FoldConstantArithmetic can fold constant vectors hidden behind bitcasts (e.g. vXi64 -> v2Xi32 on 32-bit platforms), but currently bails if either vector contains undef elements. These undefs can often occur due to SimplifyDemandedBits/VectorElts calls recognising that the upper bits are often unnecessary (e.g. funnel-shift/rotate implicit-modulo and AND masks).
This patch adds a basic 'FoldValueWithUndef' handler that will attempt to constant fold if one or both of the ops are undef - so far this just handles the AND and MUL cases where we always fold to zero.
The RISCV codegen increase is interesting - it looks like the BUILD_VECTOR lowering was loading a constant pool entry but now (with all elements defined constant) it can materialize the constant instead?
Differential Revision: https://reviews.llvm.org/D130839
D129150 added a combine from shuffles to And that creates a BUILD_VECTOR
of constant elements. We need to ensure that the elements are of a legal
type, to prevent asserts during lowering.
Fixes#56970.
Differential Revision: https://reviews.llvm.org/D131350
A const reference is preferred over a non-null const pointer.
`Type *` is kept as is to match the other overload.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D131197
1) Overloaded (instruction-based) method is a wrapper around the current (opcode-based) method.
2) This patch also changes a few callsites (VectorCombine.cpp,
SLPVectorizer.cpp, CodeGenPrepare.cpp) to call the overloaded method.
3) This is a split of D128302.
Differential Revision: https://reviews.llvm.org/D131114
This just shuffles implementations and declarations around. Now the
logger and the TF C API-based model evaluator are separate.
Differential Revision: https://reviews.llvm.org/D131116
The testcase was delta-reduced from an LTO build with sanitizer
coverage and the MIR tail duplication pass caused a machine basic
block to become unreachable in MIR. This caused the MBB to be invisible
to the reverse post-order traversal used to initialize the MBB <->
RPONumber lookup tables.
rdar://97226240
Differential Revision: https://reviews.llvm.org/D130999
The function `handleDebugValue` has custom logic to handle certain kinds
constants, namely integers, floats and null pointers. However, it does
not handle constant pointers created from IntToPtr ConstantExpressions.
This patch addresses the issue by replacing the Constant with its
integer operand.
A similar bug was addressed for GlobalISel in D130642.
Reviewed By: aprantl, #debug-info
Differential Revision: https://reviews.llvm.org/D130908
This patch ensures consistency in the construction of FP_ROUND nodes
such that they always use ISD::TargetConstant instead of ISD::Constant.
This additionally fixes a bug in the AArch64 SVE backend where patterns
were matching against TargetConstant nodes and sometimes failing when
passed a Constant node.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D130370
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
The LegalizerHelper misses the code to lower G_MUL to a library call,
which this change adds.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D130987
matchRotateSub is given shift amounts that will already have stripped any/zero-extend nodes from - so make sure those values are wide enough to take a mask.
Follow-up to D130434.
Move doSystemDiff to PrintPasses.cpp and call it in MachineFunctionPass.cpp.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D130833
Eliminate an AND by redefining an anyext|sext|zext.
(and (extract_subvector (anyext|sext|zext v) _) iN_mask)
=> (extract_subvector (zeroext_iN v))
Differential Revision: https://reviews.llvm.org/D130782
Salvage debug info of instruction that is about to be deleted as dead in
Combiner pass. Currently supported instructions are COPY and G_TRUNC.
It allows to salvage debug info of some dead arguments of functions, by putting
DWARF expression corresponding to the instruction being deleted into related
DBG_VALUE instruction.
Here is an example of missing variables location https://godbolt.org/z/K48osb9dK.
We see that arguments x, y of function foo are not available in debugger, and
corresponding DBG_VALUE instructions have undefined register operand instead of
variables locaton after Aarch64PreLegalizerCombiner pass. The reason is that
registers where variables are located are removed as dead (with instruction
G_TRUNC). We can use salvageDebugInfo analogue for gMIR to preserve debug
locations of dead variables.
