print exception specifications on function types and
declarations. Fixes <rdar://problem/7450999>.
There is some poor source-location information here, because we don't
track locations of the types in exception specifications. Filed PR5719.
Failures during template instantiation of the signature of a function
or function template have wrong point-of-instantiation location
information. I'll tackle that with a separate commit.
llvm-svn: 90863
into transparent contexts; instead, we'll look into their nearest
enclosing non-transparent contexts further up the stack. Fixes PR5479.
llvm-svn: 90859
horrible isAddressOfOperand hack in TreeTransform, since that syntactic
information is managed by the initial parser callbacks now.
That's enough insomniac commits for one night.
llvm-svn: 90849
DeclContext, so they don't completely disappear from the AST.
I don't particularly like this fix, but I don't see any obviously better way
to deal with it, and I think it's pretty clearly an improvement; comments
welcome.
llvm-svn: 90835
intended. On the first testcase in the bug, we now produce:
cxx-decl.cpp:12:2: error: unexpected ':' in nested name specifier
y:a a2;
^
::
instead of:
t.cc:8:1: error: C++ requires a type specifier for all declarations
x:a a2;
^
t.cc:8:2: error: invalid token after top level declarator
x:a a2;
^
;
t.cc:9:11: error: use of undeclared identifier 'a2'
x::a a3 = a2;
^
llvm-svn: 90713
instantiation, to ensure that we mark class template specilizations as
abstract when we need to and perform checking of abstract classes.
Also, move the checking that determines whether we are creating a
variable of abstract class type *after* we check whether the type is
complete. Otherwise, we won't see when we have an abstract class
template specialization that is implicitly instantiated by this
declaration. This is the "something else" that Sebastian had noted
earlier.
llvm-svn: 90467
temporaries that are within our current evaluation context. That way,
nested evaluation contexts (e.g., within a sizeof() expression) won't
see temporaries from outer contexts. Also, make sure to push a new
evaluation context when instantiating the initializer of a variable;
this may be an unevaluated context or a potentially-evaluated context,
depending on whether it's an in-class initializer or not. Fixes PR5672.
llvm-svn: 90460
overloaded-operator resolution is wildly untested, but the parallel code for
methods seems to satisfy some trivial tests.
Also change some overload-resolution APIs to take a type instead of an expression,
which lets us avoid creating a spurious CXXThisExpr when resolving implicit
member accesses.
llvm-svn: 90410
results in them (which we were doing intentionally as a stopgap). Fix
an DeclContext lookup-table ordering problem which was causing UsingDecls to
show up incorrectly when looking for ordinary results. And oh hey
Clang-Code-Syntax passes now.
llvm-svn: 90367
there's nothing interesting we can say now that we're correctly not requiring
the qualifier to name a known base class in dependent contexts.
Require scope specifiers on member access expressions to name complete types
if they're not dependent; delay lookup when they are dependent.
Use more appropriate diagnostics when qualified implicit member access
expressions find declarations from unrelated classes.
llvm-svn: 90289
implicit member access to a specific declaration, go ahead and create
it as a DeclRefExpr or a MemberExpr (with implicit CXXThisExpr base) as
appropriate. Otherwise, create an UnresolvedMemberExpr or
DependentScopeMemberExpr with a null base expression.
By representing implicit accesses directly in the AST, we get the ability
to correctly delay the decision about whether it's actually an instance
member access or not until resolution is complete. This permits us
to correctly avoid diagnosing the 'problem' of 'MyType::foo()'
where the relationship to the type isn't really known until instantiation.
llvm-svn: 90266
common to both parsing and template instantiation, so that we'll find
overridden virtuals for member functions of class templates when they
are instantiated.
Additionally, factor out the checking for pure virtual functions, so
that it will be executed both at parsing time and at template
instantiation time.
