to assert that initializers have the
correct size, with or without flexible array init. This might catch
issues unrelated to flexible array init.
Differential Revision: https://reviews.llvm.org/D123649
HLSL does not support pointers or references. This change generates
errors in sema for generating pointer, and reference types as well as
common operators (address-of, dereference, arrow), which are used with
pointers and are unsupported in HLSL.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123167
HLSL has a language feature called Semantics which get attached to
declarations like attributes and are used in a variety of ways.
One example of semantic use is here with the `SV_GroupIndex` semantic
which, when applied to an input for a compute shader is pre-populated
by the driver with a flattened thread index.
Differential Revision: https://reviews.llvm.org/D122699
# Conflicts:
# clang/include/clang/Basic/Attr.td
# clang/include/clang/Basic/AttrDocs.td
This patch enables shift operators on SVE vector types, as well as
supporting vector-scalar shift operations.
Shifts by a scalar that is wider than the contained type in the
vector are permitted but as in the C standard if the value is larger
than the width of the type the behavior is undefined.
Differential Revision: https://reviews.llvm.org/D123303
Undefined behaviour is just passed on to extract_element when the
index is out of bounds. Subscript on svbool_t is not allowed as
this doesn't really have meaningful semantics.
Differential Revision: https://reviews.llvm.org/D122732
This is the template version of https://reviews.llvm.org/D114251.
This patch introduces a new template name kind (UsingTemplateName). The
UsingTemplateName stores the found using-shadow decl (and underlying
template can be retrieved from the using-shadow decl). With the new
template name, we can be able to find the using decl that a template
typeloc (e.g. TemplateSpecializationTypeLoc) found its underlying template,
which is useful for tooling use cases (include cleaner etc).
This patch merely focuses on adding the node to the AST.
Next steps:
- support using-decl in qualified template name;
- update the clangd and other tools to use this new node;
- add ast matchers for matching different kinds of template names;
Differential Revision: https://reviews.llvm.org/D123127
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start
of the body would be parsed in the parent scope, such that
captures would not be available to look up.
The scoping is changed to have an outer lambda scope,
followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope
between the start of the lambda (to which we want to attach
the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured
variable to (and several parts of clang assume captures are handled from
the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope.
But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that
conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context,
we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point,
we can switch (for the second time) inside the lambda context,
unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also
transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope.
When trying to capture an implicit variable, if we are before the qualifiers of a lambda,
we need to remember that the variables are still in the parent's context (rather than in the call operator's).
This is a recommit of adff142dc2 after a fix in d8d793f29b
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
This reverts commit adff142dc2.
This broke clang bootstrap: it made existing C++ code in LLVM invalid:
llvm/include/llvm/CodeGen/LiveInterval.h:630:53: error: captured variable 'Idx' cannot appear here
[=](std::remove_reference_t<decltype(*Idx)> V,
^
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
Currently, clang crashes with i386 target on the following code:
```
void f() {
f + 0xdead000000000000UL;
}
```
This problem is similar to the problem fixed in D104424, but that fix can't handle function pointer case, because `getTypeSizeInCharsIfKnown()` says that size is known and equal to 0 for function type.
This patch prevents bounds checking for function pointer, thus fixes the crash.
Fixes https://github.com/llvm/llvm-project/issues/50463
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D122748
For -fgpu-rdc, a host function may call an external kernel
which is defined in an archive of bitcode. Since this external
kernel is only referenced in host function, the device
bitcode does not contain reference to this external
kernel, then the linker will not try to resolve this external
kernel in the archive.
To fix this issue, host-used external kernels and device
variables are tracked. A global array containing pointers
to these external kernels and variables is emitted which
serves as an artificial references to the external kernels
and variables used by host.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D123441
We did not implement C99 6.7.5.3p15 fully in that we missed the rule
for compatible function types where a prior declaration has a prototype
and a subsequent definition (not just declaration) has an empty
identifier list or an identifier list with a mismatch in parameter
arity. This addresses that situation by issuing an error on code like:
void f(int);
void f() {} // type conflicts with previous declaration
(Note: we already diagnose the other type conflict situations
appropriately, this was the only situation we hadn't covered that I
could find.)
It breaks arm build, there is no free bit for the extra
UsingShadowDecl in TemplateName::StorageType.
Reverting it to build the buildbot back until we comeup with a fix.
This reverts commit 5a5be4044f.
This is the template version of https://reviews.llvm.org/D114251.
This patch introduces a new template name kind (UsingTemplateName). The
UsingTemplateName stores the found using-shadow decl (and underlying
template can be retrieved from the using-shadow decl). With the new
template name, we can be able to find the using decl that a template
typeloc (e.g. TemplateSpecializationTypeLoc) found its underlying template,
which is useful for tooling use cases (include cleaner etc).
This patch merely focuses on adding the node to the AST.
Next steps:
- support using-decl in qualified template name;
- update the clangd and other tools to use this new node;
- add ast matchers for matching different kinds of template names;
Differential Revision: https://reviews.llvm.org/D123127
According to CWG 1394 and C++20 [dcl.fct.def.general]p2,
Clang should not diagnose incomplete types if function body is "= delete;".
For example:
```
struct Incomplete;
Incomplete f(Incomplete) = delete; // well-formed
```
Also close https://github.com/llvm/llvm-project/issues/52802
Differential Revision: https://reviews.llvm.org/D122981
InstantiateDefaultCtorDefaultArgs() is supposed to mark default
constructor args as odr-used, since those args will be used when
emitting the constructor closure.
However, constexpr vars were not getting odr-used since
DoMarkVarDeclReferenced() defers them in MaybeODRUseExprs, and the code
was calling CleanupVarDeclMarking() which discarded those uses instead
of processing them.
(This came up in Chromium, crbug.com/1312086)
Differential revision: https://reviews.llvm.org/D123405
The Randstruct feature is a compile-time hardening technique that
randomizes the field layout for designated structures of a code base.
Admittedly, this is mostly useful for closed-source releases of code,
since the randomization seed would need to be available for public and
open source applications.
Why implement it? This patch set enhances Clang’s feature parity with
that of GCC which already has the Randstruct feature. It's used by the
Linux kernel in certain structures to help thwart attacks that depend on
structure layouts in memory.
This patch set is a from-scratch reimplementation of the Randstruct
feature that was originally ported to GCC. The patches for the GCC
implementation can be found here:
https://www.openwall.com/lists/kernel-hardening/2017/04/06/14
Link: https://lists.llvm.org/pipermail/cfe-dev/2019-March/061607.html
Co-authored-by: Cole Nixon <nixontcole@gmail.com>
Co-authored-by: Connor Kuehl <cipkuehl@gmail.com>
Co-authored-by: James Foster <jafosterja@gmail.com>
Co-authored-by: Jeff Takahashi <jeffrey.takahashi@gmail.com>
Co-authored-by: Jordan Cantrell <jordan.cantrell@mail.com>
Co-authored-by: Nikk Forbus <nicholas.forbus@gmail.com>
Co-authored-by: Tim Pugh <nwtpugh@gmail.com>
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Signed-off-by: Bill Wendling <isanbard@gmail.com>
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121556
This reverts commit 3f0587d0c6.
Not all tests pass after a few rounds of fixes.
I spot one failure that std::shuffle (potentially different results with
different STL implementations) was misused and replaced it with llvm::shuffle,
but there appears to be another failure in a Windows build.