Statistics of llvm object files built with vs without this commit on -O2
optimization level (CMAKE_BUILD_TYPE=RelWithDebInfo, -fglobal-isel) on Aarch64 (macOS):
Number of variables with 100% of parent scope covered by DW_AT_location has been increased by 7,9%.
Number of variables with 0% coverage of parent scope has been decreased by 1,2%.
Number of variables processed by location statistics has been increased by 2,9%.
Average PC ranges coverage has been increased by 1,8 percentage points.
Coverage can be improved by supporting more instructions, or by calling
salvageDebugInfo for instructions that are deleted during Combiner rules exection.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D129909
This belongs to a series of patches which try to solve the thread
identification problem in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for a full background.
The problem consists of two concrete problems: TLS variable and readnone
functions. This patch tries to convert the TLS problem to readnone
problem by converting the access of TLS variable to an intrinsic which
is marked as readnone.
The readnone problem would be addressed in following patches.
Reviewed By: nikic, jyknight, nhaehnle, ychen
Differential Revision: https://reviews.llvm.org/D125291
Expand load address pseudo-instructions earlier (pre-ra) to allow follow-up
patches to fold the addi of PseudoLLA instructions into the immediate
operand of load/store instructions.
Differential Revision: https://reviews.llvm.org/D123264
This patch fixes the error llvm/lib/CodeGen/MachineScheduler.cpp(755): error C2065: 'MISchedCutoff': undeclared identifier in case of NDEBUG and LLVM_ENABLE_ABI_BREAKING_CHECKS.
Note MISchedCutoff is declared under #ifndef NDEBUG.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130425
If the subregister uses were dead, this would leave the main range
segment pointing to a deleted instruction.
Not sure if this should try to avoid shrinking if we know we don't
have dead components.
Add a method for the various cases where we need to concatenate 2 KnownBits together (BUILD_PAIR and SHIFT_PARTS in particular) - uses the existing APInt::concat 'HiBits.concat(LoBits)' convention
Differential Revision: https://reviews.llvm.org/D130557
Currently, the LLVM IR -> MIR translator fails to translate dbg.values
whose first argument is a null pointer. However, in other portions of
the code, such pointers are always lowered to the constant zero, for
example see IRTranslator::Translate(Constant, Register).
This patch addresses the limitation by following the same approach of
lowering null pointers to zero.
A prior test was checking that null pointers were always lowered to
$noreg; this test is changed to check for zero, and the previous
behavior is now checked by introducing a dbg.value whose first argument
is the address of a global variable.
Differential Revision: https://reviews.llvm.org/D130721
The getOperand method already returns a Constant when it is called on
a ConstantExpression, as such the cast is not needed. To prevent a type
mismatch between the different return statements of the lambda, the
lambda return type is explicitly provided.
Differential Revision: https://reviews.llvm.org/D130719
GetDemandedBits is mainly a wrapper around SimplifyMultipleUseDemandedBits now, and is only used by DAGCombiner::visitSTORE so I've moved all remaining functionality there.
visitSTORE was making use of this to 'simplify' constants for a trunc-store. Just removing this code left to a mixture of regressions and gains - it came down to whether a target preferred a sign or zero extended constant for materialization/truncation. I've just moved the code over for now, but a next step would be to move this to targetShrinkDemandedConstant, but some targets that override the method expect a basic binop, and might react badly to a store node.....
I'm actually trying to get rid of GetDemandedBits - but while dismantling it I noticed that we were altering opaque constants. Fixing that causes a FP_TO_INT_SAT regression that should be addressed separately - I'll raise a bug.
This patch allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits in cases where the ISD::SRL source operand has other uses, enabling us to peek through the shifted value if we don't demand all the bits/elts.
This is another step towards removing SelectionDAG::GetDemandedBits and just using TargetLowering::SimplifyMultipleUseDemandedBits.
