AVX512F only has integer domain logic instructions. AVX512DQ added FP domain logic instructions.
Execution domain fixing runs before EVEX->VEX. So if we have AVX512F and not AVX512DQ we fail to do execution domain switching of the logic operations. This leads to mismatches in execution domain and more test differences.
This patch adds custom domain fixing that switches EVEX integer logic operations to VEX fp logic operations if XMM16-31 are not used.
llvm-svn: 337137
The code tried to find the immediate by using getNumOperands() on the MachineInstr, but there might be implicit-defs after the immediate that get counted.
Instead use getNumOperands() from the instruction description which will only count the operands that are defined in the td file.
llvm-svn: 337088
Summary:
These changes cover the PR#31399.
Now the ffs(x) function is lowered to (x != 0) ? llvm.cttz(x) + 1 : 0
and it corresponds to the following llvm code:
%cnt = tail call i32 @llvm.cttz.i32(i32 %v, i1 true)
%tobool = icmp eq i32 %v, 0
%.op = add nuw nsw i32 %cnt, 1
%add = select i1 %tobool, i32 0, i32 %.op
and x86 asm code:
bsfl %edi, %ecx
addl $1, %ecx
testl %edi, %edi
movl $0, %eax
cmovnel %ecx, %eax
In this case the 'test' instruction can't be eliminated because
the 'add' instruction modifies the EFLAGS, namely, ZF flag
that is set by the 'bsf' instruction when 'x' is zero.
We now produce the following code:
bsfl %edi, %ecx
movl $-1, %eax
cmovnel %ecx, %eax
addl $1, %eax
Patch by Ivan Kulagin
Reviewers: davide, craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48765
llvm-svn: 336768
Isel currently emits movss/movsd a lot of the time and an accidental double commute turns it into a blend.
Ideally we'd select blend directly in isel under optspeed and not rely on the double commute to create blend.
llvm-svn: 336731
I separated out the rounding and broadcast groups into their own tables because it made the ordering in the main table easier.
Further splitting of the tables might make it possible to directly index using bits from the TSFlags, but its probably not worth it right now.
llvm-svn: 336075
findCommutedOpIndices does the pre-checking for whether commuting is possible. There should be no reason left to fail in commuteInstructionImpl. There was a missing pre-check that I've added there and changed the check to an assert in commuteInstructionImpl.
llvm-svn: 336070
Also move the static folding tables, their search functions and the new class into new cpp/h files.
The unfolding table is effectively static data. It's just a different ordering and a subset of the static folding tables.
By putting it in a separate ManagedStatic we ensure we only have one copy instead of one per X86InstrInfo object. This way also makes it only get initialized when really needed.
llvm-svn: 336056
The class only exists to hold a DenseMap and is only created as a ManagedStatic. It used to expose a single static method that outside code was expected to use.
This patch moves that static function out of the class and moves it implementation into the cpp file. It can now access the ManagedStatic directly by name without the need for the other static method that accessed the ManagedStatic.
llvm-svn: 336055
Previously we used a DenseMap which is costly to set up due to multiple full table rehashes as the size increases and causes the table to be reallocated.
This patch changes the table to a vector of structs. We now walk the reg->mem tables and push new entries in the mem->reg table for each row not marked TB_NO_REVERSE. Once all the table entries have been created, we sort the vector. Then we can use a binary search for lookups.
Differential Revision: https://reviews.llvm.org/D48585
llvm-svn: 335994
Reverting because this is causing failures in the LLDB test suite on
GreenDragon.
LLVM ERROR: unsupported relocation with subtraction expression, symbol
'__GLOBAL_OFFSET_TABLE_' can not be undefined in a subtraction
expression
llvm-svn: 335894
These are all benign races and only visible in !NDEBUG. tsan complains
about it, but a simple atomic bool is sufficient to make it happy.
llvm-svn: 335823
Nothing was using this relationship. By splitting them we no longer need to worry about register or memory entries being empty in a group.
The memory folding tables in X86InstrInfo.cpp can be used to access this relationship if needed.
llvm-svn: 335694
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335508
With the static tables sorted we can binary search them directly for reg->mem lookups. This removes 6 DenseMaps that had to be created when X86InstrInfo is constructed.
