To bring D99599's implementation in line with the existing
PrintPassInstrumentation, and to fix a FIXME, add more customizability
to PrintPassInstrumentation.
Introduce three new options. The first takes over the existing
"-debug-pass-manager-verbose" cl::opt.
The second and third option are specific to -fdebug-pass-structure. They
allow indentation, and also don't print analysis queries.
To avoid more golden file tests than necessary, prune down the
-fdebug-pass-structure tests.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102196
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
We're trying to move DebugLogging into instrumentation, rather than
being part of PassManagers/AnalysisManagers.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D102093
This reverts the revert 02c5ba8679
Fix:
Pass was registered as DUMMY_FUNCTION_PASS causing the newpm-pass
functions to be doubly defined. Triggered in -DLLVM_ENABLE_MODULE=1
builds.
Original commit:
This patch implements expansion of llvm.vp.* intrinsics
(https://llvm.org/docs/LangRef.html#vector-predication-intrinsics).
VP expansion is required for targets that do not implement VP code
generation. Since expansion is controllable with TTI, targets can switch
on the VP intrinsics they do support in their backend offering a smooth
transition strategy for VP code generation (VE, RISC-V V, ARM SVE,
AVX512, ..).
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D78203
This patch implements expansion of llvm.vp.* intrinsics
(https://llvm.org/docs/LangRef.html#vector-predication-intrinsics).
VP expansion is required for targets that do not implement VP code
generation. Since expansion is controllable with TTI, targets can switch
on the VP intrinsics they do support in their backend offering a smooth
transition strategy for VP code generation (VE, RISC-V V, ARM SVE,
AVX512, ..).
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D78203
This reverts commit 3b8ec86fd5.
Revert "[X86] Refine AMX fast register allocation"
This reverts commit c3f95e9197.
This pass breaks using LLVM in a multi-threaded environment by
introducing global state.
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
The reason for the NewPM redesign is described in the commit
cba3e783389a: [NewPM] Disable PreservedCFGChecker ...
The checker introduces an internal custom CFG analysis that tracks
current up-to date CFG snapshot. The analysis is invalidated along
any other CFG related analysis (the key is CFGAnalyses). If the CFG
analysis is not invalidated at a functional pass exit then the checker
asserts that the CFG snapshot taken from this analysis is equals to
a snapshot of the current CFG.
Along the way:
- the function CFG::printDiff() is simplified by removing function
name calculation. The name is printed by the caller;
- fixed CFG invalidated condition (see CFG::invalidate());
- StandardInstrumentations::registerCallbacks() gets additional
optional parameter of type FunctionAnalysisManager*, which is
needed by the checker to get the custom CFG analysis;
- several PM related tests updated to explicitly set
-verify-cfg-preserved=1 as they need.
This patch is safe to land as the CFGChecker is left switched off
(the options -verify-cfg-preserved is false by default). It will be
switched on by a separate patch to minimize possible reverts.
Reviewed By: skatkov, kuhar
Differential Revision: https://reviews.llvm.org/D91327
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
D96109 was recently submitted which contains the refactored implementation of
-funique-internal-linakge-names by adding the unique suffixes in clang rather
than as an LLVM pass. Deleting the former implementation in this change.
Differential Revision: https://reviews.llvm.org/D98234
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
This patch adds a pass to replace calls to vector intrinsics (i.e., LLVM
intrinsics operating on vector operands) with calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with calls to vector
libraries when scalar calls to intrinsics are vectorized by the Loop- or
SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM intrinsics
already operating on vector operands, e.g., if such code was generated
by MLIR. For the replacement, information from the TargetLibraryInfo,
e.g., as specified via -vector-library is used.
This is a re-try of the original commit 2303e93e66 that was reverted
due to pass manager problems. Other minor changes have also been made.
Differential Revision: https://reviews.llvm.org/D95373
It seems nicer to list passes given a flag rather than displaying all
passes in opt --help.
This is awkwardly structured because a PassBuilder is required, but
reusing the PassBuilder in runPassPipeline() doesn't work because we
read the input IR before getting to runPassPipeline(). So printing the
list of passes needs to happen before reading the input IR. If we remove
the legacy PM code in main() and move everything from NewPMDriver.cpp
into opt.cpp, we can create the PassBuilder before reading IR and check
if we should print the list of passes and exit. But until then this hack
seems fine.
Compared to the legacy PM, the new PM passes are lacking descriptions.
We'll need to figure out a way to add descriptions if we think this is
important.