There a few cases where we end up with extra register moves which I think we can accept in exchange for the increased ILP.
Differential Revision: https://reviews.llvm.org/D77804
It simplifies the code overall and removes the need for manual bookkeeping.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130447
It simplifies the code overall and removes the need for manual bookkeeping.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130444
DebugLocEntry assumes that it either contains 1 item that has no fragment
or many items that all have fragments (see the assert in addValues).
When EXPENSIVE_CHECKS is enabled, _GLIBCXX_DEBUG is defined. On a few machines
I've checked, this causes std::sort to call the comparator even
if there is only 1 item to sort. Perhaps to check that it is implemented
properly ordering wise, I didn't find out exactly why.
operator< for a DbgValueLoc will crash if this happens because the
optional Fragment is empty.
Compiler/linker/optimisation level seems to make this happen
or not. So I've seen this happen on x86 Ubuntu but the buildbot
for release EXPENSIVE_CHECKS did not have this issue.
Add an explicit check whether we have 1 item.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D130156
tryLastChanceRecoloring iterates over the set of LiveInterval pointers
and used that to seed the recoloring stack, which was
nondeterministic. Fixes a future test failing about 20% of the time.
This just takes the order the interfering vreg was encountered. Not
sure if we should try to order this more intelligently.
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Currently, the IR to MIR translator can only handle two kinds of constant
inputs to dbg.values intrinsics: constant integers and constant floats. In
particular, it cannot handle pointers created from IntToPtr ConstantExpression
objects.
This patch addresses the limitation above by replacing the IntToPtr with
its input integer prior to converting the dbg.value input.
Patch by Felipe Piovezan!
Differential Revision: https://reviews.llvm.org/D130642
This adds similar heuristics to G_GLOBAL_VALUE, querying the cost of
materializing a specific constant in code size. Doing so prevents us from
sinking constants which require multiple instructions to generate into
use blocks.
Code size savings on CTMark -Os:
Program size.__text
before after diff
ClamAV/clamscan 381940.00 382052.00 0.0%
lencod/lencod 428408.00 428428.00 0.0%
SPASS/SPASS 411868.00 411876.00 0.0%
kimwitu++/kc 449944.00 449944.00 0.0%
Bullet/bullet 463588.00 463556.00 -0.0%
sqlite3/sqlite3 284696.00 284668.00 -0.0%
consumer-typeset/consumer-typeset 414492.00 414424.00 -0.0%
7zip/7zip-benchmark 595244.00 594972.00 -0.0%
mafft/pairlocalalign 247512.00 247368.00 -0.1%
tramp3d-v4/tramp3d-v4 372884.00 372044.00 -0.2%
Geomean difference -0.0%
Differential Revision: https://reviews.llvm.org/D130554
SimplifyDemandedBits currently early-outs for multi-use values beyond the root node (just returning the knownbits), which is missing a number of optimizations as there are plenty of cases where we can still simplify when initially demanding all elements/bits.
@lenary has confirmed that the test cases in aea-erratum-fix.ll need refactoring and the current increase codegen is not a major concern.
Differential Revision: https://reviews.llvm.org/D129765
This patch fixes the following error with MSVC 16.9.2 in case of NDEBUG and LLVM_ENABLE_DUMP:
llvm/lib/CodeGen/CodeGenPrepare.cpp(2581): error C2872: 'ExtAddrMode': ambiguous symbol
llvm/include/llvm/CodeGen/TargetInstrInfo.h(86): note: could be 'llvm::ExtAddrMode'
llvm/lib/CodeGen/CodeGenPrepare.cpp(2447): note: or '`anonymous-namespace'::ExtAddrMode'
llvm/lib/CodeGen/CodeGenPrepare.cpp(2581): error C2039: 'print': is not a member of 'llvm::ExtAddrMode'
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D130426
-print-changed for new pass manager is handy beside -print-after-all.
