when they are not complete (since we could not match them up to
anything) and ensuring that enum parsing can cope with dependent
elaborated-type-specifiers. Fixes PR6915 and PR6649.
llvm-svn: 102247
ConsumeAndStoreUntil would stop at tok::unknown when caching an inline method
definition while SkipUntil would go past it while parsing the method.
Fixes PR 6903.
llvm-svn: 102214
intended for redeclarations, fixing those that need it. Fixes PR6831.
This uncovered an issue where the C++ type-specifier-seq parsing logic
would try to perform name lookup on an identifier after it already had
a type-specifier, which could also lead to spurious ambiguity errors
(as in PR6831, but with a different test case).
llvm-svn: 101419
template definition. Do this both by being more tolerant of errors in
our asserts and by not dropping a variable declaration completely when
its initializer is ill-formed. Fixes the crash-on-invalid in PR6375,
but not the original issue.
llvm-svn: 97463
signal an error. This can happen even when the current token is '::' if
this is a ::new or ::delete expression.
This was an oversight in my recent parser refactor; fixes PR 5825.
llvm-svn: 97462
an *almost* always incorrect case. This only does the lookahead
in the insanely unlikely case, so it shouldn't impact performance.
On this testcase:
struct foo {
}
typedef int x;
Before:
t.c:3:9: error: cannot combine with previous 'struct' declaration specifier
typedef int x;
^
After:
t.c:2:2: error: expected ';' after struct
}
^
;
llvm-svn: 97403
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
llvm-svn: 97221
or that's been hidden by a non-type (in C++).
The ideal C++ diagnostic here would note the hiding declaration, but this
is a good start.
llvm-svn: 96141
we would just leak them all over the place, with no clear ownership of
these objects at all. AttributeList objects would get leaked on both
error and non-error paths.
Note: I introduced the usage of llvm::OwningPtr<AttributeList> to
manage these objects, which is particularly useful for methods with
multiple return sites. In at least one method I used them even when
they weren't strictly necessary because it clarified the ownership
semantics and made the code easier to read. Should the excessive
'take()' and 'reset()' calls become a performance issue we can always
re-evaluate.
Note+1: I believe I have not introduced any double-frees, but it would
be nice for someone to review this.
This fixes <rdar://problem/7635046>.
llvm-svn: 95847
t.c:4:3: error: expected ';' at end of declaration list
int y;
^
t.c:4:8: warning: extra ';' inside a struct or union
int y;
^
t.c:6:1: warning: expected ';' at end of declaration list
};
^
After:
t.c:3:8: error: expected ';' at end of declaration list
int x // expected-error {{expected ';' at end of declaration list}}
^
;
t.c:5:8: warning: expected ';' at end of declaration list
int z
^
;
llvm-svn: 95038
the tag kind (union, struct, class, enum) over to the name of the tag,
if there is a name, since most clients want to point at the name.
llvm-svn: 94424
provide completions for @ keywords. Previously, we only provided
@-completions after an @ was actually typed, which is useful but
probably not the common case.
Also, make sure a few Objective-C 2.0 completions only show up when
Objective-C 2.0 support is enabled (the default).
llvm-svn: 93354
that name constructors, the endless joys of out-of-line constructor
definitions, and various other corner cases that the previous hack
never imagined. Fixes PR5688 and tightens up semantic analysis for
constructor names.
Additionally, fixed a problem where we wouldn't properly enter the
declarator scope of a parenthesized declarator. We were entering the
scope, then leaving it when we saw the ")"; now, we re-enter the
declarator scope before parsing the parameter list.
Note that we are forced to perform some tentative parsing within a
class (call it C) to tell the difference between
C(int); // constructor
and
C (f)(int); // member function
which is rather unfortunate. And, although it isn't necessary for
correctness, we use the same tentative-parsing mechanism for
out-of-line constructors to improve diagnostics in icky cases like:
C::C C::f(int); // error: C::C refers to the constructor name, but
// we complain nicely and recover by treating it as
// a type.
llvm-svn: 93322
C++ grammatical constructs that show up in top-level (namespace-level)
declarations, member declarations, template declarations, statements,
expressions, conditions, etc. For example, we now provide a pattern
for
static_cast<type>(expr)
when we can have an expression, or
using namespace identifier;
when we can have a using directive.
Also, improves the results of code completion at the beginning of a
top-level declaration. Previously, we would see value names (function
names, global variables, etc.); now we see types, namespace names,
etc., but no values.
llvm-svn: 93134
Magically fixes all the terrible lookup problems associated with not pushing
a new scope. Resolves an ancient xfail and an LLVM misparse.
llvm-svn: 91769
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
llvm-svn: 89543
handling template template parameters properly. This refactoring:
- Parses template template arguments as id-expressions, representing
the result of the parse as a template name (Action::TemplateTy)
rather than as an expression (lame!).
- Represents all parsed template arguments via a new parser-specific
type, ParsedTemplateArgument, which stores the kind of template
argument (type, non-type, template) along with all of the source
information about the template argument. This replaces an ad hoc
set of 3 vectors (one for a void*, which was either a type or an
expression; one for a bit telling whether the first was a type or
an expression; and one for a single source location pointing at
the template argument).
