Implements SECTION/SECREL relocation. These are used by debug info (pdb) data.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D130275
This is not used as general CPU alias. Only to support -mtune. Name it as such.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D131602
This patch makes the variants of `mm*_cast*` intel intrinsics that use `shufflevector(freeze(poison), ..)` emit efficient assembly.
(These intrinsics are planned to use `shufflevector(freeze(poison), ..)` after shufflevector's semantics update; relevant thread: D103874)
To do so, this patch
1. Updates `LowerAVXCONCAT_VECTORS` in X86ISelLowering.cpp to recognize `FREEZE(UNDEF)` operand of `CONCAT_VECTOR` in addition to `UNDEF`
2. Updates X86InstrVecCompiler.td to recognize `insert_subvector` of `FREEZE(UNDEF)` vector as its first operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D130339
This patch teaches llvm-profdata to output the sample profile in the
JSON format. The new option is intended to be used for research and
development purposes. For example, one can write a Python script to
take a JSON file and analyze how similar different inline instances of
a given function are to each other.
I've chosen JSON because Python can parse it reasonably fast, and it
just takes a couple of lines to read the whole data:
import json
with open ('profile.json') as f:
profile = json.load(f)
Differential Revision: https://reviews.llvm.org/D130944
After D121595 was commited, I noticed regressions assosicated with small trip
count numbersvectorisation by tail folding with scalable vectors. As a solution
for those issues I propose to introduce the minimal trip count threshold value.
Differential Revision: https://reviews.llvm.org/D130755
This patch adds the names of the Arm Architecture Reference Manual (ARM)
features to the corresponding Subtarget Features in the AArch64 backend
and target parser.
The aim of this is to make it clearer what architectural features a
subtarget feature might enable (so, which features a CPU must provide to
support that subtarget feature), and so make it easier to add new CPUs
in the future.
Differential Revision: https://reviews.llvm.org/D131257
This patch adds the ability to deconstruct the `value_type` returned by `llvm::enumarate` into index and value of the wrapping range. Main use case is the common occurence of using it during loop iteration. After this patch it'd then be possible to write code such as:
```
for (auto [index, value] : enumerate(container)) {
...
}
```
where `index` is the current index and `value` a reference to elements in the given container.
Differential Revision: https://reviews.llvm.org/D131486
Seems like at least one bot (clang-ppc64-aix) is having trouble with the
C++17 deduction guide for array creation. Specify the template arguments
explicitly.
My initial attempt in db008af501 resulted in "error: no viable
constructor or deduction guide for deduction of template arguments of
'array'". Let's see if we can work around that by using an ArrayRef with
an explicit template argument.
The previous code overwrites VRMap for prologue stages during Phi
generation if a register spans many stages.
As a result, the wrong register is used as the one coming from
the prologue in Phis at later stages. (A process exists to correct
this, but it does not work in all cases.)
In addition, VRMap for prologue must be preserved until addBranches().
This patch fixes them by separating the map for Phis into a different
variable (VRMapPhi).
Reviewed By: bcahoon
Differential Revision: https://reviews.llvm.org/D127840
I'm honestly not sure if this is a legitimate issue or not, but after
switching from C++14 to C++17, the modules build started confusing
arrays and initializer lists. Work around the issue by being explicit.
This was recently introduced in GNU linkers and it makes sense for
ld.lld to have the same support. This implementation omits checking if
the input string is valid json to reduce size bloat.
Differential Revision: https://reviews.llvm.org/D131439
Implements the pc element for the symbolizing filter, including it's
"ra" and "pc" modes. Return addresses ("ra") are adjusted by
decrementing one. By default, {{{pc}}} elements are assumed to point to
precise code ("pc") locations. Backtrace elements will adopt the
opposite convention.
Along the way, some minor refactors of value printing and colorization.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D131115
Allow for `is_splat` to be used inline, similar to `is_contained`, e.g.,
```
if (is_splat({type1, type2, type3, type4}))
...
```
which is much more concise and less typo-prone than an equivalent chain of equality comparisons.
