This adds a +forced-atomics target feature with the same semantics
as +atomics-32 on ARM (D130480). For RISCV targets without the +a
extension, this forces LLVM to assume that lock-free atomics
(up to 32/64 bits for riscv32/64 respectively) are available.
This means that atomic load/store are lowered to a simple load/store
(and fence as necessary), as these are guaranteed to be atomic
(as long as they're aligned). Atomic RMW/CAS are lowered to __sync
(rather than __atomic) libcalls. Responsibility for providing the
__sync libcalls lies with the user (for privileged single-core code
they can be implemented by disabling interrupts). Code using
+forced-atomics and -forced-atomics are not ABI compatible if atomic
variables cross the ABI boundary.
For context, the difference between __sync and __atomic is that the
former are required to be lock-free, while the latter requires a
shared global lock provided by a shared object library. See
https://llvm.org/docs/Atomics.html#libcalls-atomic for a detailed
discussion on the topic.
This target feature will be used by Rust's riscv32i target family
to support the use of atomic load/store without atomic RMW/CAS.
Differential Revision: https://reviews.llvm.org/D130621
This patch implements recently ratified extension Zmmul, a subextension
of M (Integer Multiplication and Division) consisting only
multiplication part of it.
Differential Revision: https://reviews.llvm.org/D103313
Reviewed By: craig.topper, jrtc27, asb
This adds the macrofusion plumbing and support fusing LUI+ADDI(W).
This is similar to D73643, but handles a different case. Other cases
can be added in the future.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D128393
A RISCV implementation can choose to implement unaligned load/store support. We currently don't have a way for such a processor to indicate a preference for unaligned load/stores, so add a subtarget feature.
There doesn't appear to be a formal extension for unaligned support. The RISCV Profiles (https://github.com/riscv/riscv-profiles/blob/main/profiles.adoc#rva20u64-profile) docs use the name Zicclsm, but a) that doesn't appear to actually been standardized, and b) isn't quite what we want here anyway due to the perf comment.
Instead, we can follow precedent from other backends and have a feature flag for the existence of misaligned load/stores with sufficient performance that user code should actually use them.
Differential Revision: https://reviews.llvm.org/D126085
In RISCVTargetTransformInfo, enumerating the processor family is not a good way to predict.
Because it needs to enumerate many subtarget family and is hard to update if add new subtarget.
Instead, create a feature to distinguish whether targets want to use default unroll preference or not.
Keep TuneSiFive7 because it's flag to indicate subtarget family, which may used in other place.
Differential Revision: https://reviews.llvm.org/D125741
Having an enum with names that contain the string representation
of their value doesn't add any value. We can just use the numbers.
Reviewed By: kito-cheng, frasercrmck
Differential Revision: https://reviews.llvm.org/D123417
Currently we allow half types in vectors if the scalar Zfh extension
is enabled. This behavior is not inline with the vector spec. For f32
and f64 types, the Zve32f, Zve64f, Zve64d, and V explicitly control
the availablity of floating point types in vectors.
In order to make our compiler compliant, we either need to remove all support
for half in vectors or we need an extension to control it.
Draft spec here https://github.com/riscv/riscv-v-spec/pull/780
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D121345
Most other targets support 'generic', but RISCV issues an error.
This can require a special case in tools that use LLVM that aren't
clang.
This patch treats "generic" the same as an empty string and remaps
it to generic-rv/rv64 based on the triple. Unfortunately, it has to
be added to RISCV.td because MCSubtargetInfo is constructed and
parses the CPU before RISCVSubtarget's constructor gets a chance
to remap it. The CPU will then reparsed and the state in the
MCSubtargetInfo subclass will be updated again.
Fixes PR54146.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D121149
This patch added the MC layer support of Zfinx extension.
Authored-by: StephenFan
Co-Authored-by: Shao-Ce Sun
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D93298
This patch added the MC layer support of Zfinx extension.