- Moves TemplateIdAnnotation into the new Parse/Template.h. It never
belonged in the Basic library anyway.
llvm-svn: 86708
appears in a deprecated context. In the new strategy, we emit the warnings
as usual unless we're currently parsing a declaration, where "declaration" is
restricted to mean a decl group or a few special cases in Objective C. If
we *are* parsing a declaration, we queue up the deprecation warnings until
the declaration has been completely parsed, and then emit them only if the
decl is not deprecated.
We also standardize the bookkeeping for deprecation so as to avoid special cases.
llvm-svn: 85998
"->" with a use of ParseUnqualifiedId. Collapse
ActOnMemberReferenceExpr, ActOnDestructorReferenceExpr (both of them),
ActOnOverloadedOperatorReferenceExpr,
ActOnConversionOperatorReferenceExpr, and
ActOnMemberTemplateIdReferenceExpr into a single, new action
ActOnMemberAccessExpr that does the same thing more cleanly (and can
keep more source-location information).
llvm-svn: 85930
declarators are parsed primarily within a single function (at least for
these cases). Remove some excess diagnostics arising during parse failures.
llvm-svn: 85924
representation of a C++ unqualified-id, along with a single parsing
function (Parser::ParseUnqualifiedId) that will parse all of the
various forms of unqualified-id in C++.
Replace the representation of the declarator name in Declarator with
the new UnqualifiedId class, simplifying declarator-id parsing
considerably and providing more source-location information to
Sema. In the future, I hope to migrate all of the other
unqualified-id-parsing code over to this single representation, then
begin to merge actions that are currently only different because we
didn't have a unqualified notion of the name in the parser.
llvm-svn: 85851
unknown type name, e.g.,
foo::bar x;
when "bar" does not refer to a type in "foo".
With this change, the parser now calls into the action to perform
diagnostics and can try to recover by substituting in an appropriate
type. For example, this allows us to easily diagnose some missing
"typename" specifiers, which we now do:
test/SemaCXX/unknown-type-name.cpp:29:1: error: missing 'typename'
prior to dependent type name 'A<T>::type'
A<T>::type A<T>::f() { return type(); }
^~~~~~~~~~
typename
Fixes PR3990.
llvm-svn: 84053
template void f<int>(int);
~~~~~~
Previously, we silently dropped the template arguments. With this
change, we now use the template arguments (when available) as the
explicitly-specified template arguments used to aid template argument
deduction for explicit template instantiations.
llvm-svn: 82806
member functions of class template specializations, and static data
members. The mechanics are (mostly) present, but the semantic analysis
is very weak.
llvm-svn: 82789
will provide the names of various enumerations currently
visible. Introduced filtering of code-completion results when we build
the result set, so that we can identify just the kinds of declarations
we want.
This implementation is incomplete for C++, since we don't consider
that the token after the tag keyword could start a
nested-name-specifier.
llvm-svn: 82222
x->Base::f
We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.
We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.
I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.
llvm-svn: 80843
TypenameType if getTypeName is looking at a member of an unknown
specialization. This allows us to properly parse class templates that
derived from type that could only otherwise be described by a typename type,
e.g.,
template<class T> struct X {};
template<typename T> struct Y : public X<T>::X { };
Fixes PR4381.
llvm-svn: 80123
their members, including member class template, member function
templates, and member classes and functions of member templates.
To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,
template<typename X> template<typename Y>
X Outer<X>::Inner1<Y>::foo(Y) {
return X();
}
we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.
Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.
llvm-svn: 80044
and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
elsewhere. Very slightly decouples DeclSpec users from knowing the exact
diagnostics to report, and makes it easier to provide different diagnostics in
some places.
llvm-svn: 77990
point that covers templates and non-templates. This should eliminate
the flood of warnings I introduced yesterday.
Removed the ActOnClassTemplate action, which is no longer used.
llvm-svn: 76881
Another case where we should use SmallVector::data() instead of taking the
address of element 0 of a SmallVector when the SmallVector has no elements.
llvm-svn: 74556
C++. This logic is required to trigger implicit instantiation of
function templates and member functions of class templates, which will
be implemented separately.
This commit includes support for -Wunused-parameter, printing warnings
for named parameters that are not used within a function/Objective-C
method/block. Fixes <rdar://problem/6505209>.
llvm-svn: 73797
specifier resulted in the creation of a new TagDecl node, which
happens either when the tag specifier was a definition or when the tag
specifier was the first declaration of that tag type. This information
has several uses, the first of which is implemented in this commit:
1) In C++, one is not allowed to define tag types within a type
specifier (e.g., static_cast<struct S { int x; } *>(0) is
ill-formed) or within the result or parameter types of a
function. We now diagnose this.
2) We can extend DeclGroups to contain information about any tags
that are declared/defined within the declaration specifiers of a
variable, e.g.,
struct Point { int x, y, z; } p;
This will help improve AST printing and template instantiation,
among other things.