We still have one Mem->Reg DenseMap for the reverse direction. This is created just as before by walking the reg->mem arrays to populate it.
Differential Revision: https://reviews.llvm.org/D48527
llvm-svn: 335501
We should be blocking the operand while we are in the routine that tries to find commutable operand indices. Doing it later means we might have missed out on another valid set of operands we could have commuted.
The intrinsic case was the only case that could really prevent commuting in getFMA3OpcodeToCommuteOperands. All the other cases in getThreeSrcCommuteCase were not reachable conditions as they were protected by findThreeSrcCommutedOpIndices.
With that abort case pushed earlier, we can remove all the abort checks and replace with asserts.
llvm-svn: 335446
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
Reviewers: chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335297
I don't believe there is any real reason to have separate X86 specific opcodes for vector compares. Setcc has the same behavior just uses a different encoding for the condition code.
I had to change the CondCodeAction for SETLT and SETLE to prevent some transforms from changing SETGT lowering.
Differential Revision: https://reviews.llvm.org/D43608
llvm-svn: 335173
insertOutlinerPrologue was not used by any target, and prologue-esque code was
beginning to appear in insertOutlinerEpilogue. Refactor that into one function,
buildOutlinedFrame.
This just removes insertOutlinerPrologue and renames insertOutlinerEpilogue.
llvm-svn: 335076
These increases the size of the static tables, but is closer to what we would get if used the autogenerated table directly. This reduces the remaining large deltas between what's in the manual table and what's in the autogenerated table.
llvm-svn: 334915
Not sure any of these matter today because I don't think we ever produce them with IMPLICIT_DEF as an input. But by listing them we don't be suprised in the future.
llvm-svn: 334867
An earlier commit prevented folds from the peephole pass by checking for IMPLICIT_DEF. But later in the pipeline IMPLICIT_DEF just becomes and Undef flag on the input register so we need to check for that case too.
llvm-svn: 334848
I think this covers most of the unmasked vector instructions. We're still missing a lot of the masked instructions.
There are some test changes here because of the new folding support. I don't think these particular cases should be folded because it creates an undef register dependency. I think the changes introduced in r334175 are not handling stack folding. They're only blocking the peephole pass.
llvm-svn: 334800
Summary: Prevent folding of operations with memory loads when one of the sources has undefined register update.
Reviewers: craig.topper
Subscribers: llvm-commits, mike.dvoretsky, ashlykov
Differential Revision: https://reviews.llvm.org/D47621
llvm-svn: 334175
Make TII isCopyInstr() return MachineOperands through pointer to pointer
instead via reference.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D47364
llvm-svn: 334105
This is setting up to fix bug 37573 cleanly.
This moves data structures that are technically both used in some way by the
target and the general-purpose outlining algorithm into MachineOutliner.h. In
particular, the `Candidate` class is of importance.
Before, the outliner passed the locations of `Candidates` to the target, which
would then make some decisions about the prospective outlined function. This
change allows us to just pass `Candidates` along to the target. This will allow
the target to discard `Candidates` that would be considered unsafe before cost
calculation. Thus, we will be able to remove the unsafe candidates described in
the bug without resorting to torching the entire prospective function.
Also, as a side-effect, it makes the outliner a bit cleaner.
https://bugs.llvm.org/show_bug.cgi?id=37573
llvm-svn: 333952
This property is needed in order to follow values movement between
registers. This property is used in TII to implement method that
returns true if simple copy like instruction is recognized, along
with source and destination machine operands.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D45204
llvm-svn: 333093
Counting the number of instructions is both unintuitive and inaccurate.
On AArch64, this only affects the generated remarks and certain rare
pseudo-instructions, but it will have a bigger impact on other targets.
Differential Revision: https://reviews.llvm.org/D46921
llvm-svn: 332685
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This patch fixes a bug introduced by revision 330778 (originally reviewed at:
https://reviews.llvm.org/D44782), where function isFrameLoadOpcode returned
the wrong number of bytes read for opcodes VMOVSSrm and VMOVSDrm.
This corrects that mistake, and extends the regression test to catch cases where
the dead stores should be removed.
Patch by Jeremy Morse.
Differential Revision: https://reviews.llvm.org/D46256
llvm-svn: 331252
Favor the 0x1a encoding for register/register move to match gas.