The latest failure is reported on https://reviews.llvm.org/D121556#3440383
Functions without prototypes in C (also known as K&R C functions) were
introduced into C89 as a deprecated feature and C2x is now reclaiming
that syntax space with different semantics. However, Clang's
-Wstrict-prototypes diagnostic is off-by-default (even in pedantic
mode) and does not suffice to warn users about issues in their code.
This patch changes the behavior of -Wstrict-prototypes to only diagnose
declarations and definitions which are not going to change behavior in
C2x mode, and enables the diagnostic in -pedantic mode. The diagnostic
is now specifically about the fact that the feature is deprecated.
It also adds -Wdeprecated-non-prototype, which is grouped under
-Wstrict-prototypes and diagnoses declarations or definitions which
will change behavior in C2x mode. This diagnostic is enabled by default
because the risk is higher for the user to continue to use the
deprecated feature.
Differential Revision: https://reviews.llvm.org/D122895
The Randstruct feature is a compile-time hardening technique that
randomizes the field layout for designated structures of a code base.
Admittedly, this is mostly useful for closed-source releases of code,
since the randomization seed would need to be available for public and
open source applications.
Why implement it? This patch set enhances Clang’s feature parity with
that of GCC which already has the Randstruct feature. It's used by the
Linux kernel in certain structures to help thwart attacks that depend on
structure layouts in memory.
This patch set is a from-scratch reimplementation of the Randstruct
feature that was originally ported to GCC. The patches for the GCC
implementation can be found here:
https://www.openwall.com/lists/kernel-hardening/2017/04/06/14
Link: https://lists.llvm.org/pipermail/cfe-dev/2019-March/061607.html
Co-authored-by: Cole Nixon <nixontcole@gmail.com>
Co-authored-by: Connor Kuehl <cipkuehl@gmail.com>
Co-authored-by: James Foster <jafosterja@gmail.com>
Co-authored-by: Jeff Takahashi <jeffrey.takahashi@gmail.com>
Co-authored-by: Jordan Cantrell <jordan.cantrell@mail.com>
Co-authored-by: Nikk Forbus <nicholas.forbus@gmail.com>
Co-authored-by: Tim Pugh <nwtpugh@gmail.com>
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Signed-off-by: Bill Wendling <isanbard@gmail.com>
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121556
This adjusts the handling for:
export module M;
export namespace {};
export namespace N {};
export using namespace N;
In the first case, we were allowing empty anonymous namespaces
as part of an extension allowing empty top-level entities, but that seems
inappropriate in this case, since the linkage would be internal for the
anonymous namespace. We now report an error for this.
The second case was producing a warning diagnostic that this was
accepted as an extension - however the C++20 standard does allow this
as well-formed.
In the third case we keep the current practice that this is accepted with a
warning (as an extension). The C++20 standard says it's an error.
We also ensure that using decls are only applied to items with external linkage.
This adjusts error messages for exports involving redeclarations in modules to
be more specific about the reason that the decl has been rejected.
Differential Revision: https://reviews.llvm.org/D122119
Add support for builtin_[max|min] which has below prototype:
A builtin_max (A1, A2, A3, ...)
All arguments must have the same type; they must all be float, double, or long double.
Internally use SelectCC to get the result.
Reviewed By: qiucf
Differential Revision: https://reviews.llvm.org/D122478
Comparison operators on SVE types return a signed integer vector
of the same width as the incoming SVE type. This matches the existing
behaviour for NEON types.
Differential Revision: https://reviews.llvm.org/D122404
compiler is allowed to use optimizations that allow reassociation and
transformations that don’t guaranty accuracy.
For example (x+y)+z is transformed into x+(y+z) . Although
mathematically equivalent, these two expressions may not lead to the
same final result due to errors of summation.
Or x/x is transformed into 1.0 but x could be 0.0, INF or NaN. And so
this transformation also may not lead to the same final result.
Setting the eval method 'ffp-eval-method' or via '#pragma clang fp
eval_method' in this mode, doesn’t have any effect.
This patch adds code to warn the user of this.
Differential Revision: https://reviews.llvm.org/D122155
Without the fix ivars with anonymous types can trigger errors like
> error: 'TestClass::structIvar' from module 'Target' is not present in definition of 'TestClass' provided earlier
> [...]
> note: declaration of 'structIvar' does not match
It happens because types of ivars from different modules are considered
to be different. And it is caused by not merging anonymous `TagDecl`
from different modules.
To fix that I've changed `serialization::needsAnonymousDeclarationNumber`
to handle anonymous `TagDecl` inside `ObjCInterfaceDecl`. But that's not
sufficient as C code inside `ObjCInterfaceDecl` doesn't use interface
decl as a decl context but switches to its parent (TranslationUnit in
most cases). I'm changing that to make `ObjCContainerDecl` the lexical
decl context but keeping the semantic decl context intact.
Test "check-dup-decls-inside-objc.m" doesn't reflect a change in
functionality but captures the existing behavior to prevent regressions.
rdar://85563013
Differential Revision: https://reviews.llvm.org/D118525
This adds diagnostics for conflicting attributes on the same
declarataion, conflicting attributes on a forward and final
declaration, and defines a more narrowly scoped HLSLEntry attribute
target.
Big shout out to @aaron.ballman for the great feedback and review on
this!
The memory_scope enum is not available before OpenCL 2.0, so ensure
the sub_group_barrier overload with a memory_scope argument is
restricted to OpenCL 2.0 and above. This is already the case in
opencl-c.h.
Fixes the issue revealed by https://reviews.llvm.org/D120254
Reported-by: Harald van Dijk (hvdijk)
Index of vset/vget must be a constant integer and be
located in right range.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D122629
We started diagnosing this situation with a more clear diagnostic
message, but it was pointed out that unevaluated contexts don't really
have the undefined behavior property as there is no runtime access
involved.
This augments the changes in https://reviews.llvm.org/D122656 to not
diagnose in an unevaluated context.
HLSL uses Microsoft-style attributes `[attr]`, which clang mostly
ignores. For HLSL we need to handle known Microsoft attributes, and to
maintain C/C++ as-is we ignore unknown attributes.
To utilize this new code path, this change adds the HLSL `numthreads`
attribute.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D122627
Member access for an atomic structure or union is unconditional
undefined behavior (C11 6.5.2.3p5). However, we would issue a confusing
error message about the base expression not being a structure or union
type.
GCC issues a warning for this case. Clang now warns as well, but the
warning is defaulted to an error because the actual access is still
unsafe.
This fixes Issue 54563.
This builtin returns the address of a global instance of the
`std::source_location::__impl` type, which must be defined (with an
appropriate shape) before calling the builtin.
It will be used to implement std::source_location in libc++ in a
future change. The builtin is compatible with GCC's implementation,
and libstdc++'s usage. An intentional divergence is that GCC declares
the builtin's return type to be `const void*` (for
ease-of-implementation reasons), while Clang uses the actual type,
`const std::source_location::__impl*`.
In order to support this new functionality, I've also added a new
'UnnamedGlobalConstantDecl'. This artificial Decl is modeled after
MSGuidDecl, and is used to represent a generic concept of an lvalue
constant with global scope, deduplicated by its value. It's possible
that MSGuidDecl itself, or some of the other similar sorts of things
in Clang might be able to be refactored onto this more-generic
concept, but there's enough special-case weirdness in MSGuidDecl that
I gave up attempting to share code there, at least for now.
Finally, for compatibility with libstdc++'s <source_location> header,
I've added a second exception to the "cannot cast from void* to T* in
constant evaluation" rule. This seems a bit distasteful, but feels
like the best available option.