My immediate motivation is to clean up some code in the SPIR-V dialect that currently needs to either construct a temporary container or use `makeArrayRef` before calling `is_splat`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D131289
This patch adds basic support for a DAG variant of the canCreateUndefOrPoison call and updates DAGCombiner::visitFREEZE to use it, further Opcodes (including target specific Opcodes) can be handled when we have test coverage.
So far, I've left visitFREEZE to just use this for unary nodes (which currently means the existing BITCAST/FREEZE cases) - later patches will add other unary opcodes (with test coverage) and we can also refactor visitFREEZE to support a general number of operands like we do in InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating.
I'm not aware of any vector test freeze coverage so the DemandedElts (and the Depth) args are not being used yet - but they are in place. Similarly we will be able to handle poison generating SDNodeFlags as and when it becomes an issue.
Part of the work for D106675 / PR50468
Differential Revision: https://reviews.llvm.org/D130646
These are new debug types that ships with the latest
Windows SDK and would warn and finally fail lld-link.
The symbols seems to be related to Microsoft's XFG
which is their version of CFG. We can't handle any of
this yet, so for now we can just ignore these types
so that lld doesn't fail with a new version of Windows
SDK.
Fixes: #56285
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D129378
Macros that expand into multiple terms can cause interesting preprocessor hickups depending
on the context they are used in. https://github.com/llvm/llvm-project/issues/56867 reported
a miscompilation of `llvm_unreachable(msg)` inside a `LLVM_DEBUG({ ... })` block. We were
able to fix it by wrapping the expansion in a `do {} while(false)`.
Differential Revision: https://reviews.llvm.org/D131337
This patch emits table lookup in expandCTTZ.
Context -
https://reviews.llvm.org/D113291 transforms set of IR instructions to
cttz intrinsic but there are some targets which does not support CTTZ or
CTLZ. Hence, I generate a table lookup in TargetLowering::expandCTTZ().
Differential Revision: https://reviews.llvm.org/D128911
This is no longer needed as LLVM is built with C++17 now. Also drop the
explicit conversion to std::string as the implicit conversion to
std::string_view gets picked first anyways.
The ABI for big-endian AArch32, as specified by AAELF32, is above-
averagely complicated. Relocatable object files are expected to store
instruction encodings in byte order matching the ELF file's endianness
(so, big-endian for a BE ELF file). But executable images can
//either// do that //or// store instructions little-endian regardless
of data and ELF endianness (to support BE32 and BE8 platforms
respectively). They signal the latter by setting the EF_ARM_BE8 flag
in the ELF header.
(In the case of the Thumb instruction set, this all means that each
16-bit halfword of a Thumb instruction is stored in one or other
endianness. The two halfwords of a 32-bit Thumb instruction must
appear in the same order no matter what, because the first halfword is
the one that must avoid overlapping the encoding of any 16-bit Thumb
instruction.)
llvm-objdump was unconditionally expecting Arm instructions to be
stored little-endian. So it would correctly disassemble a BE8 image,
but if you gave it a BE32 image or a BE object file, it would retrieve
every instruction in byte-swapped form and disassemble it to
nonsense. (Even an object file output by LLVM itself, because
ARMMCCodeEmitter outputs instructions big-endian in big-endian mode,
which is correct for writing an object file.)
This patch allows llvm-objdump to correctly disassemble all three of
those classes of Arm ELF file. It does it by introducing a new
SubtargetFeature for big-endian instructions, setting it from the ELF
image type and flags during llvm-objdump setup, and teaching both
ARMDisassembler and llvm-objdump itself to pay attention to it when
retrieving instruction data from a section being disassembled.
Differential Revision: https://reviews.llvm.org/D130902
Calling reserve() used to require an RPC call. This commit allows large
ranges of executor address space to be reserved. Subsequent calls to
reserve() will return subranges of already reserved address space while
there is still space available.
Differential Revision: https://reviews.llvm.org/D130392
When Optional accessors were deprecated, in D131349, the standard c++14 style attribute was used.
Clang has a slightly better deprecated attribute that enables simpler migration by embedding fix-its.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D131381
Given a TypeIndex or CVType return its size in bytes. Basically it
is the inverse to 'CodeViewDebug::lowerTypeBasic', that returns a
TypeIndex based in a size.
Reviewed By: rnk, djtodoro
Differential Revision: https://reviews.llvm.org/D129846
This allow optimization without LTO. Also remove some useless else-ifs.
