This improves llvm::isConstOrConstSplat by allowing it to analyze
ISD::SPLAT_VECTOR nodes, in order to allow more constant-folding of
operations using scalable vector types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94168
The TableGen immAllOnesV and immAllZerosV helpers implicitly wrapped the
ISD::isBuildVectorAll(Ones|Zeros) helper functions. This was inhibiting
their use for targets such as RISC-V which use ISD::SPLAT_VECTOR. In
particular, RISC-V had to define its own 'vnot' fragment.
In order to extend the scope of these nodes to include support for
ISD::SPLAT_VECTOR, two new ISD predicate functions have been introduced:
ISD::isConstantSplatVectorAll(Ones|Zeros). These effectively supersede
the older "isBuildVector" predicates, which are now simple wrappers for
the new functions. They pass a defaulted boolean toggle which preserves
the old behaviour. It is hoped that in time all call-sites can be ported
to the "isConstantSplatVector" functions.
While the use of ISD::isBuildVectorAll(Ones|Zeros) has not changed, the
behaviour of the TableGen immAll(Ones|Zeros)V **has**. To test the new
functionality, the custom RISC-V TableGen fragment has been removed and
replaced with the built-in 'vnot'. To test their use as pattern-roots, two
splat patterns have been updated accordingly.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94223
This implements basic instructions for the new spec.
- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
- `catch` needs a custom routine for the same reason `throw` needs one,
to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
and Change code that compares an instruction's opcode with `catch` to
use that function.
- LateEHPrepare
- Previously in LateEHPrepare we added `catch` instruction to both
`catchpad`s (for user catches) and `cleanuppad`s (for destructors).
In the new version `catch` is generated from `llvm.catch` intrinsic
in instruction selection phase, so we only need to add `catch_all`
to the beginning of cleanup pads.
- `catch` is generated from instruction selection, but we need to
hoist the `catch` instruction to the beginning of every EH pad,
because `catch` can be in the middle of the EH pad or even in a
split BB from it after various code transformations.
- Removes `addExceptionExtraction` function, which was used to
generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
function on the new instruction causes crashes, and the new version
will be added in a later CL, whose contents will be completely
different. So deleting the whole function will make the diff easier to
read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
`br_on_exn` instructions from the tests and FileCheck lines.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94040
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
foo();
} catch (int n) {
...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94038
This implements vp_add, vp_and for the VE target by lowering them to the
VVP_* layer. We also add helper functions for VP SDNodes (isVPSDNode,
getVPMaskIdx, getVPExplicitVectorLengthIdx).
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D93766
Attempt to simplify all/any-of style patterns that concatenate 2 smaller integers together into an and(x,y)/or(x,y) + icmp 0/-1 instead.
This is mainly to help some bool predicate reduction patterns where we end up concatenating bool vectors that have been bitcasted to integers.
Differential Revision: https://reviews.llvm.org/D93599
This looks to have been done to save some duplicated code under
two different if statements, but it ends up being harmful to D94073.
This speculative constant can be called on a scalable vector type
with i64 element size when i64 scalars aren't legal. The code tries
and fails to find a vector type with i32 elements that it can use.
So only create the node when we know it will be used.
This patch disables the FSUB(-0,X)->FNEG(X) DAG combine when we're flushing subnormals. It requires updating the existing AMDGPU tests to use the fneg IR instruction, in place of the old fsub(-0,X) canonical form, since AMDGPU is the only backend currently checking the DenormalMode flags.
Note that this will require follow-up optimizations to make sure the FSUB(-0,X) form is handled appropriately
Differential Revision: https://reviews.llvm.org/D93243
Recently a few patches are made to move towards using select i1 instead of and/or i1 to represent "a && b"/"a || b" in C/C++.
"a && b" in C/C++ does not evaluate b if a is false whereas 'and a, b' in IR evaluates b and uses its result regardless of the result of a.
This is problematic because it can cause miscompilation if b was an erroneous operation (https://llvm.org/pr48353).
In C/C++, the result is simply false because b is not evaluated, but in IR the result is poison.
The discussion at D93065 has more context about this.
This patch makes two branch-splitting optimizations (one in SelectionDAGBuilder, one in CodeGenPrepare) recognize
select form of and/or as well using m_LogicalAnd/Or.
Since it is CodeGen, I think this is semantically ok (at least as safe as what codegen already did).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93853
Fixes a bug introduced by D91589.
When folding `(sext (not i1 x)) -> (add (zext i1 x), -1)`, we try to replace the not first when possible. If we replace the not in-visit, then the now invalidated node will be returned, and subsequently we will return an invalid sext. In cases where the not is replaced in-visit we can simply return SDValue, as the not in the current sext should have already been replaced.
Thanks @jgorbe, for finding the below reproducer.
The following reduced test case crashes clang when built with `clang -O1 -frounding-math`:
```
template <class> class a {
int b() { return c == 0.0 ? 0 : -1; }
int c;
};
template class a<long>;
```
A debug build of clang produces this "assertion failed" error:
```
clang: /home/jgorbe/code/llvm/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:264: void {anonymous}::DAGCombiner::AddToWorklist(llvm::
SDNode*): Assertion `N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"' failed.
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93274
When LegalizeType procedure widens a masked_gather, set MemoryType's EltNum equal to Result's EltNum.
As I mentioned in https://reviews.llvm.org/D91092, in previous code, If we have a v17i32's masked_gather in avx512, we widen it to a v32i32's masked_gather with a v17i32's MemoryType. When the SplitVecRes_MGATHER process this v32i32's masked_gather, GetSplitDestVTs will assert fail since what you are going to split is v17i32.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93610
Currently we lower invokes the same way as usual calls, e.g.:
V1 = STATEPOINT ... V (tied-def 0)
But this is incorrect is V1 is used on exceptional path.
By LLVM rules V1 neither dominates its uses in landing pad, nor
its live range is live on entry to landing pad. So compiler is
allowed to do various weird transformations like splitting live
range after statepoint and use split LR in catch block.
Until (and if) we find better solution to this problem, let's
use old lowering (spilling) for those values which are used on
exceptional path and allow VReg lowering for values used only
on normal path.
Differential Revision: https://reviews.llvm.org/D93449
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ
The intrinsics have overloaded source and result type and support
vector operands:
i32 @llvm.fptoui.sat.i32.f32(float %f)
i100 @llvm.fptoui.sat.i100.f64(double %f)
<4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
// etc
On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:
i19 @llvm.fptsi.sat.i19.f32(float %f)
// builds
i19 fp_to_sint_sat f, 19
// type legalizes (through integer result promotion)
i32 fp_to_sint_sat f, 19
I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.
There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:
f = fmaxnum f, FP(MIN)
f = fminnum f, FP(MAX)
i = fptoxi f
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
If the bounds cannot be exactly represented, we expand to something
like this instead:
i = fptoxi f
i = select f ult FP(MIN), MIN, i
i = select f ogt FP(MAX), MAX, i
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
It should be noted that this expansion assumes a non-trapping fptoxi.
Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.
Original patch by @nikic and @ebevhan (based on D54696).
Differential Revision: https://reviews.llvm.org/D54749
Clean up a TODO, to support folding a shift of a constant by a
select of constants, on targets with different shift operand sizes.
Reviewed By: RKSimon, lebedev.ri
Differential Revision: https://reviews.llvm.org/D90349
Subvector broadcasts are only load instructions, yet X86ISD::SUBV_BROADCAST treats them more generally, requiring a lot of fallback tablegen patterns.
This initial patch replaces constant vector lowering inside lowerBuildVectorAsBroadcast with direct X86ISD::SUBV_BROADCAST_LOAD loads which helps us merge a number of equivalent loads/broadcasts.
As well as general plumbing/analysis additions for SUBV_BROADCAST_LOAD, I needed to wrap SelectionDAG::makeEquivalentMemoryOrdering so it can handle result chains from non generic LoadSDNode nodes.