3) For C99, we can keep track of whether a tag type is defined
within the type of a parameter, to properly cope with cases like,
e.g.,
int bar(struct T2 { int x; } y) {
struct T2 z;
}
We can also do similar things wherever there is a type specifier,
e.g., to keep track of where the definition of S occurs in this
legal C99 code:
(struct S { int x, y; } *)0
llvm-svn: 72555
-Makes typeof consistent with sizeof/alignof
-Fixes a bug when '>' is in a typeof expression, inside a template type param:
A<typeof(x>1)> a;
llvm-svn: 72255
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
llvm-svn: 72214
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086
that I noticed working on other things.
Instead of emitting:
t2.cc:1:8: error: use of undeclared identifier 'g'
int x(*g);
^
t2.cc:1:10: error: expected ')'
int x(*g);
^
t2.cc:1:6: note: to match this '('
int x(*g);
^
We now only emit:
t2.cc:1:7: warning: type specifier missing, defaults to 'int'
int x(*g);
^
Note that the example in SemaCXX/nested-name-spec.cpp:f4 is still
not great, we now produce both of:
void f4(undef::C); // expected-error {{use of undeclared identifier 'undef'}} \
expected-error {{variable has incomplete type 'void'}}
The second diagnostic should be silenced by something getting marked invalid.
I don't plan to fix this though.
llvm-svn: 68919
struct xyz { int y; };
enum abc { ZZZ };
static xyz b;
abc c;
we used to produce:
t2.c:4:8: error: unknown type name 'xyz'
static xyz b;
^
t2.c:5:1: error: unknown type name 'abc'
abc c;
^
we now produce:
t2.c:4:8: error: use of tagged type 'xyz' without 'struct' tag
static xyz b;
^
struct
t2.c:5:1: error: use of tagged type 'abc' without 'enum' tag
abc c;
^
enum
GCC produces the normal:
t2.c:4: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘b’
t2.c:5: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘c’
rdar://6783347
llvm-svn: 68914
which tries to do better error recovery when it is "obvious" that an
identifier is a mis-typed typename. In this case, we try to parse
it as a typename instead of as the identifier in a declarator, which
gives us several options for better error recovery and immediately
makes diagnostics more useful. For example, we now produce:
t.c:4:8: error: unknown type name 'foo_t'
static foo_t a = 4;
^
instead of:
t.c:4:14: error: invalid token after top level declarator
static foo_t a = 4;
^
Also, since we now parse "a" correctly, we make a decl for it,
preventing later uses of 'a' from emitting things like:
t.c:12:20: error: use of undeclared identifier 'a'
int bar() { return a + b; }
^
I'd really appreciate any scrutiny possible on this, it
is a tricky area.
llvm-svn: 68911
of the range is now the ';' location. For something like this:
$ cat t2.c
#define bool int
void f(int x, int y) {
bool b = !x && y;
}
We used to produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14> <----
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <line:4:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
Now we produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14, line:4:17> <------
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <col:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
llvm-svn: 68288
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
productions (except the already broken ObjC cases like @class X,Y;) in
the parser that can produce more than one Decl return a DeclGroup instead
of a Decl, etc.
This allows elimination of the Decl::NextDeclarator field, and exposes
various clients that should look at all decls in a group, but which were
only looking at one (such as the dumper, printer, etc). These have been
fixed.
Still TODO:
1) there are some FIXME's in the code about potentially using
DeclGroup for better location info.
2) ParseObjCAtDirectives should return a DeclGroup due to @class etc.
3) I'm not sure what is going on with StmtIterator.cpp, or if it can
be radically simplified now.
4) I put a truly horrible hack in ParseTemplate.cpp.
I plan to bring up #3/4 on the mailing list, but don't plan to tackle
#1/2 in the short term.
llvm-svn: 68002
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
instantiation for C++ typename-specifiers such as
typename T::type
The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,
typename T::template apply<U, V>
Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.
Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples.
llvm-svn: 67875
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
llvm-svn: 67265
Introduce a new PrettyStackTraceDecl.
Use it to add the top level LLVM IR generation stuff in
Backend.cpp to stack traces. We now get crashes like:
Stack dump:
0. Program arguments: clang t.c -emit-llvm
1. <eof> parser at end of file
2. t.c:1:5: LLVM IR generation of declaration 'a'
Abort
for IR generation crashes.
llvm-svn: 66153
parser. For example, we now print out:
0. t.c:5:10: in compound statement {}
1. t.c:3:12: in compound statement {}
2. clang t.c -fsyntax-only
llvm-svn: 66108
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
llvm-svn: 65467
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
llvm-svn: 64922
any named parameters, e.g., this is accepted in C:
void f(...) __attribute__((overloadable));
although this would be rejected:
void f(...);
To do this, moved the checking of the "ellipsis without any named
arguments" condition from the parser into Sema (where it belongs anyway).
llvm-svn: 64902
specialization of class templates, e.g.,
template<typename T> class X;
template<> class X<int> { /* blah */ };
Each specialization is a different *Decl node (naturally), and can
have different members. We keep track of forward declarations and
definitions as for other class/struct/union types.
This is only the basic framework: we still have to deal with checking
the template headers properly, improving recovery when there are
failures, handling nested name specifiers, etc.
llvm-svn: 64848
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
llvm-svn: 64141