Reviewers: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D120159
Calling an ObjC method from a C function marked with the 'enforce_tcb'
attribute did not produce a warning. Now it does, and on top of that
Objective-C methods can participate in TCBs themselves.
Differential Revision: https://reviews.llvm.org/D122343
Previously, we would instantiate the UDL by marking the function as
referenced and potentially binding to a temporary; this skipped
transforming the call when the UDL was dependent on a template
parameter.
Now, we defer all the work to instantiating the call expression for the
UDL. This ensures that constant evaluation occurs at compile time
rather than deferring until runtime.
Fixes Issue 54578.
We wish to support emitting a pre-processed output for an importable
header unit, that can be consumed to produce the same header units as
the original source.
This means that ee need to find the original filename used to produce
the re-preprocessed output, so that it can be assigned as the module
name. This is peeked from the first line of the pre-processed source
when the action sets up the files.
Differential Revision: https://reviews.llvm.org/D121098
In C, assignment expressions result in an rvalue whose type is the type
of the lhs of the assignment after it undergoes lvalue to rvalue
conversion. lvalue to rvalue conversion in C strips all qualifiers
including _Atomic.
We used getUnqualifiedType() which does not strip the _Atomic qualifier
when we should have used getAtomicUnqualifiedType(). This corrects the
usage and adds some comments to getUnqualifiedType() to make it more
clear that it does not strip _Atomic and that's on purpose (see C11
6.2.5p27).
This addresses Issue 48742.
Some functions can end up non-externally visible despite not being
declared "static" or in an unnamed namespace in C++ - such as by having
parameters that are of non-external types.
Such functions aren't mistakenly intended to be defining some function
that needs a declaration. They could be maybe more legible (except for
the operator new example) with an explicit static, but that's a
stylistic thing outside what should be addressed by a warning.
This reapplies 275c56226d - once we figure
out what to do about the change in behavior for -Wnon-c-typedef-for-linkage
(this reverts the revert commit 85ee1d3ca1)
Differential Revision: https://reviews.llvm.org/D121328
When adding the support for modules partitions we added an assert that the
actual status of Global Module Fragments matches the state machine that is
driven by the module; keyword.
That does not apply to the modules-ts case, where there is an implicit GMF.
Differential Revision: https://reviews.llvm.org/D122394
There seems to be more than one way to get to that state. I included to
example cases in the test, both were noticed recently.
There is room for improvement, for example by creating RecoveryExpr in
place of the bad initializer, but for now let's stop the crashes.
Differential Revision: https://reviews.llvm.org/D121824
This is the first in a series of patches that introduce C++20 importable
header units.
These differ from clang header modules in that:
(a) they are identifiable by an internal name
(b) they represent the top level source for a single header - although
that might include or import other headers.
We name importable header units with the path by which they are specified
(although that need not be the absolute path for the file).
So "foo/bar.h" would have a name "foo/bar.h". Header units are made a
separate module type so that we can deal with diagnosing places where they
are permitted but a named module is not.
Differential Revision: https://reviews.llvm.org/D121095
Update `WeakUndeclaredIdentifiers` to hold a collection of weak
aliases per identifier instead of only one.
This also allows the "used" state to be removed from `WeakInfo`
because it is really only there as an alternative to removing
processed map entries, and we can represent that using an empty set
now. The serialization code is updated for the removal of the field.
Additionally, a PCH test is added for the new functionality.
The records are grouped by the "target" identifier, which was already
being used as a key for lookup purposes. We also store only one record
per alias name; combined, this means that diagnostics are grouped by
the "target" and limited to one per alias (which should be acceptable).
Fixes PR28611.
Fixesllvm/llvm-project#28985.
Reviewed By: aaron.ballman, cebowleratibm
Differential Revision: https://reviews.llvm.org/D121927
Co-authored-by: Rachel Craik <rcraik@ca.ibm.com>
Co-authored-by: Jamie Schmeiser <schmeise@ca.ibm.com>
A previous patch removed the compiler generating offloading entries
for variables that were declared on the device but were internal or
hidden. This allowed us to compile programs but turns any attempt to run
'#pragma omp target update' on one of those variables a silent failure.
This patch adds a check in the semantic analysis for if the user is
attempting the update a variable on the device from the host that is not
externally visible.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D122403
CUDA/HIP determines whether a function can be called based on
the device/host attributes of callee and caller. Clang assumes the
caller is CurContext. This is correct in most cases, however, it is
not correct in OpenMP parallel region when CUDA/HIP program
is compiled with -fopenmp. This causes incorrect overloading
resolution and missed diagnostics.
To get the correct caller, clang needs to chase the parent chain
of DeclContext starting from CurContext until a function decl
or a lambda decl is reached. Sema API is adapted to achieve that
and used to determine the caller in hostness check.
Reviewed by: Artem Belevich, Richard Smith
Differential Revision: https://reviews.llvm.org/D121765
Adds basic parsing/sema/serialization support for the
#pragma omp target parallel loop directive.
Differential Revision: https://reviews.llvm.org/D122359
Move the SourceRange from the old ParsedAttributesWithRange into
ParsedAttributesView, so we have source range information available
everywhere we use attributes.
This also removes ParsedAttributesWithRange (replaced by simply using
ParsedAttributes) and ParsedAttributesVieWithRange (replaced by using
ParsedAttributesView).
Differential Revision: https://reviews.llvm.org/D121201
Clang fails to diagnose:
```
void test() {
int j = 0;
for (int i = 0; i < 1000; i++)
j++;
return;
}
```
Reason: Missing support for UnaryOperator.
We should not warn with volatile variables... so add check for it.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D122271
Currently, Clang handles some qualifiers correctly for __auto_type, but
it does not handle the restrict or _Atomic qualifiers in the same way
that GCC does. This patch handles those qualifiers so that they attach
to the deduced type the same as const and volatile already do.
This fixes https://github.com/llvm/llvm-project/issues/53652
This patch extends the support for C/C++ operators for SVE
types to allow one of the arguments to be a scalar, in which
case a vector splat is performed.
Differential Revision: https://reviews.llvm.org/D121829
This reverts commit 56d46b36fc.
The LIT test SemaCXX/attr-trivial-abi.cpp is failing with 32bit build on
Windows. All the lines with the ifdef WIN32 are asserting but they are
not expected to. It looks like the LIT test was not tested on a 32bit
build of the compiler.
GCC supports power-of-2 size structures for the arguments. Clang supports fewer than GCC. But Clang always crashes for the unsupported cases.
This patch adds sema checks to do the diagnosts to solve these crashes.
Reviewed By: jyu2
Differential Revision: https://reviews.llvm.org/D107141
Allow goto, labelled statements as well as `static`, `thread_local`, and
non-literal variables in `constexpr` functions.
As specified. for all of the above (except labelled statements) constant
evaluation of the construct still fails.
For `constexpr` bodies, the proposal is implemented with diagnostics as
a language extension in older language modes. For determination of
whether a lambda body satisfies the requirements for a constexpr
function, the proposal is implemented only in C++2b mode to retain the
semantics of older modes for programs conforming to them.
Reviewed By: aaron.ballman, hubert.reinterpretcast, erichkeane
Differential Revision: https://reviews.llvm.org/D111400
@mgehre-amd pointed out the following post-commit review feedback on
the changes in 8cba72177dcd8de5d37177dbaf2347e5c1f0f1e8:
As an example, the paper says 3wb /* Yields an _BitInt(3); two value
bits, one sign bit */.
So I would expect that 0xFwb gives _BitInt(5); four value bits, one
sign bit, but with this implementation I get _BitInt(2).