Later patches will continue to replace X86ISD::SUBV_BROADCAST usage.
Differential Revision: https://reviews.llvm.org/D92645
X86 and AArch64 expand it as libcall inside the target. And PowerPC also
want to expand them as libcall for P8. So, propose an implement in the
legalizer to common the logic and remove the code for X86/AArch64 to
avoid the duplicate code.
Reviewed By: Craig Topper
Differential Revision: https://reviews.llvm.org/D91331
Currently the backend special cases x86_intrcc and treats the first
parameter as byval. Make the IR require byval for this parameter to
remove this special case, and avoid the dependence on the pointee
element type.
Fixes bug 46672.
I'm not sure the IR is enforcing all the calling convention
constraints. clang seems to ignore the attribute for empty parameter
lists, but the IR tolerates it.
Changes in this patch:
- Minor changes to the LowerVECREDUCE_SEQ_FADD function added by @cameron.mcinally
to also work for scalable types
- Added TableGen patterns for FP reductions with unpacked types (nxv2f16, nxv4f16 & nxv2f32)
- Asserts added to expandFMINNUM_FMAXNUM & expandVecReduceSeq for scalable types
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D93050
This function is needed for when it is necessary to split the subvector
operand of an llvm.experimental.vector.insert call. Splitting the
subvector operand means performing two insertions: one inserting the
lower part of the split subvector into the destination vector, and
another for inserting the upper part.
Through experimenting, it seems quite rare to need split the subvector
operand, but this is necessary to avoid assertion errors.
Differential Revision: https://reviews.llvm.org/D92760
If SETUNE isn't legal, UO can use the NOT of the SETO expansion.
Removes some complex isel patterns. Most of the test changes are
from using XORI instead of SEQZ.
Differential Revision: https://reviews.llvm.org/D92008
This method previously always recursively checked both the left-hand
side and right-hand side of binary operations for splatted (broadcast)
vector values to determine if the parent DAG node is a splat.
Like several other SelectionDAG methods, limit the recursion depth to
MaxRecursionDepth (6). This prevents stack overflow.
See also https://issuetracker.google.com/173785481
Patch by Nicolas Capens. Thanks!
Differential Revision: https://reviews.llvm.org/D92421
This patch adds the following DAGCombines, which apply if isVectorLoadExtDesirable() returns true:
- fold (and (masked_gather x)) -> (zext_masked_gather x)
- fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
LowerMGATHER has also been updated to fetch the LoadExtType associated with the
gather and also use this value to determine the correct masked gather opcode to use.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92230
Adds the ExtensionType flag, which reflects the LoadExtType of a MaskedGatherSDNode.
Also updated SelectionDAGDumper::print_details so that details of the gather
load (is signed, is scaled & extension type) are printed.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91084
This commit adds two new intrinsics.
- llvm.experimental.vector.insert: used to insert a vector into another
vector starting at a given index.
- llvm.experimental.vector.extract: used to extract a subvector from a
larger vector starting from a given index.
The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D91362
LLVM intrinsic llvm.maxnum|minnum is overloaded intrinsic, can be used on any
floating-point or vector of floating-point type.
This patch extends current infrastructure to support scalable vector type.
This patch also fix a warning message of incorrect use of EVT::getVectorNumElements()
for scalable type, when DAGCombiner trying to split scalable vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92607
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
The refineIndexType & refineUniformBase functions added by D90942 can also be used to
improve CodeGen of masked gathers.
These changes were split out from D91092
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92319
Lowers the llvm.masked.gather intrinsics (scalar plus vector addressing mode only)
Changes in this patch:
- Add custom lowering for MGATHER, using getGatherVecOpcode() to choose the appropriate
gather load opcode to use.
- Improve codegen with refineIndexType/refineUniformBase, added in D90942
- Tests added for gather loads with 32 & 64-bit scaled & unscaled offsets.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91092
In previous code, when refineIndexType(...) is called and Index is undef, Index.getOperand(0) will raise a assertion fail.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D92548
Move fold of (sext (not i1 x)) -> (add (zext i1 x), -1) from X86 to DAGCombiner to improve codegen on other targets.
Differential Revision: https://reviews.llvm.org/D91589
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
This reverts commit cf1c774d6a.
This change caused several regressions in the gdb test suite - at least
a sample of which was due to line zero instructions making breakpoints
un-lined. I think they're worth investigating/understanding more (&
possibly addressing) before moving forward with this change.
Revert "[FastISel] NFC: Clean up unnecessary bookkeeping"
This reverts commit 3fd39d3694.
Revert "[FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option"
This reverts commit a474657e30.
Revert "Remove static function unused after cf1c774."
This reverts commit dc35368ccf.
Revert "[lldb] Fix TestThreadStepOut.py after "Flush local value map on every instruction""
This reverts commit 53a14a47ee.
Move the X86 VSELECT->UADDSAT fold to DAGCombiner - there's nothing target specific about these folds.
The SSE42 test diffs are relatively benign - its avoiding an extra constant load in exchange for an extra xor operation - there are extra register moves, which is annoying as all those operations should commute them away.
Differential Revision: https://reviews.llvm.org/D91876
Now that we flush the local value map for every instruction, we don't
need any extra flushes for specific cases. Also, LastFlushPoint is
not used for anything. Follow-ups to #dc35368 (D91734).
Differential Revision: https://reviews.llvm.org/D92338
The mapping between registers and relative size has been updated to
use TypeSize to account for the size of scalable EVTs.
The patch is a NFCI, if not for the fact that with this change the
function `getUnderlyingArgRegs` does not raise a warning for implicit
conversion of `TypeSize` to `unsigned` when generating machine code
from the test added to the patch.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92096
If Sext is cheaper than Zext for a target, we can use that to promote the operands of UMIN/UMAX. Using sext just makes numbers with the sign bit set even larger when treated as an unsigned number and it has no effect on number without the sign bit set. So the relative order doesn't change. This is similar to what we already do for promoting SETCC.
This is helpful on RISCV where i32 arguments are sign extended on RV64 and many instructions are able to produce results with 33 sign bits.
Differential Revision: https://reviews.llvm.org/D92128
If usubsat() is legal, this is likely to result in smaller codegen expansion than the default cmp+select codegen expansion.
Allows us to move the x86-specific lowering to the generic expansion code.
Differential Revision: https://reviews.llvm.org/D92183
For now, we will hardcode the result as 0.0 if the input is denormal or 0. That will
have the impact the precision. As the fsqrt added belong to the cold path of the
cmp+branch, it won't impact the performance for normal inputs for PowerPC, but improve
the precision if the input is denormal.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D80974
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
If usubsat() is legal, this is likely to result in smaller codegen expansion than the default cmp+select codegen expansion.
Allows us to move the x86-specific lowering to the generic expansion code.
Updated the affected scalable_of_scalable tests in sve-gep.ll, as isConstantSplatValue now returns true in DAGCombiner::visitMUL and folds `(mul x, 1) -> x`
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91363
We currently don't match this which limits the effectiveness of D91120 until
InstCombine starts canonicalizing to llvm.abs. This should be easy to remove
if/when we remove the SPF_ABS handling.
Differential Revision: https://reviews.llvm.org/D92118
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
Differential Revision: https://reviews.llvm.org/D91734
If smax() is legal, this is likely to result in smaller codegen expansion for abs(x) than the xor(add,ashr) method.
This is also what PowerPC has been doing for its abs implementation, so it lets us get rid of a load of custom lowering code there (and which was never updated when they added smax lowering).
Alive2: https://alive2.llvm.org/ce/z/xRk3cD
Differential Revision: https://reviews.llvm.org/D92095
PowerPC has instruction ftsqrt/xstsqrtdp etc to do the input test for software square root.