The instructions used RM and MR in their name along with rr/rm/mr at the end. To make more consistent with other instructions remove the RM/MR and use rr/rm/mr/rr_REV.
Hide the _REV encoding from the assembler but leave it for the disassembler.
llvm-svn: 331101
Summary:
Previously the flag intrinsics always used the index instructions even if a mask instruction also exists.
To fix fix this I've created a single ISD node type that returns index, mask, and flags. The SelectionDAG CSE process will merge all flavors of intrinsics with the same inputs to a s ingle node. Then during isel we just have to look at which results are used to know what instruction to generate. If both mask and index are used we'll need to emit two instructions. But for all other cases we can emit a single instruction.
Since I had to do manual isel anyway, I've removed the pseudo instructions and custom inserter code that was working around tablegen limitations with multiple implicit defs.
I've also renamed the recently added sse42.ll test case to sttni.ll since it focuses on that subset of the sse4.2 instructions.
Reviewers: chandlerc, RKSimon, spatel
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46202
llvm-svn: 331091
instructions.
These have special permission according to the x86 manual to read
unaligned memory, and this folding is done by ICC and GCC as well.
This corrects one of the issues identified in PR37246.
llvm-svn: 330896
Previously, _any_ store or load instruction was considered to be
operating on a spill if it had a frameindex as an operand, and thus
was fair game for optimisations such as "StackSlotColoring". This
usually works, except on architectures where spills can be partially
restored, for example on X86 where a spilt vector can have a single
component loaded (zeroing the rest of the target register). This can be
mis-interpreted and the zero extension unsoundly eliminated, see
pr30821.
To avoid this, this commit optionally provides the caller to
isLoadFromStackSlot and isStoreToStackSlot with the number of bytes
spilt/loaded by the given instruction. Optimisations can then determine
that a full spill followed by a partial load (or vice versa), for
example, cannot necessarily be commuted.
Patch by Jeremy Morse!
Differential Revision: https://reviews.llvm.org/D44782
llvm-svn: 330778
This cleans up a number of operations that only claimed te use EFLAGS
due to using DF. But no instructions which we think of us setting EFLAGS
actually modify DF (other than things like popf) and so this needlessly
creates uses of EFLAGS that aren't really there.
In fact, DF is so restrictive it is pretty easy to model. Only STD, CLD,
and the whole-flags writes (WRFLAGS and POPF) need to model this.
I've also somewhat cleaned up some of the flag management instruction
definitions to be in the correct .td file.
Adding this extra register also uncovered a failure to use the correct
datatype to hold X86 registers, and I've corrected that as necessary
here.
Differential Revision: https://reviews.llvm.org/D45154
llvm-svn: 329673
The key idea is to lower COPY nodes populating EFLAGS by scanning the
uses of EFLAGS and introducing dedicated code to preserve the necessary
state in a GPR. In the vast majority of cases, these uses are cmovCC and
jCC instructions. For such cases, we can very easily save and restore
the necessary information by simply inserting a setCC into a GPR where
the original flags are live, and then testing that GPR directly to feed
the cmov or conditional branch.
However, things are a bit more tricky if arithmetic is using the flags.
This patch handles the vast majority of cases that seem to come up in
practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of
partially preserved EFLAGS as LLVM doesn't currently model that at all.
There are a large number of operations that techinaclly observe EFLAGS
currently but shouldn't in this case -- they typically are using DF.
Currently, they will not be handled by this approach. However, I have
never seen this issue come up in practice. It is already pretty rare to
have these patterns come up in practical code with LLVM. I had to resort
to writing MIR tests to cover most of the logic in this pass already.
I suspect even with its current amount of coverage of arithmetic users
of EFLAGS it will be a significant improvement over the current use of
pushf/popf. It will also produce substantially faster code in most of
the common patterns.
This patch also removes all of the old lowering for EFLAGS copies, and
the hack that forced us to use a frame pointer when EFLAGS copies were
found anywhere in a function so that the dynamic stack adjustment wasn't
a problem. None of this is needed as we now lower all of these copies
directly in MI and without require stack adjustments.
Lots of thanks to Reid who came up with several aspects of this
approach, and Craig who helped me work out a couple of things tripping
me up while working on this.