Also, this only works for passes specified in PassRegistry.def. If we
want to print other custom registered passes, we'll need a different
mechanism.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D96101
This patch adds a pass to replace calls to vector intrinsics
(i.e., LLVM intrinsics operating on vector operands) with
calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with
calls to vector libraries when scalar calls to intrinsics are
vectorized by the Loop- or SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM
intrinsics already operating on vector operands, e.g., if
such code was generated by MLIR. For the replacement,
information from the TargetLibraryInfo, e.g., as specified
via -vector-library is used.
Differential Revision: https://reviews.llvm.org/D95373
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Initially reverted due to BasicAA running analyses in an unspecified
order (multiple function calls as parameters), fixed by fetching
analyses before the call to construct BasicAA.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
In preparation for turning on opt's -enable-new-pm by default, this pins
uses of passes via the legacy "opt -passname" with pass names beginning
with "polly-" and "polyhedral-info" to the legacy PM. Many of these
tests use -analyze, which isn't supported in the new PM.
(This doesn't affect uses of "opt -passes=passname").
rL240766 accidentally removed `-polly-prepare` in
phi_not_grouped_at_top.ll, and it also doesn't use the output of
-analyze.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D94266
There are only two used in the IR optimization pipeline.
Port these and add them to the default pipeline.
Similar to https://reviews.llvm.org/D93863.
I added -mtriple to some tests since under the new PM, the passes are
only available when the TargetMachine is specified.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93930
`UniqueInternalLinkageNamesPass` is useful to CSSPGO, especially when pseudo probe is used. It solves naming conflict for static functions which otherwise will share a merged profile and likely have a profile quality issue with mismatched CFG checksums. Since the pseudo probe instrumentation happens very early in the pipeline, I'm moving `UniqueInternalLinkageNamesPass` right before it. This is being done only to the new pass manager.
Reviewed By: dblaikie, aeubanks
Differential Revision: https://reviews.llvm.org/D93656
This is consistent with the layout of other passes,
and simplifies further refinements regarding DomTree handling.
This is indended to be a NFC commit.
And add it to the AMDGPU opt pipeline.
This is a function pass instead of a module pass (like the legacy pass)
because it's getting added to a CGSCCPassManager, and you can't put a
module pass in a CGSCCPassManager.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93885
And add to AMDGPU opt pipeline.
Don't pin an opt run to the legacy PM when -enable-new-pm=1 if these
passes (or passes introduced in https://reviews.llvm.org/D93863) are in
the list of passes.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93875
This was accidentally reverted by a later change.
LSR currently only runs in the codegen pass manager.
There are a couple issues with LSR and the NPM.
1) Lots of tests assume that LCSSA isn't run before LSR. This breaks a
bunch of tests' expected output. This is fixable with some time put in.
2) LSR doesn't preserve LCSSA. See
llvm/test/Analysis/MemorySSA/update-remove-deadblocks.ll. LSR's use of
SCEVExpander is the only use of SCEVExpander where the PreserveLCSSA option is
off. Turning it on causes some code sinking out of loops to fail due to
SCEVExpander's inability to handle the newly created trivial PHI nodes in the
broken critical edge (I was looking at
llvm/test/Transforms/LoopStrengthReduce/X86/2011-11-29-postincphi.ll).
I also tried simply just calling formLCSSA() at the end of LSR, but the extra
PHI nodes cause regressions in codegen tests.
We'll delay figuring these issues out until later.
This causes the number of check-llvm failures with -enable-new-pm true
by default to go from 60 to 29.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D92796
This patch adds new PM support for the pass and the pass can be now used
during middle-end transforms. The old pass is remamed to
ScalarizeMaskedMemIntrinLegacyPass.
Reviewed-By: skatkov, aeubanks
Differential Revision: https://reviews.llvm.org/D92743
LSR currently only runs in the codegen pass manager.
There are a couple issues with LSR and the NPM.
1) Lots of tests assume that LCSSA isn't run before LSR. This breaks a
bunch of tests' expected output. This is fixable with some time put in.
2) LSR doesn't preserve LCSSA. See
llvm/test/Analysis/MemorySSA/update-remove-deadblocks.ll. LSR's use of
SCEVExpander is the only use of SCEVExpander where the PreserveLCSSA option is
off. Turning it on causes some code sinking out of loops to fail due to
SCEVExpander's inability to handle the newly created trivial PHI nodes in the
broken critical edge (I was looking at
llvm/test/Transforms/LoopStrengthReduce/X86/2011-11-29-postincphi.ll).