These changes fix PR5656 (for real), although one more tweak
w.r.t. member function templates will be coming along shortly.
llvm-svn: 90241
ValueDecl, because that isn't always the case in ill-formed
code. Diagnose a common mistake (forgetting to provide a template
argument list for a class template, PR5655) and dyn_cast so that we
handle the general problem of referring to a non-value declaration
gracefully.
llvm-svn: 90239
Create a new UnresolvedMemberExpr for these lookups. Assorted hackery
around qualified member expressions; this will all go away when we
implement the correct (i.e. extremely delayed) implicit-member semantics.
llvm-svn: 90161
implement it explicitly or assert that it doesn't make sense for a scalar.
This caught a couple interesting issues: one, CK_BaseToDerivedMemberPointer
casts were getting silently miscompiled, and two, Sema was constructing some
strange implicit casts of type CK_UserDefinedConversion.
The change in SemaExprCXX makes sure the cast kinds are getting set correctly.
llvm-svn: 89987
maintains a stack of evaluation contexts rather than having the parser
do it. This change made it simpler to track in which contexts
temporaries were created, so that we could...
"Forget" about temporaries created within unevaluated contexts, so
that we don't build a CXXExprWithTemporaries and, therefore, destroy
the integral-constness of our expressions. Fixes PR5609.
llvm-svn: 89908
the linkage of a declaration. Switch the lame (and completely wrong)
NamedDecl::hasLinkage() over to using the new NamedDecl::getLinkage(),
along with the "can this declaration be a template argument?" check
that started all of this.
Fixes -fsyntax-only for PR5597.
llvm-svn: 89891
function templates (in C++98), friend function templates, and
out-of-line definitions of members of class templates.
Also handles merging of default template arguments from previous
declarations of function templates, for C++0x. However, we don't yet
make use of those default template arguments.
llvm-svn: 89872
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
cleanups for while loops:
1) Make sure that we destroy the condition variable of a while statement each time through the loop for, e.g.,
while (shared_ptr<WorkInt> p = getWorkItem()) {
// ...
}
2) Make sure that we always enter a new cleanup scope for the body of the while loop, even when there is no compound expression, e.g.,
while (blah)
RAIIObject raii(blah+1);
llvm-svn: 89800
DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
rather than burying it in a CXXConditionDeclExpr (that occassionally
hides behind implicit conversions). Similar changes for
switch, while, and do-while will follow, then the removal of
CXXConditionDeclExpr. This commit is the canary.
llvm-svn: 89717
complaint to a warning and providing a helpful node in the case where
the "template<>" header is redundant because the corresponding
template-id refers to an explicit specialization. C++0x might still
change this behavior, and existing practice is all over the place on
the number of "template<>" headers actually needed.
llvm-svn: 89651
operand of an addressof operator, and so we should not treat it as an abstract
member-pointer expression and therefore suppress the implicit member access.
This is really a well-formedness constraint on expressions: a DeclRefExpr of
a FieldDecl or a non-static CXXMethodDecl (or template thereof, or unresolved
collection thereof) should not be allowed in an arbitrary location in the AST.
Arguably it shouldn't be allowed anywhere and we should have a different expr
node type for this. But unfortunately we don't have a good way of enforcing
this kind of constraint right now.
llvm-svn: 89578
type and fixes a long-standing code gen. crash reported in
at least two PRs and a radar. (radar 7405040 and pr5025).
There are couple of remaining issues that I would like for
Ted. and Doug to look at:
Ted, please look at failure in Analysis/MissingDealloc.m.
I have temporarily added an expected-warning to make the
test pass. This tests has a declaration of 'SEL' type which
may not co-exist with the new changes.
Doug, please look at a FIXME in PCHWriter.cpp/PCHReader.cpp.