LLVM now tests it with smallest normalized value using abs + setcc. We should add hook to
target that has test instructions.
Reviewed By: Spatel, Chen Zheng, Qiu Chao Fang
Differential Revision: https://reviews.llvm.org/D80706
`SimplifySetCC` invokes `getNodeIfExists` without passing `Flags` argument and `getNodeIfExists` uses a default `SDNodeFlags` to intersect the original flags, as a consequence, flags like `nsw` is dropped. Added a new helper function `doesNodeExist` to check if a node exists without modifying its flags.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D89938
If the size of memory access is unknown, do not use it to analysis. One
example of unknown size memory access is to load/store scalable vector
objects on the stack.
Differential Revision: https://reviews.llvm.org/D91833
This is part of the discussion on D91876 about trying to reduce custom lowering of MIN/MAX ops on older SSE targets - if we can improve generic vector expansion we should be able to relax the limitations in SelectionDAGBuilder when it will let MIN/MAX ops be generated, and avoid having to flag so many ops as 'custom'.
ExpandStrictFPOp started taking two parameters instead of one on Jan
10, 2020 in commit f678fc7660, but the
declaration for the single-perameter version has remained since.
This change introduces a MIR target-independent pseudo instruction corresponding to the IR intrinsic llvm.pseudoprobe for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
An `llvm.pseudoprobe` intrinsic call will be lowered into a target-independent operation named `PSEUDO_PROBE`. Given the following instrumented IR,
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
the corresponding MIR is shown below. Note that block `bb3` is duplicated into `bb1` and `bb2` where its probe is duplicated too. This allows for an accurate execution count to be collected for `bb3`, which is basically the sum of the counts of `bb1` and `bb2`.
```
bb.0.bb0:
frame-setup PUSH64r undef $rax, implicit-def $rsp, implicit $rsp
TEST32rr killed renamable $edi, renamable $edi, implicit-def $eflags
PSEUDO_PROBE 837061429793323041, 1, 0
$edi = MOV32ri 1, debug-location !13; test.c:0
JCC_1 %bb.1, 4, implicit $eflags
bb.2.bb2:
PSEUDO_PROBE 837061429793323041, 3, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
bb.1.bb1:
PSEUDO_PROBE 837061429793323041, 2, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
```
The target op PSEUDO_PROBE will be converted into a piece of binary data by the object emitter with no machine instructions generated. This is done in a different patch.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86495
The default version only works if the returned node has a single
result. The X86 and PowerPC versions support multiple results
and allow a single result to be returned from a node with
multiple outputs. And allow a single result that is not result 0
of the node.
Also replace the Mips version since the new version should work
for it. The original version handled multiple results, but only
if the new node and original node had the same number of results.
Differential Revision: https://reviews.llvm.org/D91846
This patch implements out of line atomics for LSE deployment
mechanism. Details how it works can be found in llvm/docs/Atomics.rst
Options -moutline-atomics and -mno-outline-atomics to enable and disable it
were added to clang driver. This is clang and llvm part of out-of-line atomics
interface, library part is already supported by libgcc. Compiler-rt
support is provided in separate patch.
Differential Revision: https://reviews.llvm.org/D91157
When constructing a MemoryLocation by hand, require that a
LocationSize is explicitly specified. D91649 will split up
LocationSize::unknown() into two different states, and callers
should make an explicit choice regarding the kind of MemoryLocation
they want to have.
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
In some cases, the values passed to `asm sideeffect` calls cannot be
mapped directly to simple MVTs. Currently, we crash in the backend if
that happens. An example can be found in the @test_vector_too_large_r_m
test case, where we pass <9 x float> vectors. In practice, this can
happen in cases like the simple C example below.
using vec = float __attribute__((ext_vector_type(9)));
void f1 (vec m) {
asm volatile("" : "+r,m"(m) : : "memory");
}
One case that use "+r,m" constraints for arbitrary data types in
practice is google-benchmark's DoNotOptimize.
This patch updates visitInlineAsm so that it use MVT::Other for
constraints with complex VTs. It looks like the rest of the backend
correctly deals with that and properly legalizes the type.
And we still report an error if there are no registers to satisfy the
constraint.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D91710
If the scatter store is able to perform the sign/zero extend of
its index, this is folded into the instruction with refineIndexType().
Additionally, refineUniformBase() will return the base pointer and index
from an add + splat_vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90942
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........
Lowers the llvm.masked.scatter intrinsics (scalar plus vector addressing mode only)
Changes included in this patch:
- Custom lowering for MSCATTER, which chooses the appropriate scatter store opcode to use.
Floating-point scatters are cast to integer, with patterns added to match FP reinterpret_casts.
- Added the getCanonicalIndexType function to convert redundant addressing
modes (e.g. scaling is redundant when accessing bytes)
- Tests with 32 & 64-bit scaled & unscaled offsets
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90941
This patch adds the IsTruncatingStore flag to MaskedScatterSDNode, set by getMaskedScatter().
Updated SelectionDAGDumper::print_details for MaskedScatterSDNode to print
the details of masked scatters (is truncating, signed or scaled).
This is the first in a series of patches which adds support for scalable masked scatters
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90939
Add a TLI hook to allow SelectionDAG to fine tune the conversion of CTPOP to a chain of "x & (x - 1)" when CTPOP isn't legal.
A subsequent patch will attempt to fine tune the X86 code gen.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89952
FastISel generates instructions to materialize "local values" at the
top of a block, in the hope that these values could be reused within
the block. To reduce spills and restores, FastISel treats calls as
sub-block boundaries, flushing the "local value map" at each call.
This patch treats the mem* intrinsics as if they were calls, because
at O0 generally they are calls. Eliminating these spills/restores is
actually better for debugging (especially a "continue at this line"
command), code size, stack frame size, and maybe even performance.
Differential Revision: https://reviews.llvm.org/D90877
Fold
VT = (and (sign_extend NarrowVT to VT) #bitmask)
into
VT = (zero_extend NarrowVT)
With this combine, the test replaces a sign extended load + an
unsigned extention with a zero extended load to render one of the
operands of the last multiplication.
BEFORE | AFTER
f_i16_i32: | f_i16_i32:
.fnstart | .fnstart
ldrsh r0, [r0] | ldrh r1, [r1]
ldrsh r1, [r1] | ldrsh r0, [r0]
smulbb r0, r1, r0 | smulbb r0, r0, r1
uxth r1, r1 | mul r0, r0, r1
mul r0, r0, r1 | bx lr
bx lr |
Reviewed By: resistor
Differential Revision: https://reviews.llvm.org/D90605
The if was checking !Res.getNode() but that's always true since
Res was initialized to SDValue() and not touched before the if.
This appears to be a leftover from a previous implementation of
Custom legalization where Res was updated instead of returning
immediately.
Hook up legalizations for VECREDUCE_SEQ_FMUL. This is following up on the VECREDUCE_SEQ_FADD work from D90247.
Differential Revision: https://reviews.llvm.org/D90644
Summary:
For vector element types which are not byte-sized, we would generate
incorrect scalar offsets and produce incorrect codegen.
This optimization could potentially be supported in the future, e.g. by
loading in bytes, then shifting and masking out the remaining bits of
the vector element. However, without an upstream target to test against
it's best to avoid the bad codegen in the simplest possible way.
Related to this bug:
https://bugs.llvm.org/show_bug.cgi?id=27600
Reviewed by: foad
Differential Revision: https://reviews.llvm.org/D78568
This patch uses the existing LowerFixedLengthReductionToSVE function to also lower
scalable vector reductions. A separate function has been added to lower VECREDUCE_AND
& VECREDUCE_OR operations with predicate types using ptest.
