implicitly-generated AST nodes. We previously built instantiated nodes
for each of these AST nodes, then passed them on to Sema, which was
not prepared to see already-type-checked nodes (see PR5755). In some
places, we had ugly workarounds to try to avoid re-type-checking
(e.g., in VarDecl initializer instantiation).
Now, we skip implicitly-generated nodes when performing instantiation,
preferring instead to build just the AST nodes that directly reflect
what was written in the source code. This has several advantages:
- We don't need to instantiate anything that doesn't have a direct
correlation to the source code, so we can have better location
information.
- Semantic analysis sees the same thing at template instantiation
time that it would see for a non-template.
- At least one ugly hack (VarDecl initializers) goes away.
Fixes PR5755.
llvm-svn: 91218
in a potentially potentially evaluated context, queue those
diagnostics and only emit them if the context ends up being
potentially evaluated. This completes the fix for PR5761.
llvm-svn: 91213
__builtin_offsetof, passing through an ellipsis) when we're in an
unevaluated context. This is the first part of the fix to PR5761,
which deals with the simple case of an unevaluated context.
llvm-svn: 91210
specializations and class template partial specializations (they're
never named directly). Also, member access expressions only refer to
value declarations (fields, functions, enumerators, etc.) and
Objective-C property declarations; filter out everything else.
llvm-svn: 91133
is difficult because they're so terribly, terribly ambiguous.
We implement access declarations in terms of using declarations, which is
quite reasonable. However, we should really persist the access/using
distinction in the AST and use the appropriate name in diagnostics. This
isn't a priority, so I'll just file a PR and hope someone else does it. :)
llvm-svn: 91095
declaration. Rename note_using_decl to note_using, which is possibly less confusing.
Add a test for non-class-scope using decl collisions and be sure to note the case
we can't diagnose yet.
llvm-svn: 91057
are a couple of O(n^2) operations in this, some analogous to the usual O(n^2)
redeclaration problem and some not. In particular, retroactively removing
shadow declarations when they're hidden by later decls is pretty unfortunate.
I'm not yet convinced it's worse than the alternative, though.
llvm-svn: 91045
new notion of an "initialization sequence", which encapsulates the
computation of the initialization sequence along with diagnostic
information and the capability to turn the computed sequence into an
expression. At present, I've only switched one CheckReferenceInit
callers over to this new mechanism; more will follow.
Aside from (hopefully) being much more true to the standard, the
diagnostics provided by this reference-initialization code are a bit
better than before. Some examples:
p5-var.cpp:54:12: error: non-const lvalue reference to type 'struct
Derived'
cannot bind to a value of unrelated type 'struct Base'
Derived &dr2 = b; // expected-error{{non-const lvalue reference to
...
^ ~
p5-var.cpp:55:9: error: binding of reference to type 'struct Base' to
a value of
type 'struct Base const' drops qualifiers
Base &br3 = bc; // expected-error{{drops qualifiers}}
^ ~~
p5-var.cpp:57:15: error: ambiguous conversion from derived class
'struct Diamond' to base class 'struct Base':
struct Diamond -> struct Derived -> struct Base
struct Diamond -> struct Derived2 -> struct Base
Base &br5 = diamond; // expected-error{{ambiguous conversion from
...
^~~~~~~
p5-var.cpp:59:9: error: non-const lvalue reference to type 'long'
cannot bind to
a value of unrelated type 'int'
long &lr = i; // expected-error{{non-const lvalue reference to type
...
^ ~
p5-var.cpp:74:9: error: non-const lvalue reference to type 'struct
Base' cannot
bind to a temporary of type 'struct Base'
Base &br1 = Base(); // expected-error{{non-const lvalue reference to
...
^ ~~~~~~
p5-var.cpp:102:9: error: non-const reference cannot bind to bit-field
'i'
int & ir1 = (ib.i); // expected-error{{non-const reference cannot
...
^ ~~~~~~
p5-var.cpp:98:7: note: bit-field is declared here
int i : 17; // expected-note{{bit-field is declared here}}
^
llvm-svn: 90992
"integer promotion" type associated with an enum decl, and use this type to
determine which type to promote to. This type obeys C++ [conv.prom]p2 and
is therefore generally signed unless the range of the enumerators forces
it to be unsigned.
Kills off a lot of false positives from -Wsign-compare in C++, addressing
rdar://7455616
llvm-svn: 90965
using value decls; we optimistically assume they won't turn into conflicts.
Teach it to tell the caller *why* the function doesn't overload with the returned
decl; this will be useful for using hiding.
llvm-svn: 90939
pointers thereof) to their corresponding non-noreturn function
types. This conversion is considered an exact match for
overload-resolution purposes. Note that we are a little more strict
that GCC is, because we encode noreturn in the type system, but that's
a Good Thing (TM) because it does not allow us to pretend that
potentially-returning function pointers are non-returning function
pointers.
Fxies PR5620.
llvm-svn: 90913
print exception specifications on function types and
declarations. Fixes <rdar://problem/7450999>.
There is some poor source-location information here, because we don't
track locations of the types in exception specifications. Filed PR5719.
Failures during template instantiation of the signature of a function
or function template have wrong point-of-instantiation location
information. I'll tackle that with a separate commit.
llvm-svn: 90863
into transparent contexts; instead, we'll look into their nearest
enclosing non-transparent contexts further up the stack. Fixes PR5479.
llvm-svn: 90859
horrible isAddressOfOperand hack in TreeTransform, since that syntactic
information is managed by the initial parser callbacks now.