This is because ResultVal as 4 bits, and getMinSignedBits() inteprets
it as negative and thus says that 1 bit is enough to represent -1.
This corrects the behavior for calculating the bit-width and adds some
test coverage.
For the following code,
void test() {
volatile int j = 0;
for (int i = 0; i < 1000; i++)
j += 1;
return;
}
If compiled with
clang -g -Wall -Werror -S -emit-llvm test.c
we will see the following error:
test.c:2:6: error: variable 'j' set but not used [-Werror,-Wunused-but-set-variable]
volatile int j = 0;
^
This is not quite right since 'j' is indeed used due to '+=' operator.
gcc doesn't emit error either in this case.
Also if we change 'j += 1' to 'j++', the warning will disappear
with latest clang.
Note that clang will issue the warning if the volatile declaration
involves only simple assignment (var = ...).
To fix the issue, in function MaybeDecrementCount(), if the
operator is a compound assignment (i.e., +=, -=, etc.) and the
variable is volatile, the count for RefsMinusAssignments will be
decremented, similar to 'j++' case.
Differential Revision: https://reviews.llvm.org/D121715
Previously, OpenMP variant declarations for a function declaration that included
the 'cpu_dispatch', 'cpu_specific', or 'target' attributes was diagnosed, but
one with the 'target_clones' attribute was not. Now fixed.
Reviewed By: erichkeane, jdoerfert
Differential Revision: https://reviews.llvm.org/D121963
Previously, an attempt to declare an overload of a multiversion function
in C was not properly diagnosed. In some cases, diagnostics were simply
missing. In other cases the following assertion failure occured...
```
Assertion `(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr(); })) && "Non-redecls shouldn't happen without overloadable present"' failed.
```
... or the following diagnostic was spuriously issued.
```
error: at most one overload for a given name may lack the 'overloadable' attribute
```
The diagnostics issued in some cases could be improved. When the function
type of a redeclaration does not match the prior declaration, it would be
preferable to diagnose the type mismatch before diagnosing mismatched
attributes. Diagnostics are also missing for some cases.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D121959
Checking of multiversion function declarations performed by various functions
in clang/lib/Sema/SemaDecl.cpp previously forced the valus of a passed in
'MergeTypeWithPrevious' reference argument in several scenarios. This was
unnecessary and possibly incorrect in the one case that the value
was forced to 'true' (though seemingly unobservably so).
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D121958
This change removes redundant code in the definition of
CheckTargetCausesMultiVersioning() in SemaDecl.cpp. The removed code checked
for multiversion function support. The code immediately following the removed
code is a call to CheckMultiVersionAdditionalRules(); that function performs
the same check on entry. In both cases, the consequences of missing multiversion
function support results in the same diagnostic message being issued and the
applicable function declaration being marked as invalid.
Reviewed By: erichkeane, aaron.ballman
Differential Revision: https://reviews.llvm.org/D121957
This change removes dead code in the definition of CheckMultiVersionFunction()
in clang/lib/Sema/SemaDecl.cpp. The removed code was made dead by commit
fc53eb69c26cdd7efa6b629c187d04326f0448ca: "Reapply 'Implement target_clones multiversioning'".
See the added code just above the code being deleted; it contains the same
return statement with the previous condition now distributed across an if
statement and a switch statement.
Reviewed By: erichkeane, aaron.ballman
Differential Revision: https://reviews.llvm.org/D121955
Ensure that the TypeExtension of an `ImageType` is also taken into
account when generating `OpenCLBuiltins.inc`.
This aligns the handling of the `write_only image3d_t` type for
`-fdeclare-opencl-builtins` with opencl-c.h with respect to the
`cl_khr_3d_image_writes` extension.
Since the `write_only image3d_t` type is not available when the
extension is disabled, this commit does not add a test to
`SemaOpenCL/fdeclare-opencl-builtins.cl`.
Partially fixes PR24883.
The patch sets Reference bit while instantiating a typedef if it
previously was found referenced.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D114382
__builtin_memcpy_inline doesn't use the usual builtin argument validation code,
so it crashed when receiving wrong number of argument. Add the missing validation
check.
Open issue: https://github.com/llvm/llvm-project/issues/52949
Reviewed By: gchatelet
Differential Revision: https://reviews.llvm.org/D121965
Committed by gchatelet on behalf of "Roy Jacobson <roi.jacobson1@gmail.com>"
FLT_EVAL_METHOD tells the user the precision at which, temporary results
are evaluated but when fast-math is enabled, the numeric values are not
guaranteed to match the source semantics, so the eval-method is
meaningless.
For example, the expression `x + y + z` has as source semantics `(x + y)
+ z`. FLT_EVAL_METHOD is telling the user at which precision `(x + y)`
is evaluated. With fast-math enable the compiler can choose to
evaluate the expression as `(y + z) + x`.
The correct behavior is to set the FLT_EVAL_METHOD to `-1` to tell the
user that the precision of the intermediate values is unknow. This
patch is doing that.
Differential Revision: https://reviews.llvm.org/D121122
If we are equality comparing an FP literal with a value cast from a type
where the literal can't be represented, that's known true or false and
probably a programmer error.
Fixes issue #54222.
https://github.com/llvm/llvm-project/issues/54222
Note - I added the optimizer change with:
9397bdc67e
...and as discussed in the post-commit comments, that transform might be
too dangerous without this warning in place, so it was reverted to allow
this change first.
Differential Revision: https://reviews.llvm.org/D121306
Current ASTContext.getAttributedType() takes attribute kind,
ModifiedType and EquivType as the hash to decide whether an AST node
has been generated or note. But this is not enough for btf_type_tag
as the attribute might have the same ModifiedType and EquivType, but
still have different string associated with attribute.
For example, for a data structure like below,
struct map_value {
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *a;
int __attribute__((btf_type_tag("tag2"))) __attribute__((btf_type_tag("tag4"))) *b;
};
The current ASTContext.getAttributedType() will produce
an AST similar to below:
struct map_value {
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *a;
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *b;
};
and this is incorrect.
It is very difficult to use the current AttributedType as it is hard to
get the tag information. To fix the problem, this patch introduced
BTFTagAttributedType which is similar to AttributedType
in many ways but with an additional BTFTypeTagAttr. The tag itself can
be retrieved with BTFTypeTagAttr.
With the new BTFTagAttributed type, the debuginfo code can be greatly
simplified compared to previous TypeLoc based approach.
Differential Revision: https://reviews.llvm.org/D120296
This is the `ext_vector_type` alternative to D81083.
This patch extends Clang to allow 'bool' as a valid vector element type
(attribute ext_vector_type) in C/C++.
This is intended as the canonical type for SIMD masks and facilitates
clean vector intrinsic declarations. Vectors of i1 are supported on IR
level and below down to many SIMD ISAs, such as AVX512, ARM SVE (fixed
vector length) and the VE target (NEC SX-Aurora TSUBASA).
The RFC on cfe-dev: https://lists.llvm.org/pipermail/cfe-dev/2020-May/065434.html
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D88905
function candidates
See: https://github.com/llvm/llvm-project/issues/54379
I tried to see if I can reuse ResolveAddressOfOverloadedFunction for
explicit function instantiation and so I managed to hit this ICE.
Bug was the diagnostic required an argument (%0) and specific code path
didn't pass an argument.