Authored-by: StephenFan
Co-Authored-by: Shao-Ce Sun
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D93298
Add support for the 'pause' hint instruction as an alias for
'fence w, 0'. To do this allow the 'fence' operands pred and succ
to be set to 0 (the empty set). This will also allow future hints
to be encoded as 'fence 0, <x>' and 'fence <x>, 0'.
This patch revised from @mundaym's D93019.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D117789
The spec doesn't seem to be written as if Zfh implies Zfhmin. They
seem to be separate extensions.
This patch moves the instructions from Zfhmin to be enabled with
either the Zfh or Zfhmin extensions.
Reviewed By: achieveartificialintelligence
Differential Revision: https://reviews.llvm.org/D118581
For Zba/Zbb/Zbc/Zbs I've removed the 'B' completely and used the
extension names as presented at the start of Chapter 1 of the
1.0.0 Bitmanipulation spec.
For the unratified extensions, I've replaced 'B' with 'Zb' and
otherwise left them unchanged.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D117822
This patch adds support for zbkx extension from K extension(v1.0.0) in MC layer.
Instructions with same functionality and same encoding is defined in the bitmanip extension.
It defines {Xperm8, Xperm4} as instruction aliases for xperm.* in Zbp extension. When Zbkx is enabled while Zbp is not, xperm.h will not be available. When Zbkx and Zbp are both enabled, the instructions will be decoded in Zbp format.
[[ https://reviews.llvm.org/D94999 | D94999 ]] this is the patch that introduces xperm.* instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117889
According to the spec, there are some difference between V and Zve64d. For example, the vmulh integer multiply variants that return the high word of the product (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) are not included for EEW=64 in Zve64*, but V extension does support these instructions. So we should decouple Zve* extensions and the V extension.
Differential Revision: https://reviews.llvm.org/D117854
This commit is currently implementing supports for scalar cryptography extension for LLVM according to version v1.0.0 of [K Ext specification](https://github.com/riscv/riscv-crypto/releases)(scala crypto has been ratified already). Currently, we are implementing the MC (Machine Code) layer of his extension and the majority of work is done under `llvm/lib/Target/RISCV` directory. There are also some test files in `llvm/test/MC/RISCV` directory.
Remove the subfeature of Zbk* which conflict with b extensions to reduce the size of the patch.
(Zbk* will be resubmit after this patch has been merged)
**Co-author:**@ksyx & @VincentWu & @lihongliang & @achieveartificialintelligence
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98136
This commit add instructions supports of `zbkb` which defined in scalar cryptography extension version v1.0.0 (has been ratified already).
Most of the zbkb directives reuse parts of the zbp and zbb directives, so this patch just modified some of the inst aliases and predicates.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117640
All code should use one of the cleaner named hasVInstructions*
functions. Fix the two uses that weren't and delete the methods
so no new uses can be created.
This string no longer appears in the Vector Extension specification.
The segment load/store instructions are just part of the vector
instruction set.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D117724
`zve` is the new standard vector extension to specify varying degrees of
vector support for embedding processors. The `zve` extension is related
to the `zvl` extension and other updates that are added in v1.0.
According to https://github.com/riscv-non-isa/riscv-c-api-doc/pull/21,
Clang defines macro `__riscv_v_max_elen`, `__riscv_v_max_elen_fp` for
`zve` and it can be used by applications that uses the vector extension.
Authored by: Zakk Chen <zakk.chen@sifive.com> @khchen
Co-Authored by: Eop Chen <eop.chen@sifive.com> @eopXD
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D112408
`zvl` is the new standard vector extension that specifies the minimum vector length of the vector extension.
The `zvl` extension is related to the `zve` extension and other updates that are added in v1.0.
According to https://github.com/riscv-non-isa/riscv-c-api-doc/pull/21,
Clang defines macro `__riscv_v_min_vlen` for `zvl` and it can be used for applications that uses the vector extension.
LLVM checks whether the option `riscv-v-vector-bits-min` (if specified) matches the `zvl*` extension specified.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D108694
Agreed policy is that RISC-V extensions that have not yet been ratified
should be marked as experimental, and enabling them requires the use of
the -menable-experimental-extensions flag when using clang alongside the
version number. These extensions have now been ratified, so this is no
longer necessary, and the target feature names can be renamed to no
longer be prefixed with "experimental-".