Lowering scalable floating-point reductions will be addressed in a follow up patch,
for now these will hit the assertion added to expandVecReduce() in TargetLowering.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D89382
As discussed on D90527, we should be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
Unsigned 32-bit or shorter integer to ppcf128 conversion are currently
expanded as signed-to-double with an extra fadd to 'complement'. But on
PowerPC we have native instruction to directly convert unsigned to
double since ISA v2.06. This patch exploits it.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D89786
Add Legalization support for VECREDUCE_SEQ_FADD, so that we don't need to depend on ExpandReductionsPass.
Differential Revision: https://reviews.llvm.org/D90247
For i1 types, boolean false is represented identically regardless of
the boolean content, so we can allow optimizations that otherwise
would not be correct for booleans with false represented as a negative
one.
Patch by Erik Hogeman.
Differential Revision: https://reviews.llvm.org/D90145
The modified code in visitSTORE was missing a scalable vector check, and still
using the now deprecated implicit cast of TypeSize to uint64_t through the
overloaded operator. This patch fixes these issues.
This brings the logic in line with the comment on the context line immediately
above the added precondition.
Add a test in sve-redundant-store.ll that the warning is not triggered.
Differential Revision: https://reviews.llvm.org/D89701
The modified code in visitSTORE was missing a scalable vector check, and still
using the now deprecated implicit cast of TypeSize to uint64_t through the
overloaded operator. This patch fixes these issues.
This brings the logic in line with the comment on the context line immediately
above the added precondition.
Add a test in Redundantstores.ll that the warning is not triggered.
Replace the X86 specific isSplatZeroExtended helper with a generic BuildVectorSDNode method.
I've just used this to simplify the X86ISD::BROADCASTM lowering so far (and remove isSplatZeroExtended), but we should be able to use this in more places to lower to complex broadcast patterns.
Differential Revision: https://reviews.llvm.org/D87930
Some of our conversion algorithms produce -0.0 when converting unsigned i64 to double when the rounding mode is round toward negative. This switches them to other algorithms that don't have this problem. Since it is undefined behavior to change rounding mode with the non-strict nodes, this patch only changes the behavior for strict nodes.
There are still problems with unsigned i32 conversions too which I'll try to fix in another patch.
Fixes part of PR47393
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87115
Updates an optimization that relies on boolean contents being either 0
or 1 to properly check for this before triggering.
The following:
(X & 8) != 0 --> (X & 8) >> 3
Produces unexpected results when a boolean 'true' value is represented
by negative one.
Patch by Erik Hogeman.
Differential Revision: https://reviews.llvm.org/D89390
We were previously relying upon the TypeSize comparison operators to
obtain the maximum size of two types, however use of such operators is
being deprecated in favour of making the caller aware that it could
be dealing with scalable vector types. I have changed the code to assert
that the two types have the same scalable property and thus we can
simply take the maximum of the known minimum sizes instead.
Differential Revision: https://reviews.llvm.org/D88563
From LangRef, FMF contract should not enable reassociating to form
arbitrary contractions. So it should not help rearrange nodes like
(fma (fmul x, c1), c2, y) into (fma x, c1*c2, y).
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89527
This enables these transforms for vectors:
(ctpop x) u< 2 -> (x & x-1) == 0
(ctpop x) u> 1 -> (x & x-1) != 0
(ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
(ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
All enabled if CTPOP isn't Legal. This differs from the scalar
behavior where the first two are done unconditionally and the
last two are done if CTPOP isn't Legal or Custom. The Legal
check produced better results for vectors based on X86's
custom handling. Might be worth re-visiting scalars here.
I disabled the looking through truncate for vectors. The
code that creates new setcc can use the same result VT as the
original setcc even if we truncated the input. That may work
work for most scalars, but definitely wouldn't work for vectors
unless it was a vector of i1.
Fixes or at least improves PR47825
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89346
MULH is often expanded on targets.
This patch removes the isMulhCheaperThanMulShift hook and uses
isOperationLegalOrCustom instead.
Differential Revision: https://reviews.llvm.org/D80485
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. This patch changes a few
functions that were always expecting to work on scalar or fixed width
types:
1. DAGCombiner::mergeTruncStores - deals with scalar integers only.
2. DAGCombiner::ReduceLoadWidth - not valid for vectors.
3. DAGCombiner::createBuildVecShuffle - should only be used for
fixed width vectors.
4. SelectionDAGLegalize::ExpandFCOPYSIGN and
SelectionDAGLegalize::getSignAsIntValue - only work on scalars.
Differential Revision: https://reviews.llvm.org/D88562
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. I've changed some of these
places to use the equivalent scalar operator.
Differential Revision: https://reviews.llvm.org/D88482
In certain places in the code we can never end up in a situation where
we're mixing fixed width and scalable vector types. For example,
we can't have truncations and extends that change the lane count. Also,
in other places such as GenWidenVectorStores and GenWidenVectorLoads we
know from the behaviour of FindMemType that we can never choose a vector
type with a different scalable property.
In various places I have used EVT::bitsXY functions instead of
TypeSize::isKnownXY, where it probably makes sense to keep an assert
that scalable properties match.
Differential Revision: https://reviews.llvm.org/D88654
As requested in D89346. This allows us to add some early outs.
I reordered some checks a little bit to make the more common bail outs happen earlier. Like checking opcode before checking hasOneUse. And I moved the bit width check to make sure it was safe to look through a truncate to the spot where we look through truncates instead of after.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89494
This combine can look through (trunc (ctpop X)). When doing this
it tries to make sure the trunc doesn't lose any information
from the ctpop. It does this by checking that the truncated type
has more bits that Log2_32_Ceil of the ctpop type. The Ceil is
unnecessary and pessimizes non-power of 2 types.
For example, ctpop of i256 requires 9 bits to represent the max
value of 256. But ctpop of i255 only requires 8 bits to represent
the max result of 255. Log2_32_Ceil of 256 and 255 both return 8
while Log2_32 returns 8 for 256 and 7 for 255
The code with popcnt enabled is a regression for this test case,
but it does match what already happens with i256 truncated to i9.
Since power of 2 is more likely, I don't think it should block
this change.
Differential Revision: https://reviews.llvm.org/D89412
When given the -experimental-debug-variable-locations option (via -Xclang
or to llc), have SelectionDAG generate DBG_INSTR_REF instructions instead
of DBG_VALUE. For now, this only happens in a limited circumstance: when
the value referred to is not a PHI and is defined in the current block.
Other situations introduce interesting problems, addresed in later patches.
Practically, this patch hooks into InstrEmitter and if it can find a
defining instruction for a value, gives it an instruction number, and
points the DBG_INSTR_REF at that <instr, operand> pair.
Differential Revision: https://reviews.llvm.org/D85747
This passes existing X86 test but I'm not sure if it handles all type
legalization cases it needs to.
Alternative to D89200
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D89222
Based on a discussion on D88783, if we're promoting a funnel shift to a width at least twice the size as the original type, then we can use the 'double shift' patterns (shifting the concatenated sources).
Differential Revision: https://reviews.llvm.org/D89139
I have introduced a new template PolySize class, where the template
parameter determines the type of quantity, i.e. for an element
count this is just an unsigned value. The ElementCount class is
now just a simple derivation of PolySize<unsigned>, whereas TypeSize
is more complicated because it still needs to contain the uint64_t
cast operator, since there are still many places in the code that
rely upon this implicit cast. As such the class also still needs
some of it's own operators.
I've tried to minimise the amount of code in the base PolySize
class, which led to a couple of changes:
1. In some places we were relying on '==' operator comparisons
between ElementCounts and the scalar value 1. I didn't put this
operator in the new PolySize class, and thought it was actually
clearer to use the isScalar() function instead.
2. I removed the isByteSized function and replaced it with calls
to isKnownMultipleOf(8).
I've also renamed NextPowerOf2 to be coefficientNextPowerOf2 so
that it's more consistent with coefficientDivideBy.
Differential Revision: https://reviews.llvm.org/D88409
Currently we allow passing pointers from deopt bundle on VReg only if
they were seen in list of gc-live pointers passed on VRegs.