Differential Revision: https://reviews.llvm.org/D45146
llvm-svn: 329657
This commit is similar to r329120, but uses the existing getUsesRedZone() function
in X86MachineFunctionInfo. This teaches the outliner to look at whether or not a
function *truly* uses a redzone instead of just the noredzone attribute on a
function.
Thus, after this commit, it's possible to outline from x86 without using
-mno-red-zone and still get outlining results.
This also adds a new test for the new redzone behaviour.
llvm-svn: 329134
for X86's instruction information. I've now got a second patch under
review that needs these same APIs. This bit is nicely orthogonal and
obvious, so landing it. NFC.
llvm-svn: 328944
This makes the Y position consistent with other instructions.
This should have been NFC, but while refactoring the multiclass I noticed that VROUNDPD memory forms were using the register itinerary.
llvm-svn: 328254
At the point the outliner runs, KILLs don't impact anything, but they're still
considered unique instructions. This commit makes them invisible like
DebugValues so that they can still be outlined without impacting outlining
decisions.
llvm-svn: 327760
These tables add 3000 lines to X86InstrInfo.cpp. And if we ever manage to auto generate them they'll be a separate file anyway.
Differential Revision: https://reviews.llvm.org/D43806
llvm-svn: 326225
hit from IR but creates a minefield for MI passes.
The x86 backend has fairly powerful logic to try and fold loads that
feed register operands to instructions into a memory operand on the
instruction. This is almost always a good thing, but there are specific
relocated loads that are only allowed to appear in specific
instructions. Notably, R_X86_64_GOTTPOFF is only allowed in `movq` and
`addq`. This patch blocks folding of memory operands using this
relocation unless the target is in fact `addq`.
The particular relocation indicates why we simply don't hit this under
normal circumstances. This relocation is only used for TLS, and it gets
used in very specific ways in conjunction with %fs-relative addressing.
The result is that loads using this relocation are essentially never
eligible for folding into an instruction's memory operands. Unless, of
course, you have an MI pass that inserts usage of such a load. I have
exactly such an MI pass and was greeted by truly mysterious miscompiles
where the linker replaced my instruction with a completely garbage byte
sequence. Go team.
This is the only such relocation I'm aware of in x86, but there may be
others that need to be similarly restricted.
Fixes PR36165.
Differential Revision: https://reviews.llvm.org/D42732
llvm-svn: 324546
If we are saving/restoring k-registers, the default behavior of getMinimalRegisterClass will find the VK64 class with a spill size of 64 bits. This will cause the KMOVQ opcode to be used for save/restore. If we don't have have BWI instructions we need to constrain the class returned to give us VK16 with a 16-bit spill size. We can do this by passing the either v16i1 or v64i1 into getMinimalRegisterClass.
Also add asserts to make sure BWI is enabled anytime we use KMOVD/KMOVQ. These are what caught this bug.
Fixes PR36256
Differential Revision: https://reviews.llvm.org/D42989
llvm-svn: 324533
Summary:
It seems it's main effect is to create addition copies when values are inr register that do not support this trick, which increase register pressure and makes the code bigger.
Reviewers: craig.topper, niravd, spatel, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42646
llvm-svn: 323888
Summary:
It seems it's main effect is to create addition copies when values are inr register that do not support this trick, which increase register pressure and makes the code bigger.
The main noteworthy regression I was able to observe was pattern of the type (setcc (trunc (and X, C)), 0) where C is such as it would benefit from the hi register trick. To prevent this, a new pattern is added to materialize such pattern using a 32 bits test. This has the added benefit of working with any constant that is materializable as a 32bits immediate, not just the ones that can leverage the high register trick, as demonstrated by the test case in test-shrink.ll using the constant 2049 .
Reviewers: craig.topper, niravd, spatel, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42646
llvm-svn: 323690
MMX instrutions all start with MMX_ so the 64 isn't needed for disambigutation.
SSE/AVX1 instructions are assumed 128-bit so we don't need to say 128.
AVX2 instructions should use a Y to indicate 256-bits.
llvm-svn: 323402
All other intrinsic instructions put the _Int on the end. This make these instructions consistent and gets the prefix instregexs in the scheduler models to pick them up.
llvm-svn: 323261
I'm not sure there's any way to generate these folding cases especially the movzx ones since even the register form is never emitted by codegen.