Differential Revision: https://reviews.llvm.org/D121646
Motivation:
```
int test(int x, int y) {
int r = 0;
[[clang::always_inline]] r += foo(x, y); // force compiler to inline this function here
return r;
}
```
In 2018, @kuhar proposed "Introduce per-callsite inline intrinsics" in https://reviews.llvm.org/D51200 to solve this motivation case (and many others).
This patch solves this problem with call site attribute. "noinline" statement attribute already landed in D119061. Also, some LLVM Inliner fixes landed so call site attribute is stronger than function attribute.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D120717
WG14 adopted N2775 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2775.pdf)
at our Feb 2022 meeting. This paper adds a literal suffix for
bit-precise types that automatically sizes the bit-precise type to be
the smallest possible legal _BitInt type that can represent the literal
value. The suffix chosen is wb (for a signed bit-precise type) which
can be combined with the u suffix (for an unsigned bit-precise type).
The preprocessor continues to operate as-if all integer types were
intmax_t/uintmax_t, including bit-precise integer types. It is a
constraint violation if the bit-precise literal is too large to fit
within that type in the context of the preprocessor (when still using
a pp-number preprocessing token), but it is not a constraint violation
in other circumstances. This allows you to make bit-precise integer
literals that are wider than what the preprocessor currently supports
in order to initialize variables, etc.
This change teaches the Sema logic for `__builtin_memcpy_inline` to implicitly convert arrays passed as arguments to pointers, similarly to regular `memcpy`.
This code will no longer cause a compiler crash:
```
void f(char *p) {
char s[1] = {0};
__builtin_memcpy_inline(p, s, 1);
}
```
rdar://88147527
Differential Revision: https://reviews.llvm.org/D121475
This patch implements support for the +, -, *, / and % operators on sizeless SVE
types. Support for these operators on svbool_t is excluded.
Differential Revision: https://reviews.llvm.org/D120323
As far as I can tell, MSVC allows the relevant conversions for all
pointer types. Found compiling a Windows SDK header.
I've verified that the updated errors in MicrosoftExtensions.cpp match
the ones that MSVC actually emits, except for the one with a FIXME. (Not
sure why this wasn't done for the patch that added the tests.)
To make up for the missing error, add a warning that triggers on
conversions that drop the __unaligned qualfier.
Differential Revision: https://reviews.llvm.org/D120936
Regresses:
typedef struct {
static void f() {
}
} a_t;
Causing this to error instead of warn, because the linkage is computed
earlier/too early perhaps. I'll send out a review to see if there's some
other path forward or if this is an acceptable regression, etc.
This reverts commit 275c56226d.
We were not creating an evaluation context for the TU scope, so we
never popped an evaluation context for it. Popping the evaluation
context triggers a number of diagnostics, including warnings about
immediate invocations that we were previously missing.
Note: I think we have an additional issue that we should solve, but not
as part of this patch. I don't think Clang is properly modeling static
initialization as happening before constant expression evaluation. I
think structure members members are zero initialized per
http://eel.is/c++draft/basic.start.static#1,
https://eel.is/c++draft/basic.start.static#2.sentence-2, and
http://eel.is/c++draft/dcl.init#general-6.2 and the new test case
actually should be accepted. However, it's also worth noting that other
compilers behave the way this patch makes Clang behave:
https://godbolt.org/z/T7noqhdPr
Otherwise we will fail to generate the definition of a defaulted destructor,
if the only reference was in a templated temporary.
rdar://89366678
Differential Revision: https://reviews.llvm.org/D120426
The paramemter of hint clause in OpenMP critical hint should be
non-negative. The omp_lock_hint_none is 0 in omp.h.
Reviewed By: Alexey Bataev
Differential Revision: https://reviews.llvm.org/D121101
This is a Sema function that now no longer depends on any of the
functionality in SemaTemplateInstantiateDecl.cpp (as the static function
was moved to Sema in a previous NFC). Moving it to SemaConcept means
that it and CheckFunctionConstraints can be changed to share more.
The standard requires[0] member function constraints to be checked when
explicitly instantiating classes. This patch adds this constraints
check.
This issue is tracked as #46029 [1].
Note that there's an related open CWG issue (2421[2]) about what to do when
multiple candidates have satisfied constraints. This is particularly an
issue because mangling doesn't contain function constraints, and so the
following code still ICEs with definition with same mangled name
'_ZN1BIiE1fEv' as another definition:
template<class T>
struct B {
int f() requires std::same_as<T, int> {
return 0;
}
int f() requires (std::same_as<T, int> &&
!std::same_as<T, char>) {
return 1;
}
};
template struct B<int>;
Also note that the constraints checking while instantiating *functions*
is still not implemented. I started looking at it but It's a bit more
complicated. I believe in such a case we have to consider the partial
constraints order and potentially choose the best candidate out of the
set of multiple valid ones.
[0]: https://eel.is/c++draft/temp.explicit#10
[1]: https://github.com/llvm/llvm-project/issues/46029
[2]: https://cplusplus.github.io/CWG/issues/2421.html
Differential Revision: https://reviews.llvm.org/D120255
Previously, we didin't build a DeclRefExpr which refers to an invalid declaration.
In this patch, we handle this case by building an empty RecoveryExpr,
which will preserve more broken code (AST parent nodes that contain the
RecoveryExpr is preserved in the AST).
Differential Revision: https://reviews.llvm.org/D120812
C++20 non-type template parameter prints `MyType<{{116, 104, 105, 115}}>` when the code is as simple as `MyType<"this">`. This patch prints `MyType<{"this"}>`, with one layer of braces preserved for the intermediate structural type to trigger CTAD.
`StringLiteral` handles this case, but `StringLiteral` inside `APValue` code looks like a circular dependency. The proposed patch implements a cheap strategy to emit string literals in diagnostic messages only when they are readable and fall back to integer sequences.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D115031
This is used a few places in SemaTeplateInstantiateDecl, but is going
to be useful in SemaConcept.cpp as well. This patch switches it to be
a private function in Sema.
Differential Revision: https://reviews.llvm.org/D120729
Implementation partitions bring two extra cases where we have
visibility of module-private data.
1) When we import a module implementation partition.
2) When a partition implementation imports the primary module intertace.
We maintain a record of direct imports into the current module since
partition decls from direct imports (but not trasitive ones) are visible.
The rules on decl-reachability are much more relaxed (with the standard
giving permission for an implementation to load dependent modules and for
the decls there to be reachable, but not visible).
Differential Revision: https://reviews.llvm.org/D118599
Motivation:
```
int foo(int x, int y) { // any compiler will happily inline this function
return x / y;
}
int test(int x, int y) {
int r = 0;
[[clang::noinline]] r += foo(x, y); // for some reason we don't want any inlining here
return r;
}
```
In 2018, @kuhar proposed "Introduce per-callsite inline intrinsics" in https://reviews.llvm.org/D51200 to solve this motivation case (and many others).
This patch solves this problem with call site attribute. The implementation is "smaller" wrt approach which uses new intrinsics and thanks to https://reviews.llvm.org/D79121 (Add nomerge statement attribute to clang), we have got some basic infrastructure to deal with attrs on statements with call expressions.
GCC devs are more inclined to call attribute solution as well, as builtins are problematic for them - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104187. But they have no patch proposal yet so.. We have free hands here.
If this approach makes sense, next future steps would be support for call site attributes for always_inline / flatten.
Reviewed By: aaron.ballman, kuhar
Differential Revision: https://reviews.llvm.org/D119061
When we are building modules, there are cases where the only way to determine
validity of access is by comparing primary interface names. This is because we need
to be able to associate a primary interface name with an imported partition, but
before the primary interface module is complete - so that textual comparison is
necessary.