This means that for the case of empty gc-live bundle we spill deopt
bundle's pointers. This change allows lowering deopt pointers to VRegs
in case of empty gc-live bundle. In case of non-empty gc-live bundle,
behavior does not change.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D88999
Summary: This patch is derived from D87384.
In this patch we expand the existing decomposition of mul-by-constant to be more general by implementing 2 patterns:
```
mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
```
The conversion will be trigged if the multiplier is a big constant that the target can't use a single multiplication instruction to handle. This is controlled by the hook `decomposeMulByConstant`.
More over, the conversion benefits from an ILP improvement since the instructions are independent. A case with the sequence like following also gets benefit since a shift instruction is saved.
```
*res1 = a * 0x8800;
*res2 = a * 0x8080;
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D88201
The STRICT was causing unnecessary confusion. I think SEQ is a more accurate
name for what they actually do, and the other obvious option of "ORDERED"
has the issue of already having a meaning in FP contexts.
Differential Revision: https://reviews.llvm.org/D88791
We were already doing this for integer constants. This patch implements
the same thing for floating point constants.
Differential Revision: https://reviews.llvm.org/D88570
Current Statepoint MI format is this:
STATEPOINT
<id>, <num patch bytes >, <num call arguments>, <call target>,
[call arguments...],
<StackMaps::ConstantOp>, <calling convention>,
<StackMaps::ConstantOp>, <statepoint flags>,
<StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
<gc base/derived pairs...> <gc allocas...>
Note that GC pointers are listed in pairs <base,derived>.
This causes base pointers to appear many times (at least twice) in
instruction, which is bad for us when VReg lowering is ON.
The problem is that machine operand tiedness is 1-1 relation, so
it might look like this:
%vr2 = STATEPOINT ... %vr1, %vr1(tied-def0)
Since only one instance of %vr1 is tied, that may lead to incorrect
codegen (see PR46917 for more details), so we have to always spill
base pointers. This mostly defeats new VReg lowering scheme.
This patch changes statepoint instruction format so that every
gc pointer appears only once in operand list. That way they all can
be tied. Additional set of operands is added to preserve base-derived
relation required to build stackmap.
New statepoint has following format:
STATEPOINT
<id>, <num patch bytes>, <num call arguments>, <call target>,
[call arguments...],
<StackMaps::ConstantOp>, <calling convention>,
<StackMaps::ConstantOp>, <statepoint flags>,
<StackMaps::ConstantOp>, <num deopt args>, [deopt args...],
<StackMaps::ConstantOp>, <num gc pointers>, [gc pointers...],
<StackMaps::ConstantOp>, <num gc allocas>, [gc allocas...]
<StackMaps::ConstantOp>, <num entries in gc map>, [base/derived indices...]
Changes are:
- every gc pointer is listed only once in a flat length-prefixed list;
- alloca list is prefixed with its length too;
- following alloca list is length-prefixed list of base-derived
indices of pointers from gc pointer list. Note that indices are
logical (number of pointer), not absolute (index of machine operand).
Differential Revision: https://reviews.llvm.org/D87154
In DAGCombiner::ForwardStoreValueToDirectLoad I have fixed up some
implicit casts from TypeSize -> uint64_t and replaced calls to
getVectorNumElements() with getVectorElementCount(). There are some
simple cases of forwarding that we can definitely support for
scalable vectors, i.e. when the store and load are both scalable
vectors and have the same size. I have added tests for the new
code paths here:
CodeGen/AArch64/sve-forward-st-to-ld.ll
Differential Revision: https://reviews.llvm.org/D87098
getNode handling for ISD:SETCC calls FoldSETCC which can canonicalize
FP constants to the RHS. When this happens we should create the node
with the FMF that was requested. By using FlagInserter when can ensure
any calls to getNode/getSetcc during canonicalization will also get the flags.
Differential Revision: https://reviews.llvm.org/D88063
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MSTORE I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-store.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86928
This reverts partial of a2fb5446 (actually, 2508ef01) about removing
negated FP constant immediately if it has no uses. However, as discussed
in bug 47517, there're cases when NegX is folded into constant from
other places while NegY is removed by that line of code and NegX is
equal to NegY. In these cases, NegX is deleted before used and crash
happens. So revert the code and add necessary test case.
In the motivating case from https://llvm.org/PR47517
we create a node that does not get constant folded
before getNegatedExpression is attempted from some
other node, and we crash.
By moving the fold into SelectionDAG::simplifyFPBinop(),
we get the constant fold sooner and avoid the problem.
This is similar to D87251, but for CopyFromRegs nodes.
Even for local statepoint uses we generate CopyToRegs/CopyFromRegs
nodes. When generating CopyFromRegs in visitGCRelocate, we must chain
to current DAG root, not EntryNode, to ensure proper ordering of copy
w.r.t. statepoint node producing result for it.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D88639
When we know that a particular type is always going to be fixed
width we have so far been writing code like this:
getSizeInBits().getFixedSize()
Since we are doing this in quite a few places now it seems to make
sense to add a new helper function that allows us to replace
these calls with a single getFixedSizeInBits() call.
Differential Revision: https://reviews.llvm.org/D88649
This patch adds FP_EXTEND_MERGE_PASSTHRU & FP_ROUND_MERGE_PASSTHRU
ISD nodes, used to lower scalable vector fp_extend/fp_round operations.
fp_round has an additional argument, the 'trunc' flag, which is an integer of zero or one.
This also fixes a warning introduced by the new tests added to sve-split-fcvt.ll,
resulting from an implicit TypeSize -> uint64_t cast in SplitVecOp_FP_ROUND.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D88321
After some recent upstream discussion we decided that it was best
to avoid having the / operator for both ElementCount and TypeSize,
since this could give the impression that these classes can be used
in the same way as basic integer integer types. However, division
for scalable types is a bit odd because we are only dividing the
minimum quantity by a value, as opposed to something like:
(MinSize * Vscale) / SomeValue
This is why when performing division it's important the caller
first establishes whether the operation makes sense, perhaps by
calling isKnownMultipleOf() prior to division. The caller must now
explictly call divideCoefficientBy() on the class to perform the
operation.
Differential Revision: https://reviews.llvm.org/D87700
Use +/-Inf or +/-Largest as neutral element for nnan fmin/fmax
reductions. This avoids dropping any FMF flags. Preserving the
nnan flag in particular is important to get a good lowering on X86.
Differential Revision: https://reviews.llvm.org/D87586
If we're multiplying all elements of a vector by '0' or '1' then we can more efficiently perform this as a clearing mask (that is likely to further simplify to a shuffle blend).
This was noticed when reviewing D87502 but seems to help idiv/irem by constant cases even more as '0'/'1' values are often used for 'passthrough' cases.
Differential Revision: https://reviews.llvm.org/D88225
This is like FastMathFlagGuard in IR. Since we use SDAG instance to get
values, it's with SelectionDAG. By creating a FlagInserter in current
scope, all values created by getNode will get the flags if no Flags
argument provided.
In this patch, I applied it to floating point operations folding part in
DAG combiner, and removed Flags passing to getNode to show its effect.
Other places in DAG combiner and other helper methods similar to getNode
also need this. They can be done in follow-up patches.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87361
When processing PHI nodes after a callbr, we need to make sure that the
PHI nodes on the default branch are resolved after the callbr
(inserted after INLINEASM_BR). The PHI node values on the indirect
branches are processed before the INLINEASM_BR.
Differential Revision: https://reviews.llvm.org/D86260
Previously, if a floating-point type was legal, but FNEG wasn't legal,
we would use FSUB. Instead, we should use integer ops, to preserve the
semantics. (Alternatively, there's a compiler-rt call we could use, but
there isn't much reason to use that.)