That's enough insomniac commits for one night.
llvm-svn: 90849
DeclContext, so they don't completely disappear from the AST.
I don't particularly like this fix, but I don't see any obviously better way
to deal with it, and I think it's pretty clearly an improvement; comments
welcome.
llvm-svn: 90835
intended. On the first testcase in the bug, we now produce:
cxx-decl.cpp:12:2: error: unexpected ':' in nested name specifier
y:a a2;
^
::
instead of:
t.cc:8:1: error: C++ requires a type specifier for all declarations
x:a a2;
^
t.cc:8:2: error: invalid token after top level declarator
x:a a2;
^
;
t.cc:9:11: error: use of undeclared identifier 'a2'
x::a a3 = a2;
^
llvm-svn: 90713
instantiation, to ensure that we mark class template specilizations as
abstract when we need to and perform checking of abstract classes.
Also, move the checking that determines whether we are creating a
variable of abstract class type *after* we check whether the type is
complete. Otherwise, we won't see when we have an abstract class
template specialization that is implicitly instantiated by this
declaration. This is the "something else" that Sebastian had noted
earlier.
llvm-svn: 90467
temporaries that are within our current evaluation context. That way,
nested evaluation contexts (e.g., within a sizeof() expression) won't
see temporaries from outer contexts. Also, make sure to push a new
evaluation context when instantiating the initializer of a variable;
this may be an unevaluated context or a potentially-evaluated context,
depending on whether it's an in-class initializer or not. Fixes PR5672.
llvm-svn: 90460
overloaded-operator resolution is wildly untested, but the parallel code for
methods seems to satisfy some trivial tests.
Also change some overload-resolution APIs to take a type instead of an expression,
which lets us avoid creating a spurious CXXThisExpr when resolving implicit
member accesses.
llvm-svn: 90410
results in them (which we were doing intentionally as a stopgap). Fix
an DeclContext lookup-table ordering problem which was causing UsingDecls to
show up incorrectly when looking for ordinary results. And oh hey
Clang-Code-Syntax passes now.
llvm-svn: 90367
there's nothing interesting we can say now that we're correctly not requiring
the qualifier to name a known base class in dependent contexts.
Require scope specifiers on member access expressions to name complete types
if they're not dependent; delay lookup when they are dependent.
Use more appropriate diagnostics when qualified implicit member access
expressions find declarations from unrelated classes.
llvm-svn: 90289
implicit member access to a specific declaration, go ahead and create
it as a DeclRefExpr or a MemberExpr (with implicit CXXThisExpr base) as
appropriate. Otherwise, create an UnresolvedMemberExpr or
DependentScopeMemberExpr with a null base expression.
By representing implicit accesses directly in the AST, we get the ability
to correctly delay the decision about whether it's actually an instance
member access or not until resolution is complete. This permits us
to correctly avoid diagnosing the 'problem' of 'MyType::foo()'
where the relationship to the type isn't really known until instantiation.
llvm-svn: 90266
common to both parsing and template instantiation, so that we'll find
overridden virtuals for member functions of class templates when they
are instantiated.
Additionally, factor out the checking for pure virtual functions, so
that it will be executed both at parsing time and at template
instantiation time.
These changes fix PR5656 (for real), although one more tweak
w.r.t. member function templates will be coming along shortly.
llvm-svn: 90241
ValueDecl, because that isn't always the case in ill-formed
code. Diagnose a common mistake (forgetting to provide a template
argument list for a class template, PR5655) and dyn_cast so that we
handle the general problem of referring to a non-value declaration
gracefully.
llvm-svn: 90239
Create a new UnresolvedMemberExpr for these lookups. Assorted hackery
around qualified member expressions; this will all go away when we
implement the correct (i.e. extremely delayed) implicit-member semantics.
llvm-svn: 90161
implement it explicitly or assert that it doesn't make sense for a scalar.
This caught a couple interesting issues: one, CK_BaseToDerivedMemberPointer
casts were getting silently miscompiled, and two, Sema was constructing some
strange implicit casts of type CK_UserDefinedConversion.
The change in SemaExprCXX makes sure the cast kinds are getting set correctly.
llvm-svn: 89987
maintains a stack of evaluation contexts rather than having the parser
do it. This change made it simpler to track in which contexts
temporaries were created, so that we could...
"Forget" about temporaries created within unevaluated contexts, so
that we don't build a CXXExprWithTemporaries and, therefore, destroy
the integral-constness of our expressions. Fixes PR5609.
llvm-svn: 89908
the linkage of a declaration. Switch the lame (and completely wrong)
NamedDecl::hasLinkage() over to using the new NamedDecl::getLinkage(),
along with the "can this declaration be a template argument?" check
that started all of this.
Fixes -fsyntax-only for PR5597.
llvm-svn: 89891
function templates (in C++98), friend function templates, and
out-of-line definitions of members of class templates.
Also handles merging of default template arguments from previous
declarations of function templates, for C++0x. However, we don't yet
make use of those default template arguments.
llvm-svn: 89872
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
cleanups for while loops:
1) Make sure that we destroy the condition variable of a while statement each time through the loop for, e.g.,
while (shared_ptr<WorkInt> p = getWorkItem()) {
// ...
}
2) Make sure that we always enter a new cleanup scope for the body of the while loop, even when there is no compound expression, e.g.,
while (blah)
RAIIObject raii(blah+1);
llvm-svn: 89800