Signed-off-by: Jun Zhang <jun@junz.org>
Differential Revision: https://reviews.llvm.org/D131313
These are useful for downstream tool aligning the mangling of data types which differ between different languages/targets.
Patch by Steffen Larsen <steffen.larsen@intel.com>
Differential Revision: https://reviews.llvm.org/D130909
std::iterator has been deprecated in C++17 and some standard library implementations such as MS STL or libc++ emit deperecation messages when using the class.
Since LLVM has now switched to C++17 these will emit warnings on these implementations, or worse, errors in build configurations using -Werror.
This patch fixes these issues by replacing them with LLVMs own llvm::iterator_facade_base which offers a superset of functionality of std::iterator.
Differential Revision: https://reviews.llvm.org/D131320
When setting CMAKE_CXX_STANDARD to 17 and targeting a macOS version
under 10.12 the ifdefs would try to use std::shared_mutex because
the of the C++ standard. This should also check the targeted SDK.
See discussion in: https://reviews.llvm.org/D130689
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D131063
Create function segments and emit unwind info of them.
A segment must be less than 1MB and no prolog or epilog is splitted between two
segments.
This patch should generate correct, though not optimal, unwind info for large
functions. Currently it only generate pacted info (.pdata) only for functions
that are less than 1MB (single-segment functions). This is NFC from before this
patch.
The next step is to enable (.pdata) only unwind info for the first segment or
segments that have neither prolog or epilog in a multi-segment function.
Another future work item is to further split segments that require more than 255
code words or have more than 65535 epilogs.
Reference:
https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling#function-fragments
Differential Revision: https://reviews.llvm.org/D130049
A const reference is preferred over a non-null const pointer.
`Type *` is kept as is to match the other overload.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D131197
1) Overloaded (instruction-based) method is a wrapper around the current (opcode-based) method.
2) This patch also changes a few callsites (VectorCombine.cpp,
SLPVectorizer.cpp, CodeGenPrepare.cpp) to call the overloaded method.
3) This is a split of D128302.
Differential Revision: https://reviews.llvm.org/D131114
Replaces
```
//
```
with
```
///
```
for some code lines to make it visible in the auto-generated documentation.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D131152
This connects the Symbolizer to the markup filter and enables the first
working end-to-end flow using the filter.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D130187
As discussed in [0], this diff adds the `skipprofile` attribute to
prevent the function from being profiled while allowing profiled
functions to be inlined into it. The `noprofile` attribute remains
unchanged.
The `noprofile` attribute is used for functions where it is
dangerous to add instrumentation to while the `skipprofile` attribute is
used to reduce code size or performance overhead.
[0] https://discourse.llvm.org/t/why-does-the-noprofile-attribute-restrict-inlining/64108
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D130807
This allows the construct to be shared between different backends. However, it
still remains illegal to use TypedPointerType in LLVM IR--the type is intended
to remain an auxiliary type, not a real LLVM type. So no support is provided for
LLVM-C, nor bitcode, nor LLVM assembly (besides the bare minimum needed to make
Type->dump() work properly).
Reviewed By: beanz, nikic, aeubanks
Differential Revision: https://reviews.llvm.org/D130592
Add a reference to llvm_orc_registerJITLoaderGDBAllocAction from the
linkComponents function in the lli, llvm-jitlink, and llvm-jitlink-executor
tools. This ensures that llvm_orc_registerJITLoaderGDBAllocAction is not
dead-stripped in optimized builds, which may cause failures in these tools.
The llvm_orc_registerJITLoaderGDBAllocAction function was originally added with
MachO debugging support in 69be352a19, but that patch failed to update the
linkComponents functions.
http://llvm.org/PR56817
BoundsChecking uses ObjectSizeOffsetEvaluator to keep track of the
underlying size/offset of pointers in allocations. However,
ObjectSizeOffsetVisitor (something ObjectSizeOffsetEvaluator
uses to check for constant sizes/offsets)
doesn't quite treat sizes and offsets the same way as
BoundsChecking. BoundsChecking wants to know the size of the
underlying allocation and the current pointer's offset within
it, but ObjectSizeOffsetVisitor only cares about the size
from the pointer to the end of the underlying allocation.