If this turns out to be needed many times, we could cache the result, but it seems
unlikely to be significant (at this time); cases with very many imported partitions
would seem unusual.
Differential Revision: https://reviews.llvm.org/D118598
We cannot export partition implementation CMIs, but we can export the content
of partition interface CMIs.
Differential Revision: https://reviews.llvm.org/D118588
Value-dependent ConstantExprs are not meant to be evaluated.
There is an assert in Expr::EvaluateAsConstantExpr that ensures this condition.
But before this patch the method was called without prior check.
Fixes https://github.com/llvm/llvm-project/issues/52768
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D119375
Partition implementations are special, they generate a CMI, but it
does not have an 'export' line, and we cannot export anything from the
it [that is it can only make decls available to other members of the
owning module, not to importers of that].
Add initial testcases for partition handling, derived from the examples in
Section 10 of the C++20 standard, which identifies what should be accepted
and/or rejected.
Differential Revision: https://reviews.llvm.org/D118587
The `objc_precise_lifetime` attribute is applied to Objective-C pointers to ensure the optimizer does not prematurely release an object under Automatic Reference Counting (ARC). It is a common enough pattern to assign values to these variables but not reference them otherwise, and annotating them with `__unused` is not really correct as they are being used to ensure an object's lifetime.
Differential Revision: https://reviews.llvm.org/D120372
This adds a diagnostic when an unqualified call is resolved
to std::move or std::forward.
This follows some C++ committee discussions where some
people where concerns that this might be an usual anti pattern
particularly britle worth warning about - both because move
is a common name and because these functions accept any values.
This warns inconditionnally of whether the current context is in
std:: or not, as implementations probably want to always qualify
these calls too, to avoid triggering adl accidentally.
Differential Revision: https://reviews.llvm.org/D119670
This implements the parsing and recognition of module partition CMIs
and removes the FIXMEs in the parser.
Module partitions are recognised in the base computation of visibility,
however additional amendments to visibility follow in subsequent patches.
Differential Revision: https://reviews.llvm.org/D118586
Currently when we generate OpenMP offloading code we always make
fallback code for the CPU. This is necessary for implementing features
like conditional offloading and ensuring that unhandled pragmas don't
result in missing symbols. However, this is problematic for a few cases.
For offloading tests we can silently fail to the host without realizing
that offloading failed. Additionally, this makes it impossible to
provide interoperabiility to other offloading schemes like HIP or CUDA
because those methods do not provide any such host fallback guaruntee.
this patch adds the `-fopenmp-offload-mandatory` flag to prevent
generating the fallback symbol on the CPU and instead replaces the
function with a dummy global and the failed branch with 'unreachable'.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D120353
Until now, subgroup builtins are available with `opencl-c.h` when at
least one of `cl_intel_subgroups`, `cl_khr_subgroups`, or
`__opencl_c_subgroups` is defined. With `-fdeclare-opencl-builtins`,
subgroup builtins are conditionalized on `cl_khr_subgroups` only.
Align `-fdeclare-opencl-builtins` to `opencl-c.h` by introducing the
internal `__opencl_subgroup_builtins` macro.
Differential Revision: https://reviews.llvm.org/D120254
Otherwise callers of these functions have to check both the return value
for and the contents of the returned llvm::Optional.
Fixes#53742
Differential Revision: https://reviews.llvm.org/D119525
This is an initial enabling patch for module partition support.
We add enumerations for partition interfaces/implementations.
This means that the module kind enumeration now occupies three
bits, so the AST streamer is adjusted for this. Adding one bit there
seems preferable to trying to overload the meanings of existing
kinds (and we will also want to add a C++20 header unit case later).
Differential Revision: https://reviews.llvm.org/D114714
We need to capture the local variables into a record in task untied
regions but clang does not support record with VLA data members.
Differential Revision: https://reviews.llvm.org/D99436
In 'cond-update-stmt', `else` statement is not expected. This patch adds
the check in Sema.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D120225
In C++20 modules imports must be together and at the start of the module.
Rather than growing more ad-hoc flags to test state, this keeps track of the
phase of of a valid module TU (first decl, global module frag, module,
private module frag). If the phasing is broken (with some diagnostic) the
pattern does not conform to a valid C++20 module, and we set the state
accordingly.
We can thus issue diagnostics when imports appear in the wrong places and
decouple the C++20 modules state from other module variants (modules-ts and
clang modules). Additionally, we attempt to diagnose wrong imports before
trying to find the module where possible (the latter will generally emit an
unhelpful diagnostic about the module not being available).
Although this generally simplifies the handling of C++20 module import
diagnostics, the motivation was that, in particular, it allows detecting
invalid imports like:
import module A;
int some_decl();
import module B;
where being in a module purview is insufficient to identify them.
Differential Revision: https://reviews.llvm.org/D118893
In C++20 modules imports must be together and at the start of the module.
Rather than growing more ad-hoc flags to test state, this keeps track of the
phase of of a valid module TU (first decl, global module frag, module,
private module frag). If the phasing is broken (with some diagnostic) the
pattern does not conform to a valid C++20 module, and we set the state
accordingly.
We can thus issue diagnostics when imports appear in the wrong places and
decouple the C++20 modules state from other module variants (modules-ts and
clang modules). Additionally, we attempt to diagnose wrong imports before
trying to find the module where possible (the latter will generally emit an
unhelpful diagnostic about the module not being available).
Although this generally simplifies the handling of C++20 module import
diagnostics, the motivation was that, in particular, it allows detecting
invalid imports like:
import module A;
int some_decl();
import module B;
where being in a module purview is insufficient to identify them.
Differential Revision: https://reviews.llvm.org/D118893
This patch adds the support for `atomic compare capture` in parser and part of
sema. We don't create an AST node for this because the spec doesn't say `compare`
and `capture` clauses should be used tightly, so we cannot look one more token
ahead in the parser.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D116261
When an a variant is specified that is the same as the base function
the compiler will end up crashing in CodeGen. Give an error instead.
Differential Revision: https://reviews.llvm.org/D119979
Until now, overloads with a 64-bit atomic type argument were always
made available with `-fdeclare-opencl-builtins`. Ensure these
overloads are only available when both the `cl_khr_int64_base_atomics`
and `cl_khr_int64_extended_atomics` extensions have been enabled, as
required by the OpenCL specification.
Differential Revision: https://reviews.llvm.org/D119858
The named and generic address space overloads for atomic_init added
by 50f8abb9f4 ("[OpenCL] Add OpenCL 3.0 atomics to
-fdeclare-opencl-builtins", 2022-02-11) were not guarded by the
corresponding extensions.
This patch tries to implement RVO for coroutine's return object got from
get_return_object.
From [dcl.fct.def.coroutine]/p7 we could know that the return value of
get_return_object is either a reference or a prvalue. So it makes sense
to do copy elision for the return value. The return object should be
constructed directly into the storage where they would otherwise be
copied/moved to.
Test Plan: folly, check-all
Reviewed By: junparser
Differential revision: https://reviews.llvm.org/D117087
constexpr var may be initialized with address of non-const variable.
In this case the initializer is not constant in device compilation.
This has been handled for const vars but not for constexpr vars.