Port it to MachineFunctionPass.
Note: lib/Passes/StandardInstrumentations.cpp implements a number of
misc features. If we want to use them for codegen, we may need to lift
some functionality to LLVMIR.
Reviewed By: aeubanks, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D130434
WinEHPrepare marks any function call from EH funclets as unreachable, if it's not a nounwind intrinsic or has no proper funclet bundle operand. This
affects ARC intrinsics on Windows, because they are lowered to regular function calls in the PreISelIntrinsicLowering pass. It caused silent binary truncations and crashes during unwinding with the GNUstep ObjC runtime: https://github.com/gnustep/libobjc2/issues/222
This patch adds a new function `llvm::IntrinsicInst::mayLowerToFunctionCall()` that aims to collect all affected intrinsic IDs.
* Clang CodeGen uses it to determine whether or not it must emit a funclet bundle operand.
* PreISelIntrinsicLowering asserts that the function returns true for all ObjC runtime calls it lowers.
* LLVM uses it to determine whether or not a funclet bundle operand must be propagated to inlined call sites.
Reviewed By: theraven
Differential Revision: https://reviews.llvm.org/D128190
This patch starts small, only detecting sequences of the form
<a, a+n, a+2n, a+3n, ...> where a and n are ConstantSDNodes.
Differential Revision: https://reviews.llvm.org/D125194
I think what we need is the least Log2(EltSize) significant bits are known to be ones.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130251
Optimizing (a * 0 + b) to (b) requires assuming that a is finite and not
NaN. DAGCombiner will do this optimization when the reassoc fast math
flag is set, which is not correct. Change DAGCombiner to only consider
UnsafeMath for this optimization.
Differential Revision: https://reviews.llvm.org/D130232
Co-authored-by: Andrea Faulds <andrea.faulds@arm.com>
When using a ptrtoint to a size larger than the pointer width in a
global initializer, we currently create a ptr & low_bit_mask style
MCExpr, which will later result in a relocation error during object
file emission.
This patch rejects the constant expression already during
lowerConstant(), which results in a much clearer error message
that references the constant expression at fault.
This fixes https://github.com/llvm/llvm-project/issues/56400,
for certain definitions of "fix".
Differential Revision: https://reviews.llvm.org/D130366
This would create a new interval missing the subrange and hit this
verifier error:
*** Bad machine code: Live interval for subreg operand has no subranges ***
- function: test_remat_subreg_def
- basic block: %bb.0 (0xa568758) [0B;128B)
- instruction: 32B dead undef %4.sub0:vreg_64 = V_MOV_B32_e32 2, implicit $exec
We still haven't found a solution that correctly handles 'don't care' sub elements properly - given how close it is to the next release branch, I'm making this fail safe change and we can revisit this later if we can't find alternatives.
NOTE: This isn't a reversion of D128570 - it's the removal of undef handling across bitcasts entirely
Fixes#56520
llvm::sort is beneficial even when we use the iterator-based overload,
since it can optionally shuffle the elements (to detect
non-determinism). However llvm::sort is not usable everywhere, for
example, in compiler-rt.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D130406
This will fix the SystemZ v3i31 memcpy regression in D77804 (with the help of D129765 as well....).
It should also allow us to /bend/ the oneuse limitation for cases where we can use demanded bits to safely peek though multiple uses of the AND ops.
As noticed on D127115, when splitting ADD/SUB nodes we often end up with cases where overflow from the lower bits is impossible - in such cases we're better off breaking the carry chain dependency as soon as possible.
This path is being exercised by llvm/test/CodeGen/ARM/dsp-mlal.ll, although I haven't been able to get any codegen diff without a topological worklist.
Concat KnownBits from ISD::SHL_PARTS / ISD::SRA_PARTS / ISD::SRL_PARTS lo/hi operands and perform the KnownBits calculation by the shift amount on the extended type, before splitting the KnownBits based on the requested lo/hi result.