This only comes up when merging two size/offset pairs. Add a new mode to
ObjectSizeOffsetVisitor which cares about the underlying size/offset
rather than the size from the current pointer to the end of the
allocation.
Fixes a false positive with -fsanitize=bounds.
Reviewed By: vitalybuka, asbirlea
Differential Revision: https://reviews.llvm.org/D131001
This patch is the first of the two-patch series (D130188, D130179) that
resolve PR56275 (https://github.com/llvm/llvm-project/issues/56275)
which is a missed opportunity, where a perfrectly valid case for loop
interchange failed interchange legality.
If the distance/direction vector produced by dependence analysis (DA) is
negative, it needs to be normalized (reversed). This patch provides helper
functions `isDirectionNegative()` and `normalize()` in DA that does the
normalization, and clients can query DA to do normalization if needed.
A pass option `<normalized-results>` is added to DependenceAnalysisPrinterPass,
and we leverage it to update DA test cases to make sure of test coverage. The
test cases added in `Banerjee.ll` shows that negative vectors are normalized
with `print<da><normalized-results>`.
Reviewed By: bmahjour, Meinersbur, #loopoptwg
Differential Revision: https://reviews.llvm.org/D130188
During LTO a local promoted to a global gets a unique suffix based on
a hash of the module IR. This means that changes in the local's module
can affect the contents in another module that imported it (because the name
of the imported promoted local is changed, but that doesn't reflect a
real change in the importing module). So any tool that's
validating changes to the importing module will see a superficial change.
Instead of using the module hash, we can use the "source_filename" if it
exists to generate a unique identifier that doesn't change due to LTO
shenanigans.
Differential Revision: https://reviews.llvm.org/D128863
This just shuffles implementations and declarations around. Now the
logger and the TF C API-based model evaluator are separate.
Differential Revision: https://reviews.llvm.org/D131116
Improve the cycle definition, by avoiding usage of not yet defined
or only vaguely defined terminology inside definitions.
More precisely, the existing definition defined "outermost cycles",
and then proceeded to use the term "cycles" for further definitions,
which in turn were used to actually define "cycles".
Now, instead only define "cycles". This does not change the meaning
of a cycle, which depends on the chosen surrounding (subgraph) of a CFG.
Also mention the function CFG in the first definition, because later
later definitions require it anyways.
Also slightly improve the definition of a closed path, by explicitly
requiring the inner nodes to be distinct.
Differential Revision: https://reviews.llvm.org/D130891
Mark ModRefInfo as a bitmask enum, which allows using normal
& and | operators on it. This supersedes various functions like
unionModRef() and intersectModRef(). I think this makes the code
cleaner than going through helper functions...
Differential Revision: https://reviews.llvm.org/D130870
Sometimes SCEV cannot infer nuw/nsw from something as simple as
```
len in [0, MAX_INT]
...
iv = phi(0, iv.next)
guard(iv <s len)
guard(iv <u len)
iv.next = iv + 1
```
just because flag strenthening only relies on definition and does not use local facts.
This patch adds support for the simplest case: inference of flags of `add(x, constant)`
if we can contextually prove that `x <= max_int - constant`.
In case if it has negative CT impact, we can add an option to switch it off. I woudln't
expect that though.
Differential Revision: https://reviews.llvm.org/D129643
Reviewed By: apilipenko
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Prefer using these accessors to access the special sub-commands
corresponding to the top-level (no subcommand) and all sub-commands.
This is a preparatory step towards removing the use of ManagedStatic:
with a subsequent change, these global instances will be moved to
be regular function-scope statics.
It is split up to give downstream projects a (albeit short) window in
which they can switch to using the accessors in a forward-compatible
way.
Differential Revision: https://reviews.llvm.org/D129118
Add a new IRBuilderBase::CreateIntrinsic which takes the return type and
argument values for the intrinsic call but does not take an explicit
list of types to mangle. Instead the builder works this out from the
intrinsic declaration and the types of the supplied arguments.
This means that the mangling is hidden from the client, which in turn
means that intrinsic definitions can change which arguments are mangled
without requiring any changes to the client code.