It turns out we actually are still using this obscure codepath in a few
cases: on some targets, we have "legal" floating-point types that don't
actually support any floating-point operations. In particular, ARM and
AArch64 are using this path.
The implementation for SelectionDAG is pretty simple because we can
reuse the infrastructure from FCOPYSIGN.
See also 9a3dc3e, the corresponding change to type legalization.
Also includes a "bonus" change to STRICT_FSUB legalization, so we can
lower a STRICT_FSUB to a float libcall.
Includes the changes to both LegalizeDAG and GlobalISel so we don't have
inconsistent results in the future.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46792 .
Differential Revision: https://reviews.llvm.org/D84287
An existing function Type::getScalarSizeInBits returns a uint64_t
instead of a TypeSize class because the caller is requesting a
scalar size, which cannot be scalable. This patch makes other
similar functions requesting a scalar size consistent with that,
thereby eliminating more than 1000 implicit TypeSize -> uint64_t
casts.
Differential revision: https://reviews.llvm.org/D87889
Just scalarize trunc stores - GenWidenVectorTruncStores does the same thing but is flawed (PR42046) and unused.
Differential Revision: https://reviews.llvm.org/D87708
When exporting statepoint results to virtual registers we try to avoid
generating exports for duplicated inputs. But we erroneously use
IR Value* to check if inputs are duplicated. Instead, we should use
SDValue, because even different IR values can get lowered to the same
SDValue.
I'm adding a (degenerate) test case which emphasizes importance of this
feature for invoke statepoints.
If we fail to export only unique values we will end up with something
like that:
%0 = STATEPOINT
%1 = COPY %0
landing_pad:
<use of %1>
And when exceptional path is taken, %1 is left uninitialized (COPY is never
execute).
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D87695
This reverts commit 0345d88de6.
Google internal backend uses EntrySU, we are looking into removing
dependency on it.
Differential Revision: https://reviews.llvm.org/D88018
SelectionDAGBuilder was inconsistently mangling values based on ABI
Calling Conventions when getting them through copyFromRegs in
SelectionDAGBuilder, causing duplicate value type convertions for
function arguments. The checking for the mangling requirement was based
on the value's originating instruction and was performed outside of, and
inspite of, the regular Calling Convention Lowering.
The issue could be observed in a scenario such as:
```
%arg1 = load half, half* %const, align 2
%arg2 = call fastcc half @someFunc()
call fastcc void @otherFunc(half %arg1, half %arg2)
; Here, %arg2 was incorrectly mangled twice, as the CallConv data from
; the call to @someFunc() was taken into consideration for the check
; when getting the value for processing the call to @otherFunc(...),
; after the proper convertion had taken place when lowering the return
; value of the first call.
```
This patch fixes the issue by disregarding the Calling Convention
information for such copyFromRegs, making sure the ABI mangling is
properly contanined in the Calling Convention Lowering.
This fixes Bugzilla #47454.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87844
This is a follow-up of D86605. For strict DAG FP node, if its FP
exception behavior metadata is ignore, it should have nofpexcept flag.
But during custom lowering, this flag isn't passed down.
This is also seen on X86 target.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D87390
2508ef01 fixed a bug about constant removal in negation. But after
sanitizing check I found there's still some issue about it so it's
reverted.
Temporary nodes will be removed if useless in negation. Before the
removal, they'd be checked if any other nodes used it. So the removal
was moved after getNode. However in rare cases the node to be removed is
the same as result of getNode. We missed that and will be fixed by this
patch.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D87614
If we have an all ones mask, we can just a regular masked load. InstCombine already gets this in IR. But the all ones mask can appear after type legalization.
Only avx512 test cases are affected because X86 backend already looks for element 0 and the last element being 1. It replaces this with an unmasked load and blend. The all ones mask is a special case of that where the blend will be removed. That transform is only enabled on avx2 targets. I believe that's because a non-zero passthru on avx2 already requires a separate blend so its more profitable to handle mixed constant masks.
This patch adds a dedicated all ones handling to the target independent DAG combiner. I've skipped extending, expanding, and index loads for now. X86 doesn't use index so I don't know much about it. Extending made me nervous because I wasn't sure I could trust the memory VT had the right element count due to some weirdness in vector splitting. For expanding I wasn't sure if we needed different undef handling.
Differential Revision: https://reviews.llvm.org/D87788
Fix lowering and instruction selection for v3x16 types
and enable InstCombine to emit them.
This patch only implements it for the selection dag.
GlobalISel tests in GlobalISel/llvm.amdgcn.image.load.1d.d16.ll and
GlobalISel/llvm.amdgcn.image.store.2d.d16.ll still don't work.
Differential Revision: https://reviews.llvm.org/D84420
2508ef01 doesn't totally fix the issue since we did not handle the case
when unused temporary negated result is the same with the result, which
is found by address sanitizer.
960cbc53 immediately removes nodes that won't be used to avoid
compilation time explosion. This patch adds the removal to constants to
fix PR47517.
Reviewed By: RKSimon, steven.zhang
Differential Revision: https://reviews.llvm.org/D87614
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
The code that decomposes the GEP into ADD/MUL doesn't work properly
for vector GEPs. It can create bad COPY instructions or possibly
assert.
For now just bail out to SelectionDAG.
Fixes PR45906
This adds SoftenFloatRes, PromoteFloatRes and SoftPromoteHalfRes
legalizations for VECREDUCE, to fill the remaining hole in the SDAG
legalization. These legalizations simply expand the reduction and
let it be recursively legalized. For the PromoteFloatRes case at
least it is possible to do better than that, but it's pretty tricky
(because we need to consider the interaction of three different
vector legalizations and the type promotion) and probably not
really worthwhile.
I haven't added ExpandFloatRes support, as I am not familiar with
ppc_fp128.
Differential Revision: https://reviews.llvm.org/D87569
Similar to D87415, this folds the various float min/max opcodes
with a constant INF or -INF operand, or FLT_MAX / -FLT_MAX operand
if the ninf flag is set. Some of the folds are only possible under
nnan.
The fminnum(X, INF) with nnan and fmaxnum(X, -INF) with nnan cases
are needed to improve the VECREDUCE_FMIN/FMAX lowerings on X86,
the rest is here for the sake of completeness.
Differential Revision: https://reviews.llvm.org/D87571
In an earlier patch I meant to add the correct flags to the ADD
node when incrementing the pointer, but forgot to pass them to
SelectionDAG::getNode.
Differential Revision: https://reviews.llvm.org/D87496
Previously, we formed ISD::PARITY by looking for (and (ctpop X), 1)
but the AND might be separated from the ctpop. For example if the
parity result is multiplied by 2, we'll pull the AND through the
shift.
So to handle more cases, move to SimplifyDemandedBits where we
can handle more cases that result in only the LSB of the CTPOP
being used.
DAG combiner folds (fma a 1.0 b) into (fadd a b) but the flag isn't
propagated into new fadd. This patch fixes that.
Some code in visitFMA is redundant and such support for vector constants
is missing. Need follow-up patch to clean.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87037
CTTZ, CTLZ, CTPOP, and FCANONICALIZE all have the same input and
output types so the operand should have already been legalized when the
result type was legalized.
Clang emits (and (ctpop X), 1) for __builtin_parity. If ctpop
isn't natively supported by the target, this leads to poor codegen
due to the expansion of ctpop being more complex than what is needed
for parity.
This adds a DAG combine to convert the pattern to ISD::PARITY
before operation legalization. Type legalization is updated
to handled Expanding and Promoting this operation. If after type
legalization, CTPOP is supported for this type, LegalizeDAG will
turn it back into CTPOP+AND. Otherwise LegalizeDAG will emit a
series of shifts and xors followed by an AND with 1.
I've avoided vectors in this patch to avoid more legalization
complexity for this patch.
X86 previously had a custom DAG combiner for this. This is now
moved to Custom lowering for the new opcode. There is a minor
regression in vector-reduce-xor-bool.ll, but a follow up patch
can easily fix that.
Fixes PR47433
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87209
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html
This is hopefully the final remaining showstopper before we can remove
the 'experimental' from the reduction intrinsics.
No behavior was specified for the FP min/max reductions, so we have a
mess of different interpretations.
There are a few potential options for the semantics of these max/min ops.
I think this is the simplest based on current behavior/implementation:
make the reductions inherit from the existing llvm.maxnum/minnum intrinsics.
These correspond to libm fmax/fmin, and those are similar to the (now
deprecated?) IEEE-754 maxNum/minNum functions (NaNs are treated as missing
data). So the default expansion creates calls to libm functions.
Another option would be to inherit from llvm.maximum/minimum (NaNs propagate),
but most targets just crash in codegen when given those nodes because no
default expansion was ever implemented AFAICT.
We could also just assume 'nnan' semantics by default (we are already
assuming 'nsz' semantics in the maxnum/minnum intrinsics), but some targets
(AArch64, PowerPC) support the more defined behavior, so it doesn't make much
sense to not allow a tighter spec. Fast-math-flags (nnan) can be used to
loosen the semantics.
(Note that D67507 was proposed to update the LangRef to acknowledge the more
recent IEEE-754 2019 standard, but that patch seems to have stalled. If we do
update based on the new standard, the reduction instructions can seamlessly
inherit from whatever updates are made to the max/min intrinsics.)
x86 sees a regression here on 'nnan' tests because we have underlying,
longstanding bugs in FMF creation/propagation. Those need to be fixed apart
from this change (for example: https://llvm.org/PR35538). The expansion
sequence before this patch may not have been correct.
Differential Revision: https://reviews.llvm.org/D87391
Truncating from an illegal SVE type to a legal type, e.g.
`trunc <vscale x 4 x i64> %in to <vscale x 4 x i32>`
fails after PromoteIntOp_CONCAT_VECTORS attempts to
create a BUILD_VECTOR.
This patch changes the promote function to create a sequence of
INSERT_SUBVECTORs if the return type is scalable, and replaces
these with UNPK+UZP1 for AArch64.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D86548
fminnum(X, NaN) is X, fminimum(X, NaN) is NaN. This mirrors the
behavior of existing InstSimplify folds.
This is expected to improve the reduction lowerings in D87391,
which use NaN as a neutral element.
Differential Revision: https://reviews.llvm.org/D87415
During the main DAGCombine loop, whenever a node gets replaced, the new
node and all its users are pushed onto the worklist. Omit this if the
new node is the EntryToken (e.g. if a store managed to get optimized
out), because re-visiting the EntryToken and its users will not uncover
any additional opportunities, but there may be a large number of such
users, potentially causing compile time explosion.
This compile time explosion showed up in particular when building the
SingleSource/UnitTests/matrix-types-spec.cpp test-suite case on any
platform without SIMD vector support.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86963
Since we always generate CopyToRegs for statepoint results,
we must update DAG root after emitting statepoint, so that
these copies are scheduled before any possible local uses.
Note: getControlRoot() flushes all PendingExports, not only
those we generates for relocates. If that'll become a problem,
we can change it to flushing relocate exports only.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D87251
Current code in InstEmitter assumes all GC pointers are either
VRegs or stack slots - hence, taking only one operand.
But it is possible to have constant base, in which case it
occupies two machine operands.
Add a convinience function to StackMaps to get index of next
meta argument and use it in InsrEmitter to properly advance to
the next statepoint meta operand.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D87252
This removes the after the fact FMF handling from D46854 in favor of passing fast math flags to getNode. This should be a superset of D87130.
This required adding a SDNodeFlags to SelectionDAG::getSetCC.
Now we manage to contant fold some stuff undefs during the
initial getNode that we don't do in later DAG combines.
Differential Revision: https://reviews.llvm.org/D87200
On SystemZ, a ZERO_EXTEND of an i1 vector handled by WidenVecRes_Convert()
always ended up being scalarized, because the type action of the input is
promotion which was previously an unhandled case in this method.
This fixes https://bugs.llvm.org/show_bug.cgi?id=47132.
Differential Revision: https://reviews.llvm.org/D86268
Patch by Eli Friedman.
Review: Ulrich Weigand
Rather than using SELECT instructions, use SRA, UADDO/ADDCARRY and
XORs to expand ABS. This is the multi-part version of the sequence
we use in LegalizeDAG.
It's also the same as the Custom sequence uses for i64 on 32-bit
and i128 on 64-bit. So we can remove the X86 customization.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D87215
This is a follow-up suggested in D86420 - if we have a pair of stores
in inverted order for the target endian, we can rotate the source
bits into place.
The "be_i64_to_i16_order" test shows a limitation of the current
function (which might be avoided if we integrate this function with
the other cases in mergeConsecutiveStores). In the earlier
"be_i64_to_i16" test, we skip the first 2 stores because we do not
match the full set as consecutive or rotate-able, but then we reach
the last 2 stores and see that they are an inverted pair of 16-bit
stores. The "be_i64_to_i16_order" test alters the program order of
the stores, so we miss matching the sub-pattern.
Differential Revision: https://reviews.llvm.org/D87112
In getMemcpyLoadsAndStores(), a memcpy where the source is a zero constant is expanded to a MemOp::Set instead of a MemOp::Copy, even when the memcpy is volatile.
This is incorrect.
The fix is to add a check for volatile, and expand to MemOp::Copy in the volatile case.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D87134
Previously SDNodeFlags::instersectWith(Flags) would do nothing if Flags was
in an undefined state, which is very bad given that this is the default when
getNode() is called without passing an explicit SDNodeFlags argument.
This meant that if an already existing and reused node had a flag which the
second caller to getNode() did not set, that flag would remain uncleared.
This was exposed by https://bugs.llvm.org/show_bug.cgi?id=47092, where an NSW
flag was incorrectly set on an add instruction (which did in fact overflow in
one of the two original contexts), so when SystemZElimCompare removed the
compare with 0 trusting that flag, wrong-code resulted.
There is more that needs to be done in this area as discussed here:
Differential Revision: https://reviews.llvm.org/D86871
Review: Ulrich Weigand, Sanjay Patel
I have fixed up some more ElementCount/TypeSize related warnings in
the following tests:
CodeGen/AArch64/sve-split-extract-elt.ll
CodeGen/AArch64/sve-split-insert-elt.ll
In SelectionDAG::CreateStackTemporary we were relying upon the implicit
cast from TypeSize -> uint64_t when calling MachineFrameInfo::CreateStackObject.
I've fixed this by passing in the known minimum size instead, which I
believe is fine because the associated stack id indicates whether this
is a scalable object or not.
I've also fixed up a case in TargetLowering::SimplifyDemandedBits when
extracting a vector element from a scalable vector. The result is a scalar,
hence it wasn't caught at the start of the function. If the vector is
scalable we just bail out for now.
Differential Revision: https://reviews.llvm.org/D86431
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
When lowering fixed length vector operations for SVE the subvector
operations are used extensively to marshall data between scalable
and fixed-length vectors. This means that sequences like:
extract_subvec(binop(insert_subvec(a), insert_subvec(b)))
are very common. DAGCombine only checks if the resulting binop is
legal or can be custom lowered when undoing such sequences. When
it's custom lowering that is introducing them the result is an
infinite legalise->combine->legalise loop.
This patch extends the isOperationLegalOr... functions to include
a "LegalOnly" parameter to restrict the check to legal operations
only. Although isOperationLegal could be used it's common for
the affected code paths to be visited pre and post legalisation,
so the extra parameter keeps the code tidy.
Differential Revision: https://reviews.llvm.org/D86450
Unwinders may only preserve the lower 64bits of Neon and SVE registers,
as only the registers in the base ABI are guaranteed to be preserved
over the exception edge. The caller will need to preserve additional
registers for when the call throws an exception and the unwinder has
tried to recover state.
For e.g.
svint32_t bar(svint32_t);
svint32_t foo(svint32_t x, bool *err) {
try { bar(x); } catch (...) { *err = true; }
return x;
}
`z0` needs to be spilled before the call to `bar(x)` and reloaded before
returning from foo, as the exception handler may have clobbered z0.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84737
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MLOAD I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-load.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86697
fabs and fneg share a common transformation:
(fneg (bitconvert x)) -> (bitconvert (xor x sign))
(fabs (bitconvert x)) -> (bitconvert (and x ~sign))
This patch separate the code into a single method.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86862
I tried to fix this in:
rG716e35a0cf53
...but that patch depends on the order that we encounter the
magic "x/sqrt(x)" expression in the combiner's worklist.
This patch should improve that by waiting until we walk the
user list to decide if there's a use to skip.
The AArch64 test reveals another (existing) ordering problem
though - we may try to create an estimate for plain sqrt(x)
before we see that it is part of a 1/sqrt(x) expression.
In general, we probably want to try the multi-use reciprocal
transform before sqrt transforms, but x/sqrt(x) is a special-case
because that will always reduce to plain sqrt(x) or an estimate.
The AArch64 tests show that the transform is limited by TLI
hook to patterns where there are 3 or more uses of the divisor.
So this change can result in an extra division compared to
what we had, but that's the intended behvior based on the
current setting of that hook.
Current `v:t = zext(setcc x,y,cc)` will be transformed to `select x, y, 1:t, 0:t, cc`. It misses some opportunities if x's type size is less than `t`'s size. This patch enhances the above transformation.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86687
There is a subtle problem with new statepoint lowering scheme
when base and pointers are the same (see PR46917 for more context):
%1 = STATEPOINT ... %0, %0(tied-def 0)...
if, for some reason, register allocator desides to put two instances
of %0 into two different objects (registers or spill slots), we may
end up with
$reg3 = STATEPOINT ... $reg2, $reg1(tied-def 0)...
and nothing will prevent later passes to sink uses of $reg2 below
statepoint, which is incorrect.
As a short term solution, always put base pointers on stack during
lowering.
A longer term solution may be to rework MIR statepoint format to
avoid GC pointer duplication in statepoint argument list.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D86712
This is the follow up patch for https://reviews.llvm.org/D86183 as we miss to delete the node if NegX == NegY, which has use after we create the node.
```
if (NegX && (CostX <= CostY)) {
Cost = std::min(CostX, CostZ);
RemoveDeadNode(NegY);
return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); #<-- NegY is used here if NegY == NegX.
}
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86689
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
When joining the legal parts of vector arguments into its original value
during the lower of Formal Arguments in SelectionDAGBuilder, the Calling
Convention information was not being propagated for the handling of each
individual parts. The same did not happen when lowering calls, causing a
mismatch.
This patch fixes the issue by properly propagating the Calling
Convention details.
This fixes Bugzilla #47001.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86715
This is the first of a set of DAGCombiner changes enabling strictfp
optimizations. I want to test to waters with this to make sure changes
like these are acceptable for the strictfp case- this particular change
should preserve exception ordering and result precision perfectly, and
many other possible changes appear to be able to as well.
Copied from regular fadd combines but modified to preserve ordering via
the chain, this change allows strict_fadd x, (fneg y) to become
struct_fsub x, y and strict_fadd (fneg x), y to become strict_fsub y, x.
Differential Revision: https://reviews.llvm.org/D85548
We have a gap in our store merging capabilities for shift+truncate
patterns as discussed in:
https://llvm.org/PR46662
I generalized the code/comments for this function in earlier commits,
so we only need ease the type restriction and adjust the address/endian
checking to make this work.
AArch64 lets us switch endian to make sure that patterns are matched
either way.
Differential Revision: https://reviews.llvm.org/D86420
This adapts legalization of intrinsic get.active.lane.mask to the new semantics
as described in D86147. Because the second argument is now the loop tripcount,
we legalize this intrinsic to an 'icmp ULT' instead of an ULE when it was the
backedge-taken count.
Differential Revision: https://reviews.llvm.org/D86302
Also updates isConstOrConstSplatFP to allow the mul(A,-1) -> neg(A)
transformation when -1 is expressed as an ISD::SPLAT_VECTOR.
Differential Revision: https://reviews.llvm.org/D86415
With FMF ( "nsz" and " reassoc") fold X/Sqrt(X) to Sqrt(X).
This is done after targets have the chance to produce a
reciprocal sqrt estimate sequence because that expansion
is probably more efficient than an expansion of a
non-reciprocal sqrt. That is also why we deferred doing
this transform in IR (D85709).
Differential Revision: https://reviews.llvm.org/D86403
D77152 tried to do this but got it wrong in the shift-by-zero case.
D86430 reverted the wrong code. Reimplement the optimization with
different code depending on whether the shift amount is known to be
non-zero (modulo bitwidth).
This improves code quality for fshl tests on AMDGPU, which only has an
fshr instruction.
Differential Revision: https://reviews.llvm.org/D86438
This is a fixup of commit 0819a6416f (D77152) which could
result in miscompiles. The miscompile could only happen for targets
where isOperationLegalOrCustom could return different values for
FSHL and FSHR.
The commit mentioned above added logic in expandFunnelShift to
convert between FSHL and FSHR by swapping direction of the
funnel shift. However, that transform is only legal if we know
that the shift count (modulo bitwidth) isn't zero.
Basically, since fshr(-1,0,0)==0 and fshl(-1,0,0)==-1 then doing a
rewrite such as fshr(X,Y,Z) => fshl(X,Y,0-Z) would be incorrect if
Z modulo bitwidth, could be zero.
```
$ ./alive-tv /tmp/test.ll
----------------------------------------
define i32 @src(i32 %x, i32 %y, i32 %z) {
%0:
%t0 = fshl i32 %x, i32 %y, i32 %z
ret i32 %t0
}
=>
define i32 @tgt(i32 %x, i32 %y, i32 %z) {
%0:
%t0 = sub i32 32, %z
%t1 = fshr i32 %x, i32 %y, i32 %t0
ret i32 %t1
}
Transformation doesn't verify!
ERROR: Value mismatch
Example:
i32 %x = #x00000000 (0)
i32 %y = #x00000400 (1024)
i32 %z = #x00000000 (0)
Source:
i32 %t0 = #x00000000 (0)
Target:
i32 %t0 = #x00000020 (32)
i32 %t1 = #x00000400 (1024)
Source value: #x00000000 (0)
Target value: #x00000400 (1024)
```
It could be possible to add back the transform, given that logic
is added to check that (Z % BW) can't be zero. Since there were
no test cases proving that such a transform actually would be useful
I decided to simply remove the faulty code in this patch.
Reviewed By: foad, lebedev.ri
Differential Revision: https://reviews.llvm.org/D86430
D70867 introduced support for expanding most ppc_fp128 operations. But
sitofp/uitofp is missing. This patch adds that after D81669.
Reviewed By: uweigand
Differntial Revision: https://reviews.llvm.org/D81918
The pattern matching does not account for truncating stores,
so it is unlikely to work at later stages. So we are likely
wasting compile-time with no hope of improvement by running
this later.
This should be NFC in terms of output because the endian
check further down would bail out too, but we are wasting
time by waiting to that point to give up. If we generalize
that function to deal with more than i8 types, we should
not have to deal with the degenerate case.
In SelectionDAGBuilder always translate the fshl and fshr intrinsics to
FSHL and FSHR (or ROTL and ROTR) instead of lowering them to shifts and
ORs. Improve the legalization of FSHL and FSHR to avoid code quality
regressions.
Differential Revision: https://reviews.llvm.org/D77152