I also tried simply just calling formLCSSA() at the end of LSR, but the extra
PHI nodes cause regressions in codegen tests.
We'll delay figuring these issues out until later.
This causes the number of check-llvm failures with -enable-new-pm true
by default to go from 60 to 29.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D92796
Codegen-specific passes are being ported to the NPM. Rename for better
clarity and note that ported passes that fully work with the NPM should
be removed from these lists.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D92818
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
This is the #1 of 2 changes that make remarks hotness threshold option
available in more tools. The changes also allow the threshold to sync with
hotness threshold from profile summary with special value 'auto'.
This change modifies the interface of lto::setupLLVMOptimizationRemarks() to
accept remarks hotness threshold. Update all the tools that use it with remarks
hotness threshold options:
* lld: '--opt-remarks-hotness-threshold='
* llvm-lto2: '--pass-remarks-hotness-threshold='
* llvm-lto: '--lto-pass-remarks-hotness-threshold='
* gold plugin: '-plugin-opt=opt-remarks-hotness-threshold='
Differential Revision: https://reviews.llvm.org/D85809
This matches the legacy PM's EP_ModuleOptimizerEarly. Some backends use
this extension point and adding the pass somewhere else like
PipelineStartEPCallback doesn't work.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D91804
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Make DebugLogging a member variable so that users of PassBuilder don't
need to pass it around so much.
Move call to TargetMachine::registerPassBuilderCallbacks() within
PassBuilder so users don't need to remember to call it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D90437
Summary:
This patch does the following:
1. Make InitTargetOptionsFromCodeGenFlags() accepts Triple as a
parameter, because some options' default value is triple dependant.
2. DataSections is turned on by default on AIX for llc.
3. Test cases change accordingly because of the default behaviour change.
4. Clang Driver passes in -fdata-sections by default on AIX.
Reviewed By: MaskRay, DiggerLin
Differential Revision: https://reviews.llvm.org/D88737
This removes "VerifyEachPass" parameters from a lot of functions which is nice.
Don't verify after special passes or VerifierPass.
This introduces verification on loop and cgscc passes, verifying the corresponding function/module.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88764
The patch adds a new TargetMachine member "registerPassBuilderCallbacks" for targets to add passes to the pass pipeline using the New Pass Manager (similar to adjustPassManager for the Legacy Pass Manager).
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D88138
This is in preparation for supporting -debugify-each, which adds a debug
info pass before and after each pass.
Switch VerifyEach to use this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88107
'require<globals-aa>' is needed to make globals-aa work in NPM, since
globals-aa is a module analysis but function passes cannot run module
analyses on demand.
So don't skip translating alias analyses to 'require<>'.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87743
The legacy PM alias analysis pipeline by default includes basic-aa.
When running `opt -foo-pass` under the NPM and -disable-basic-aa is not
specified, use basic-aa.
This decreases the number of check-llvm failures under NPM from 913 to 752.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D86167
This reduces the number of check-llvm failures by 500.
Ideally we'd have a codegen version of PassRegistry.def, or have all the
codegen passes ported and put into PassRegistry.def. But since that
doesn't exist yet, hardcode the list of codegen IR passes.
There are still codegen passes missing from this list, I'll add them
later as I stumble upon them.
Reviewed By: asbirlea, ychen
Differential Revision: https://reviews.llvm.org/D84872
OptNoneInstrumentation is part of StandardInstrumentations. It skips
functions (or loops) that are marked optnone.
The feature of skipping optional passes for optnone functions under NPM
is gated on a -enable-npm-optnone flag. Currently it is by default
false. That is because we still need to mark all required passes to be
required. Otherwise optnone functions will start having incorrect
semantics. After that is done in following changes, we can remove the
flag and always enable this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D83519
In addition, move the definition of the class into the Debugify.h,
so we can use it from different levels.
The motivation for this is D82547.
Differential Revision: https://reviews.llvm.org/D83391
Under NPM, the asan-globals-md analysis is required but cannot be run
within the asan function pass due to module analyses not being able to
run from a function pass. So this pins all tests using "-asan" to the
legacy PM and adds a corresponding RUN line with
-passes='require<asan-globals-md>,function(asan)'.
Now all tests in Instrumentation/AddressSanitizer pass when
-enable-new-pm is by default on.