Differential Revision: https://reviews.llvm.org/D130776
If we have interleave groups in the loop we want to vectorise then
we should fall back on normal vectorisation with a scalar epilogue. In
such cases when tail-folding is enabled we'll almost certainly go on to
create vplans with very high costs for all vector VFs and fall back on
VF=1 anyway. This is likely to be worse than if we'd just used an
unpredicated vector loop in the first place.
Once the vectoriser has proper support for analysing all the costs
for each combination of VF and vectorisation style, then we should
be able to remove this.
Added an extra test here:
Transforms/LoopVectorize/AArch64/sve-tail-folding-option.ll
Differential Revision: https://reviews.llvm.org/D128342
Now the API getExtendedAddReductionCost is used to determine the cost of extended Add reduction with optional Mul. For Arm, it could cover the cases. But for other target, for example: RISCV, they support other kinds of extended recution, such as FAdd.
This patch does the following changes:
1, Split getExtendedAddReductionCost into 2 new API: getExtendedReductionCost which handles the extended reduction with addtional input of Opcode; getMulAccReductionCost which handle the MLA cases the getExtendedAddReductionCost.
2, Refactor getReductionPatternCost, add some contraint condition to make sure the getMulAccReductionCost should only handle the reuction of Add + Mul.
Differential Revision: https://reviews.llvm.org/D130868
Follow-up to D130434.
Move doSystemDiff to PrintPasses.cpp and call it in MachineFunctionPass.cpp.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D130833
According to the ABI for the Arm Architecture, the value for the
Tag_also_compatible_with eabi attribute is represented by an NTBS entry.
This string value, in turn, is composed of a pair of tag+value encoded
in one of two formats:
- ULEB128: tag, ULEB128: value, 0.
- ULEB128: tag, NBTS: data.
(See [[ 60a8eb8c55/addenda32/addenda32.rst (3373secondary-compatibility-tag) | section 3.3.7.3 on the Addenda to, and Errata in, the ABI for the Arm Architecture ]].)
Currently the Arm assembly parser and streamer ignore the encoding of
the attribute's NTBS value, which can result in incorrect attributes
being emitted in both assembly and object file outputs.
This patch fixes these issues by properly handing the value's encoding.
An update to llvm-readobj to properly handle the attribute's value will be
covered by a separate patch.
Patch by Victor Campos and Lucas Prates.
Reviewed By: vhscampos
Differential Revision: https://reviews.llvm.org/D129500
Scope of changes:
1) Added new function to generate loop versioning
2) Added support for if clause to applySimd function
2) Added tests which confirm that lowering is successful
If ifCond is specified, then collapsed loop is duplicated and if branch
is added. Duplicated loop is executed if simd ifCond is evaluated to false.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D129368
Signed-off-by: Dominik Adamski <dominik.adamski@amd.com>
Eliminate an AND by redefining an anyext|sext|zext.
(and (extract_subvector (anyext|sext|zext v) _) iN_mask)
=> (extract_subvector (zeroext_iN v))
Differential Revision: https://reviews.llvm.org/D130782
Salvage debug info of instruction that is about to be deleted as dead in
Combiner pass. Currently supported instructions are COPY and G_TRUNC.
It allows to salvage debug info of some dead arguments of functions, by putting
DWARF expression corresponding to the instruction being deleted into related
DBG_VALUE instruction.
Here is an example of missing variables location https://godbolt.org/z/K48osb9dK.
We see that arguments x, y of function foo are not available in debugger, and
corresponding DBG_VALUE instructions have undefined register operand instead of
variables locaton after Aarch64PreLegalizerCombiner pass. The reason is that
registers where variables are located are removed as dead (with instruction
G_TRUNC). We can use salvageDebugInfo analogue for gMIR to preserve debug
locations of dead variables.
Statistics of llvm object files built with vs without this commit on -O2
optimization level (CMAKE_BUILD_TYPE=RelWithDebInfo, -fglobal-isel) on Aarch64 (macOS):
Number of variables with 100% of parent scope covered by DW_AT_location has been increased by 7,9%.
Number of variables with 0% coverage of parent scope has been decreased by 1,2%.
Number of variables processed by location statistics has been increased by 2,9%.