I'm just adding them to remove the difference with the autogenerated version of the folding table.
llvm-svn: 323200
1. ReachingDefsAnalysis - Allows to identify for each instruction what is the “closest” reaching def of a certain register. Used by BreakFalseDeps (for clearance calculation) and ExecutionDomainFix (for arbitrating conflicting domains).
2. ExecutionDomainFix - Changes the variant of the instructions in order to minimize domain crossings.
3. BreakFalseDeps - Breaks false dependencies.
4. LoopTraversal - Creatws a traversal order of the basic blocks that is optimal for loops (introduced in revision L293571). Both ExecutionDomainFix and ReachingDefsAnalysis use this to determine the order they will traverse the basic blocks.
This also included the following changes to ExcecutionDepsFix original logic:
1. BreakFalseDeps and ReachingDefsAnalysis logic no longer restricted by a register class.
2. ReachingDefsAnalysis tracks liveness of reg units instead of reg indices into a given reg class.
Additional changes in affected files:
1. X86 and ARM targets now inherit from ExecutionDomainFix instead of ExecutionDepsFix. BreakFalseDeps also was added to the passes they activate.
2. Comments and references to ExecutionDepsFix replaced with ExecutionDomainFix and BreakFalseDeps, as appropriate.
Additional refactoring changes will follow.
This commit is (almost) NFC.
The only functional change is that now BreakFalseDeps will break dependency for all register classes.
Since no additional instructions were added to the list of instructions that have false dependencies, there is no actual change yet.
In a future commit several instructions (and tests) will be added.
This is the first of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.
Additional relevant reviews:
https://reviews.llvm.org/D40331https://reviews.llvm.org/D40332https://reviews.llvm.org/D40333https://reviews.llvm.org/D40334
Differential Revision: https://reviews.llvm.org/D40330
Change-Id: Icaeb75e014eff96a8f721377783f9a3e6c679275
llvm-svn: 323087
As mentioned on PR35869, (and came up recently on D41517) we don't create a MMX zero register via the PXOR but instead perform a spill to stack from a XMM zero register.
This patch adds support for direct MMX zero vector creation and should make it easier to add better constant vector creation in the future as well.
Differential Revision: https://reviews.llvm.org/D41908
llvm-svn: 322525
Add support for custom execution domain fixing and implement support for BLENDPD/BLENDPS/PBLENDD/PBLENDW.
Differential Revision: https://reviews.llvm.org/D42042
llvm-svn: 322524
This commit does two things. Firstly, it adds a collection of flags which can
be passed along to the target to encode information about the MBB that an
instruction lives in to the outliner.
Second, it adds some of those flags to the AArch64 outliner in order to add
more stack instructions to the list of legal instructions that are handled
by the outliner. The two flags added check if
- There are calls in the MachineBasicBlock containing the instruction
- The link register is available in the entire block
If the link register is available and there are no calls, then a stack
instruction can always be outlined without fixups, regardless of what it is,
since in this case, the outliner will never modify the stack to create a
call or outlined frame.
The motivation for doing this was checking which instructions are most often
missed by the outliner. Instructions like, say
%sp<def> = ADDXri %sp, 32, 0; flags: FrameDestroy
are very common, but cannot be outlined in the case that the outliner might
modify the stack. This commit allows us to outline instructions like this.
llvm-svn: 322048
The instructions that load 64-bits or an xmm register should be TB_NO_REVERSE to avoid the load being widened during unfold. The instructions that load 128-bits need to ensure 128-bit alignment.
llvm-svn: 321956
The memory form of the xmm->xmm version only writes 64-bits. If we use it in the folding tables and its get used for a stack spill, only half the slot will be written. Then a reload may read all 128-bits which will pull in garbage. But without the spill the upper bits of the register would have been zero. By not folding we would preserve the zeros.
llvm-svn: 321950
This matches AVX512 version and is more consistent overall. And improves our scheduler models.
In some cases this adds _Int to instructions that didn't have any Int_ before. It's a side effect of the adjustments made to some of the multiclasses.
llvm-svn: 320325