I think the changes which I have ifdef'ed out are correct. They
need be considered for in a few Indexer/PCH test cases.
llvm-svn: 89561
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
llvm-svn: 89543
name 'T' is looked up in the expression
t.~T()
Previously, we weren't looking into the type of "t", and therefore
would fail when T actually referred to an injected-class-name. Fixes
PR5530.
llvm-svn: 89493
than tweaking existing ASTs, since we were (*gasp*) stomping on ASTs
within templates. I'm glad we found this little stick of TNT early...
llvm-svn: 89475
A::f
that occurs within a non-static member function with a type-dependent
"this", don't consider this to be a case for introduction of an
implicit "(*this)." to refer to a specific member function unless we
know (at template definition time) that A is a base class of *this.
There is some disagreement here between GCC, EDG, and Clang about the
handling of this case. I believe that Clang now has the correct,
literal interpretation of the standard, but have asked for
clarification (c++std-core-15483).
llvm-svn: 89425
appropriate lookup and simply can't resolve the referrent yet, and
"dependent scope" expressions, where we can't do the lookup yet because the
entity we need to look into is a dependent type.
llvm-svn: 89402
incomplete array initialization, where we have the following in a
template:
int a[] = { 1, 2, something-value-dependent };
// ...
sizeof(a);
The type of "a" appears to be a non-dependent IncompleteArrayType, but
treating it as such makes the sizeof(a) fail at template definition
time. We now correctly handle this by morphing the IncompleteArrayType
into a DependentSizedArrayType with a NULL expression, indicating that
its size has no corresponding expression (and, therefore, the type is
distinct from others).
llvm-svn: 89366
provide completion results before each keyword argument, e.g.,
[foo Method:arg WithArg1:arg1 WithArg2:arg2]
We now complete before "WithArg1" and before "WithArg2", in addition
to completing before "Method".
llvm-svn: 89290
declaration by providing patterns for "getter = <method>" and "setter
= <method>". As part of this, invented a new "pattern" result kind
that is merely a semantic string. The "pattern" result kind should
help with other kinds of code templates.
llvm-svn: 89277
two classes, one for typenames and one for values; this seems to have some
support from Doug if not necessarily from the extremely-vague-on-this-point
standard. Track the location of the 'typename' keyword in a using-typename
decl. Make a new lookup result for unresolved values and deal with it in
most places.
llvm-svn: 89184
code to find and add Objective-C methods (starting at an
ObjCContainerDecl) into a single, static function. Also, make sure
that we search into the implementations of classes and categories to
find even more methods.
llvm-svn: 89163
current DeclContext. These "imaginary" declarations pose issues for
clients searching DeclContext for actual declarations. Instead,
register them for name lookup, and add the ObjCInterfaceDecl later to
the DeclContext when we hit an actual @interface declaration.
This also fixes a bug where the invariant that the Decls in a
DeclContext are sorted in order of their appearance is no longer
violated. What could happen is that an @class causes an
ObjCInterfaceDecl to get added first to the DeclContext, then the
ObjCClassDecl itself is added, and then later the SourceLocation of
the ObjCInterfaceDecl is updated with the correct location (which is
later in the file). This breaks an assumed invariant in
ResolveLocation.cpp (and possibly other clients).
llvm-svn: 89160
strip the sugar off in getFoundDecl() and getAsSingleDecl(), but leave it on for
clients like overload resolution who want to use the iterators.
Refactor a few pieces of overload resolution to strip off using declarations in
a single place. Don't do anything useful with the extra context knowledge yet.
llvm-svn: 89061
Also, make the "don't know how to instantiate a particular kind of
declaration" diagnostic nicer, so we don't have to trap Clang in a
debugger to figure out what went wrong.
llvm-svn: 89050
LookupResult RAII powers to diagnose ambiguity in the results. Other diagnostics
(e.g. access control and deprecation) will be moved to automatically trigger
during lookup as part of this same mechanism.
This abstraction makes it much easier to encapsulate aliasing declarations
(e.g. using declarations) inside the lookup system: eventually, lookup will
just produce the aliases in the LookupResult, and the standard access methods
will naturally strip the aliases off.
llvm-svn: 89027
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
llvm-svn: 88969