Differential Revision: https://reviews.llvm.org/D117131
Use it to remove explicit string compares from unrolling preferences.
I'm of two minds on this. Ideally, we would define things in terms
of architectural or microarchitectural features, but it's hard to
do that with things like unrolling preferences without just ending up
with FeatureSiFive7UnrollingPreferences.
Having a proc enum is consistent with ARM and AArch64. X86 only has
a few and is trying to move away from it.
Reviewed By: asb, mcberg2021
Differential Revision: https://reviews.llvm.org/D117060
Add new hasVInstructions() which is currently equivalent.
Replace vector uses of hasStdExtZfh/F/D with new vector specific
versions. The vector spec no longer requires that the vectors implement the
same types as scalar. It only requires that the scalar type is
the maximum size the vectors can support. This is currently
implemented using the scalar rule we were using before.
Add new hasVInstructionsI64() begin using to qualify code that
requires i64 vector elements.
This is all NFC for now, but we can start using this to better
implement D112408 which introduces the Zve extensions.
Reviewed By: frasercrmck, eopXD
Differential Revision: https://reviews.llvm.org/D112496
At this point it looks like a B extension will never exist. Instead
Zba, Zbb, Zbc, and Zbs are individual extensions being ratified
together as a package. Unknown at this time when or if the other
Zb* extensions will be ratified.
This patch removes references to the B extension. I've updated and
split tests accordingly.
This has been split from D110669 to make review a little easier.
Differential Revision: https://reviews.llvm.org/D111338
This consists of 3 compressed instructions, c.not, c.neg, and c.zext.w.
I believe these have been picked up by the Zce effort using different
encodings. I don't think it makes sense to keep them in bitmanip. It
will eventually cause a conflict if/when Zce is implemented in llvm.
Differential Revision: https://reviews.llvm.org/D110871
Rename prefix `FeatureExt*` to `FeatureStdExt*` for all sub-extension for consistency
Reviewed By: HsiangKai, asb
Differential Revision: https://reviews.llvm.org/D108187
zext.h uses the same encoding as pack rd, rs, x0 in rv32 and
packw rd, rs, x0 in rv64. Encodings without x0 as the second source
are not valid in Zbb.
I've added two new instructions with these specific encodings with
predicates that enable them when either Zbb or Zbp is enabled.
The pack spelling will only be accepted with Zbp. The disassembler
will use the zext.h instruction when either feature is enabled.
Using the pack spelling will print as pack when llvm-mc is
emitting text. We could fix this with some custom code in
processInstruction if this is important, but I'm not sure it is.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94818
This didn't make it into the published 0.93 spec, but it was the
intention.
But it is in the tex source as of this commit
d172f029c0
This means zext.w now requires Zba. Not sure if we should still use
pack if Zbp is enabled and Zba isn't. I'll leave that for the future
when pack is closer to being final.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94736
NotHasStdExtZbb doesn't have an AssemblerPredicate associated with it
so it didn't do anything. We don't need it either because the sorting
rules in tablegen prioritize by number of predicates. So the
dedicated instructions in the B extension that have predicates
will be prioritized automatically.
If users want to use vector floating point instructions, they need to
specify 'F' extension additionally.
Differential Revision: https://reviews.llvm.org/D93282
There is an in-progress proposal for the following pseudo-instructions
in the assembler, to complement the existing `sext.w` rv64i instruction:
- sext.b
- sext.h
- zext.b
- zext.h
- zext.w
The `.b` and `.h` variants are available with rv32i and rv64i, and `zext.w` is
only available with `rv64i`.
These are implemented primarily as pseudo-instructions, as these instructions
expand to multiple real instructions. In the case of `zext.b`, this expands to a
single rv32/64i instruction, so it is implemented with an InstAlias (like
`sext.w` is on rv64i).
The proposal is available here: https://github.com/riscv/riscv-asm-manual/pull/61
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D92793