This patch makes handling of const var and constexpr var
consistent.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D119615
Fixes: https://github.com/llvm/llvm-project/issues/53780
The `__builtin_pdepd` and `__builtin_pextd` are P10 builtins that are meant to
be used under 64-bit only. For instance, when the builtins are compiled under
32-bit mode:
```
$ cat t.c
unsigned long long foo(unsigned long long a, unsigned long long b) {
return __builtin_pextd(a,b);
}
$ clang -c t.c -mcpu=pwr10 -m32
ExpandIntegerResult #0: t31: i64 = llvm.ppc.pextd TargetConstant:i32<6928>, t28, t29
fatal error: error in backend: Do not know how to expand the result of this operator!
```
This patch adds sema checking for these builtins to compile under 64-bit
mode only and on P10. The builtins will emit a diagnostic when they are compiled on
non-P10 compilations and on 32-bit mode.
Differential Revision: https://reviews.llvm.org/D118753
Post-commit review feedback suggested dropping the deprecated
diagnostic for the 'noreturn' macro (the diagnostic from the header
file suffices and the macro diagnostic could be confusing) and to only
issue the deprecated diagnostic for [[_Noreturn]] when the attribute
identifier is either directly written or not from a system macro.
Amends the commit made in 5029dce492.
when the function declaration's return type is already invalid for
some reason. This is relevant to https://github.com/llvm/llvm-project/issues/49188
because another way that the declaration's return type could become
invalid is that it might be `C auto` where `C<void>` is false.
Differential Revision: https://reviews.llvm.org/D119094
This adds support for http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2764.pdf,
which was adopted at the Feb 2022 WG14 meeting. That paper adds
[[noreturn]] and [[_Noreturn]] to the list of supported attributes in
C2x. These attributes have the same semantics as the [[noreturn]]
attribute in C++.
The [[_Noreturn]] attribute was added as a deprecated feature so that
translation units which include <stdnoreturn.h> do not get an error on
use of [[noreturn]] because the macro expands to _Noreturn. Users can
use -Wno-deprecated-attributes to silence the diagnostic.
Use of <stdnotreturn.h> or the noreturn macro were both deprecated.
Users can define the _CLANG_DISABLE_CRT_DEPRECATION_WARNINGS macro to
suppress the deprecation diagnostics coming from the header file.
When forming the function type from a declarator, we look for an
overloadable attribute before issuing a diagnostic in C about a
function signature containing only .... When the attribute is present,
we allow such a declaration for compatibility with the overloading
rules in C++. However, we were not looking for the attribute in all of
the places it is legal to write it on a declarator and so we only
accepted the signature in some forms and incorrectly rejected the
signature in others.
We now check for the attribute preceding the declarator instead of only
being applied to the declarator directly.
OpenCL C 3.0 __opencl_c_subgroups feature is slightly different
then other equivalent features and extensions (fp64 and 3d image writes):
OpenCL C 3.0 device can support the extension but not the feature.
cl_khr_subgroups requires subgroup independent forward progress.
This patch adjusts the check which is used when translating language
builtins to check either the extension or feature is supported.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D118999
Add the atomic overloads for the `global` and `local` address spaces,
which are new in OpenCL 3.0. Ensure the preexisting `generic`
overloads are guarded by the generic address space feature macro.
Ensure a subset of the atomic builtins are guarded by the
`__opencl_c_atomic_order_seq_cst` and `__opencl_c_atomic_scope_device`
feature macros, and enable those macros for SPIR/SPIR-V targets in
`opencl-c-base.h`.
Also guard the `cl_ext_float_atomics` builtins with the atomic order
and scope feature macros.
Differential Revision: https://reviews.llvm.org/D119420
Reduce the amount of repetition in the declarations by leveraging more
TableGen constructs. This is in preparation for adding the OpenCL 3.0
atomics feature optionality.
An error in the tablegen description affects the declarations
provided by `-fdeclare-opencl-builtins` for `atomic_fetch_add` and
`atomic_fetch_sub`.
The atomic argument should be an atomic_half, not an atomic_float.
The "-fzero-call-used-regs" option tells the compiler to zero out
certain registers before the function returns. It's also available as a
function attribute: zero_call_used_regs.
The two upper categories are:
- "used": Zero out used registers.
- "all": Zero out all registers, whether used or not.
The individual options are:
- "skip": Don't zero out any registers. This is the default.
- "used": Zero out all used registers.
- "used-arg": Zero out used registers that are used for arguments.
- "used-gpr": Zero out used registers that are GPRs.
- "used-gpr-arg": Zero out used GPRs that are used as arguments.
- "all": Zero out all registers.
- "all-arg": Zero out all registers used for arguments.
- "all-gpr": Zero out all GPRs.
- "all-gpr-arg": Zero out all GPRs used for arguments.
This is used to help mitigate Return-Oriented Programming exploits.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D110869
The above change assumed that malloc (and friends) would always
allocate memory to getNewAlign(), even for allocations which have a
smaller size. This is not actually required by spec (a 1-byte
allocation may validly have 1-byte alignment).
Some real-world malloc implementations do not provide this guarantee,
and thus this optimization is breaking programs.
Fixes#53540
This reverts commit c2297544c0.
Differential Revision: https://reviews.llvm.org/D118804
These changes make the Clang parser recognize expression parameter pack
expansion and initializer lists in attribute arguments. Because
expression parameter pack expansion requires additional handling while
creating and instantiating templates, the support for them must be
explicitly supported through the AcceptsExprPack flag.
Handling expression pack expansions may require a delay to when the
arguments of an attribute are correctly populated. To this end,
attributes that are set to accept these - through setting the
AcceptsExprPack flag - will automatically have an additional variadic
expression argument member named DelayedArgs. This member is not
exposed the same way other arguments are but is set through the new
CreateWithDelayedArgs creator function generated for applicable
attributes.
To illustrate how to implement support for expression pack expansion
support, clang::annotate is made to support pack expansions. This is
done by making handleAnnotationAttr delay setting the actual attribute
arguments until after template instantiation if it was unable to
populate the arguments due to dependencies in the parsed expressions.
Implement P2128R6 in C++23 mode.
Unlike GCC's implementation, this doesn't try to recover when a user
meant to use a comma expression.
Because the syntax changes meaning in C++23, the patch is *NOT*
implemented as an extension. Instead, declaring an array with not
exactly 1 parameter is an error in older languages modes. There is an
off-by-default extension warning in C++23 mode.
Unlike the standard, we supports default arguments;
Ie, we assume, based on conversations in WG21, that the proposed
resolution to CWG2507 will be accepted.
We allow arrays OpenMP sections and C++23 multidimensional array to
coexist:
[a , b] multi dimensional array
[a : b] open mp section
[a, b: c] // error
The rest of the patch is relatively straight forward: we take care to
support an arbitrary number of arguments everywhere.
Done in manner similar to mutexinoutset
(see https://reviews.llvm.org/D57576)
Runtime support already exists in LLVM OpenMP runtime (see
https://reviews.llvm.org/D97085).
The value used to identify an inoutset dependency type in the LLVM
OpenMP runtime is 8.
Some tests updated due to change in dependency type error messages that
now include new dependency type. Also updated
test/OpenMP/task_codegen.cpp to verify we emit the right code.
This patch implements `__builtin_elementwise_add_sat` and `__builtin_elementwise_sub_sat` builtins.
These map to the add/sub saturated math intrinsics described here:
https://llvm.org/docs/LangRef.html#saturation-arithmetic-intrinsics
With this in place we should then be able to replace the x86 SSE adds/subs intrinsics with these generic variants - it looks like other targets should be able to use these as well (arm/aarch64/webassembly all have similar examples in cgbuiltin).
Differential Revision: https://reviews.llvm.org/D117898
Since the serialization code would recognize modules by names and the
name of all global module fragment is <global>, so that the
serialization code would complain for the same module.