Tests were automatically converted using the following python script and
failures were manually fixed up.
import sys
for i in sys.argv:
with open(i, 'r') as f:
s = f.read()
with open(i, 'w') as f:
for l in s.splitlines():
if "RUN:" in l and ' -asan -asan-module ' in l and '\\' not in l:
f.write(l.replace(' -asan -asan-module ', ' -asan -asan-module -enable-new-pm=0 '))
f.write('\n')
f.write(l.replace(' -asan -asan-module ', " -passes='require<asan-globals-md>,function(asan),module(asan-module)' "))
f.write('\n')
elif "RUN:" in l and ' -asan ' in l and '\\' not in l:
f.write(l.replace(' -asan ', ' -asan -enable-new-pm=0 '))
f.write('\n')
f.write(l.replace(' -asan ', " -passes='require<asan-globals-md>,function(asan)' "))
f.write('\n')
else:
f.write(l)
f.write('\n')
See https://bugs.llvm.org/show_bug.cgi?id=46611.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D83921
There's no reason to introduce a new option for the NPM.
The various PGO options are shared in this manner.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D83368
Summary:
This somewhat matches the --aa-pipeline option, which separates out any
AA analyses to make sure they run before other passes.
Makes check-llvm failures under new PM go from 2356 -> 2303.
AA passes are not handled by PassBuilder::parsePassPipeline() but rather
PassBuilder::parseAAPipeline(), which is why this fixes some failures.
Reviewers: asbirlea, hans, ychen, leonardchan
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82488
Summary:
In order to enable mass testing of opt under NPM, specifically passes
specified via -foo-pass.
This is gated under a new opt flag -enable-new-pm. Currently
the pass flag parser looks for legacy PM passes with the name "foo" (for
opt arg "-foo") and creates a PassInfo for each one. Here we take the
(legacy PM) pass name and try to match it with one defined in (NPM)
PassRegistry.def. Ultimately if we want all tests to pass like this,
we'll need to port all passes to NPM and register them in
PassRegistry.def under the same name as they were reigstered in the
legacy PM.
Maybe at some point we'll migrate all -foo to --passes=foo, but that
would be after the NPM switch.
Flipping on the flag causes 2XXX failures under check-llvm. By far most
of them are passes either not ported to NPM or don't have the same name
in PassRegistry.def as their old name.
Reviewers: hans, echristo, asbirlea, leonardchan
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82320
Summary:
Currently when --passes is used, any passes specified via -foo are
ignored. Explicitly bail out when that happens.
This requires changing some tests. Most were straightforward, but
codegenprepare-produced-address-math.ll is tricky. One of its RUNs runs
CodeGenPrepare. I tried porting CodeGenPrepare to the NPM, but ended up
getting stuck when I needed a TargetMachine. NPM doesn't have support
for MachineFunctions yet. So I just deleted that RUN line, since it was
mass-added in https://reviews.llvm.org/D54848 and is likely not that
useful.
Reviewers: echristo, hans
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82271
Last we looked at this and couldn't come up with a reason to change
it, but with a pragma for full loop unrolling we bypass every other
loop unroll and then fail to fully unroll a loop when the pragma is set.
Move the OnlyWhenForced out of the check and into the initialization
of the full unroll pass in the new pass manager. This doesn't show up
with the old pass manager.
Add a new option to opt so that we can turn off loop unrolling
manually since this is a difference between clang and opt.
Tested with check-clang and check-llvm.
Summary:
This was attempted once before in https://reviews.llvm.org/D79698, but
was reverted due to the coverage pass running in the wrong part of the
pipeline. This commit puts it in the same place as the other sanitizers.
This changes PassBuilder.OptimizerLastEPCallbacks to work on a
ModulePassManager instead of a FunctionPassManager. That is because
SanitizerCoverage cannot (easily) be split into a module pass and a
function pass like some of the other sanitizers since in its current
implementation it conditionally inserts module constructors based on
whether or not it successfully modified functions.
This fixes compiler-rt/test/msan/coverage-levels.cpp under the new pass
manager (last check-msan test).
Currently sanitizers + LTO don't work together under the new pass
manager, so I removed tests that checked that this combination works for
sancov.
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80692
Summary:
This was attempted once before in https://reviews.llvm.org/D79698, but
was reverted due to the coverage pass running in the wrong part of the
pipeline. This commit puts it in the same place as the other sanitizers.
This changes PassBuilder.OptimizerLastEPCallbacks to work on a
ModulePassManager instead of a FunctionPassManager. That is because
SanitizerCoverage cannot (easily) be split into a module pass and a
function pass like some of the other sanitizers since in its current
implementation it conditionally inserts module constructors based on
whether or not it successfully modified functions.
This fixes compiler-rt/test/msan/coverage-levels.cpp under the new pass
manager (last check-msan test).
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80692
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403