Average PC ranges coverage has been increased by 1,8 percentage points.
Coverage can be improved by supporting more instructions, or by calling
salvageDebugInfo for instructions that are deleted during Combiner rules exection.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D129909
getModRefInfo() queries currently track whether the result is a
MustAlias on a best-effort basis. The only user of this functionality
is the optimized memory access type in MemorySSA -- which in turn
has no users. Given that this functionality has not found a user
since it was introduced five years ago (in D38862), I think we
should drop it again.
The context is that I'm working to separate FunctionModRefBehavior
to track mod/ref for different location kinds (like argmem or
inaccessiblemem) separately, and the fact that ModRefInfo also has
an unrelated Must flag makes this quite awkward, especially as this
means that NoModRef is not a zero value. If we want to retain the
functionality, I would probably split getModRefInfo() results into
a part that just contains the ModRef information, and a separate
part containing a (best-effort) AliasResult.
Differential Revision: https://reviews.llvm.org/D130713
This belongs to a series of patches which try to solve the thread
identification problem in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for a full background.
The problem consists of two concrete problems: TLS variable and readnone
functions. This patch tries to convert the TLS problem to readnone
problem by converting the access of TLS variable to an intrinsic which
is marked as readnone.
The readnone problem would be addressed in following patches.
Reviewed By: nikic, jyknight, nhaehnle, ychen
Differential Revision: https://reviews.llvm.org/D125291
Expand load address pseudo-instructions earlier (pre-ra) to allow follow-up
patches to fold the addi of PseudoLLA instructions into the immediate
operand of load/store instructions.
Differential Revision: https://reviews.llvm.org/D123264
CalculateSmallVectorDefaultInlinedElements<..>::value is already used as default value for second template parameter in SmallVector class declaration.
There is no need to pass it explicitly in to_vector.
Extracted from: https://reviews.llvm.org/D129781
Differential Revision: https://reviews.llvm.org/D130774
Relax zero-fill edge assertions to only consider relocation edges. Keep-alive edges to zero-fill blocks can cause this assertion which is too strict.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D130450
Since we are in constructor there is no need to perform redundant call to SmallVectorImpl::clear() inside assign function.
Although calling cheaper append function instead assign doesn't make any difference on optimized builds
(DSE does the job removing stores), we still save some cycles for debug binaries.
Differential Revision: https://reviews.llvm.org/D130361
Previously, it was necessary to check the atomics lowering or expansion
code to determine which argument was which.
This patch additionally tweaks the documentation comment in
TargetLowering to clarify the return value of the intrinsic and that the
intrinsic isn't required to mask and shift the result (this is handled
by the target-independent code in AtomicExpandPass).
This review is extracted from D96035.
DWARF Debuginfo classes have two representations for DIEs: DWARFDebugInfoEntry
(short) and DWARFDie(extended). Depending on the task, it might be more convenient
to use DWARFDebugInfoEntry or/and DWARFDie. DWARFUnit class already has methods
working with DWARFDie and DWARFDebugInfoEntry. This patch adds more
methods working with DWARFDebugInfoEntry to have paired functionality.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D126059
Add a method for the various cases where we need to concatenate 2 KnownBits together (BUILD_PAIR and SHIFT_PARTS in particular) - uses the existing APInt::concat 'HiBits.concat(LoBits)' convention
Differential Revision: https://reviews.llvm.org/D130557
At the moment, proveNoSignedWrapViaInduction may be called for the
same AddRec a large number of times via getSignExtendExpr. This can have
a severe compile-time impact for very loop-heavy code.
If proveNoSignedWrapViaInduction failed to prove NSW the first time,
it is unlikely to succeed on subsequent tries and the cost doesn't seem
to be justified.
This is the signed version of 8daa338297 / D130648.
This can drastically improve compile-time in some excessive cases and
also has a slightly positive compile-time impact on CTMark:
NewPM-O3: -0.06%
NewPM-ReleaseThinLTO: -0.04%
NewPM-ReleaseLTO-g: -0.04%
https://llvm-compile-time-tracker.com/compare.php?from=8daa338297d533db4d1ae8d3770613eb25c29688&to=aed126a196e7a5a9803543d9b4d6bdb233d0009c&stat=instructions
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D130694