This change adds a nop instruction if section starts with landing pad. This change is like [D73739](https://reviews.llvm.org/D73739) which avoids zero offset landing pad in basic block sections.
Detailed description:
The current machine functions splitter can create ˜sections which start with a landing pad themselves. This places landing pad at offset zero from LPStart.
```
.section .text.split.foo10,"ax",@progbits
foo10.cold: # %lpad
.cfi_startproc
.cfi_personality 3, __gxx_personality_v0
.cfi_lsda 3, .Lexception5
.cfi_def_cfa %rsp, 16
.Ltmp11: <--- This is a Landing pad and also LP Start as it is start of this section
movq %rax, %rdi <--- first instruction is at offest 0 from LPStart
callq _Unwind_Resume@PLT
```
This will cause landing pad entries to become zero (.Ltmp11-foo10.cold)
```
.Lcst_begin4:
.uleb128 .Ltmp9-.Lfunc_begin2 # >> Call Site 1 <<
.uleb128 .Ltmp10-.Ltmp9 # Call between .Ltmp9 and .Ltmp10
.uleb128 .Ltmp11-foo10.cold <---This is zero # jumps to .Ltmp11
.byte 3 # On action: 2
.uleb128 .Ltmp10-.Lfunc_begin2 # >> Call Site 2 <<
.uleb128 .Lfunc_end9-.Ltmp10 # Call between .Ltmp10 and .Lfunc_end9
.byte 0 # has no landing pad
.byte 0 # On action: cleanup
.p2align 2
```
The C++ ABI somehow assumes that no landing pads point directly to LPStart (which works in the normal case since the function begin is never a landing pad), and uses LP.offset = 0 to specify no landing pad. This change adds a nop instruction at start of such sections so that such a case could be avoided. Output:
```
.section .text.split.foo10,"ax",@progbits
foo10.cold: # %lpad
.cfi_startproc
.cfi_personality 3, __gxx_personality_v0
.cfi_lsda 3, .Lexception5
.cfi_def_cfa %rsp, 16
nop <--- new instruction that is added
.Ltmp11:
movq %rax, %rdi
callq _Unwind_Resume@PLT
```
Reviewed By: modimo, snehasish, rahmanl
Differential Revision: https://reviews.llvm.org/D130133
We were looking for loads or any_extend+load. reduceLoadWidth
hasn't known how to look through such an any_extend to find the
load since D40667 almost 5 years ago.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130333
Move this out of the switch, so that different branches can
indicate an error by breaking out of the switch. This becomes
important if there are more than the two current error cases.
Vector fptosi_sat and fptoui_sat were being expanded by unrolling the
vector operation. This doesn't work for scalable vector, so this patch
adds a call to TLI.expandFP_TO_INT_SAT if the vector is scalable.
Scalable tests are added for AArch64 and RISCV. Some of the AArch64
fptoi_sat operations should be legal, but that will be handled in
another patch.
Differential Revision: https://reviews.llvm.org/D130028
Similar to what we already do in getNode for basic ADD/SUB nodes, return the X operand directly, but here we know that there will be no/zero overflow as well.
As noted on D127115 - this path is being exercised by llvm/test/CodeGen/ARM/dsp-mlal.ll, although I haven't been able to get any codegen without a topological worklist.
PromoteIntRes_BUILD_VECTOR currently always ANY_EXTENDs build vector operands, but if this is a constant boolean vector we're losing the useful ability to keep the vector matching the BooleanContents mode used by the target.
This patch extends constant boolean vectors according to target BooleanContents, allowing a number of additional all-bits folds (notable XOR -> NOT conversions) to occur.
Differential Revision: https://reviews.llvm.org/D129641
Add promotion and expansion of integer operands for
experimental_vp_strided SelectionDAG nodes; the expansion is actually
just a truncation of the stride operand.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D123112