This patch fixes this by using a unique global module fragment in Sema.
Before this patch, the compiler would fail on an assertion complaining
the duplicated modules.
Reviewed By: urnathan, rsmith
Differential Revision: https://reviews.llvm.org/D115610
See the discussion in https://reviews.llvm.org/D100282. The coroutine
marked always inline might not be inlined properly in current compiler
support. Since the coroutine would be splitted into pieces. And the call
to resume() and destroy() functions might be indirect call. Also the
ramp function wouldn't get inlined under O0 due to pipeline ordering
problems. It might be different to what users expects to. Emit a warning
to tell it.
This is what GCC does too: https://godbolt.org/z/7eajb1Gf8
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D115867
This reverts commit 852afed5e0.
Changes since D114732:
On PS4, we reverse the expectation that classes whose constructor is deleted are not trivially relocatable. Because, at the moment, only classes which are passed in registers are trivially relocatable, and PS4 allows passing in registers if the copy constructor is deleted, the original assertions were broken on PS4.
(This is kinda similar to DR1734.)
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D119017
OpenMP Spec 5.0 [2.12.5, Restrictions]: If a device clause in which the
ancestor device-modifier appears is present on the target construct,
then a requires directive with the reverse_offload clause must be
specified.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D118887
This will simplify future conditionalization for OpenCL 3.0
optionality of atomic features.
The only set of atomic functions not using the multiclass is
atomic_compare_exchange_strong/weak, as these don't fit the common
pattern due to having 2 MemoryOrder arguments.
This change enables library code to skip paired move-construction and destruction for `trivial_abi` types, as if they were trivially-movable and trivially-destructible. This offers an extension to the performance fix offered by `trivial_abi`: rather than only offering trivial-type-like performance for pass-by-value, it also offers it for library code that moves values but not as arguments.
For example, if we use `memcpy` for trivially relocatable types inside of vector reallocation, and mark `unique_ptr` as `trivial_abi` (via `_LIBCPP_ABI_ENABLE_UNIQUE_PTR_TRIVIAL_ABI` / `_LIBCPP_ABI_UNSTABLE` / etc.), this would speed up `vector<unique_ptr>::push_back` by 40% on my benchmarks. (Though note that in this case, the compiler could have done this anyway, but happens not to due to the inlining horizon.)
If accepted, I intend to follow up with exactly such changes to library code, including and especially `std::vector`, making them use a trivial relocation operation on trivially relocatable types.
**D50119 and P1144:**
This change is very similar to D50119, which was rejected from Clang. (That change was an implementation of P1144, which is not yet part of the C++ standard.)
The intent of this change, rather than trying to pick a winning proposal for trivial relocation operations, is to extend the behavior of `trivial_abi` in a way that could be made compatible with any such proposal. If P1144 or any similar proposal were accepted, then `trivial_abi`, `__is_trivially_relocatable`, and everything else in this change would be redefined in terms of that.
**Safety:**
It's worth pointing out, specifically, that `trivial_abi` already implies trivial relocatability in a narrow sense: a `trivial_abi` type, when passed by value, has its constructor run in one location, and its destructor run in another, after the type has been trivially relocated (through registers).
Trivial relocatability optimizations could change the number of paired constructor/destructor calls, but this seems unlikely to matter for `trivial_abi` types.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D114732
If this is a SFINAE context, then continuing to look up names
(in particular, to treat a non-function as a function, and then
do ADL) might too-eagerly complete a type that it's not safe to
complete right now. We should just say "okay, that's a substitution
failure" and not do any more work than absolutely required.
Fixes#52970.
Differential Revision: https://reviews.llvm.org/D117603
Bug #52905 was originally papered over in a different way, but
I believe this is the actually proper fix, or at least closer to
it. We need to detect placeholder types as close to the front-end
as possible, and cause them to fail constraints, rather than letting
them persist into later stages.
Fixes#52905.
Fixes#52909.
Fixes#53075.
Differential Revision: https://reviews.llvm.org/D118552
Some functions can end up non-externally visible despite not being
declared "static" or in an unnamed namespace in C++ - such as by having
parameters that are of non-external types.
Such functions aren't mistakenly intended to be defining some function
that needs a declaration. They could be maybe more legible (except for
the `operator new` example) with an explicit static, but that's a
stylistic thing outside what should be addressed by a warning.
When the stepsize does not evenly divide the range's end, round-up to ensure that that last multiple of the stepsize before the reaching the upper boud is reached. For instance, the trip count of
for (int i = 0; i < 7; i+=5)
is two (i=0 and i=5), not (7-0)/5 == 1.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D118542
Currently, -fdeclare-opencl-builtins always adds the generic address
space overloads of e.g. the vload builtin functions in OpenCL 3.0
mode, even when the generic address space feature is disabled.
Guard the generic address space overloads by the
`__opencl_c_generic_address_space` feature instead of by OpenCL
version.
Guard the private, global, and local overloads using the internal
`__opencl_c_named_address_space_builtins` feature.
Differential Revision: https://reviews.llvm.org/D107769
Do not warn on reserved identifiers resulting from expansion of system macros.
Also properly test -Wreserved-identifier wrt. system headers.
Should fix#49592
Differential Revision: https://reviews.llvm.org/D118532
Currently clang treats host var address as constant in device compilation,
which causes const vars initialized with host var address promoted to
device variables incorrectly and results in undefined symbols.
This patch fixes that.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D118153
Fixes: SWDEV-309881
Change-Id: I0a69357063c6f8539ef259c96c250d04615f4473
Part of the _BitInt feature in C2x
(http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf) is a new
macro in limits.h named BITINT_MAXWIDTH that can be used to determine
the maximum width of a bit-precise integer type. This macro must expand
to a value that is at least as large as ULLONG_WIDTH.
This adds an implementation-defined macro named __BITINT_MAXWIDTH__ to
specify that value, which is used by limits.h for the standard macro.
This also limits the maximum bit width to 128 bits because backends do
not currently support all mathematical operations (such as division) on
wider types yet. This maximum is expected to be increased in the future.
Branch protection in M-class is supported by
- Armv8.1-M.Main
- Armv8-M.Main
- Armv7-M
Attempting to enable this for other architectures, either by
command-line (e.g -mbranch-protection=bti) or by target attribute
in source code (e.g. __attribute__((target("branch-protection=..."))) )
will generate a warning.
In both cases function attributes related to branch protection will not
be emitted. Regardless of the warning, module level attributes related to
branch protection will be emitted when it is enabled via the command-line.
The following people also contributed to this patch:
- Victor Campos
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D115501
If this is a SFINAE context, then continuing to look up names
(in particular, to treat a non-function as a function, and then
do ADL) might too-eagerly complete a type that it's not safe to
complete right now. We should just say "okay, that's a substitution
failure" and not do any more work than absolutely required.
Fixes#52970.
Differential Revision: https://reviews.llvm.org/D117603
This commit checks if a function is marked with the naked attribute
and, if it is, will silence the emission of any unused-parameter
warning.
Inside a naked function only the usage of basic ASM instructions is
expected. In this context the parameters can actually be used by
fetching them according to the underlying ABI. Since parameters might
be used through ASM instructions, the linter and the compiler will have
a hard time understanding if one of those is unused or not, therefore
no unused-parameter warning should ever be triggered whenever a
function is marked naked.
This feature requires support of __opencl_c_generic_address_space and
__opencl_c_program_scope_global_variables so diagnostics for that is provided as well.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D115640
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat