Minor refactoring to reduce size of functional change D124309:
look-ahead scoring routines pulled out of VLOperands and formed
new LookAheadHeuristics helper class.
Reviewed By: Alexey Bataev (ABataev), Vasileios Porpodas (vporpo)
Differential Revision: https://reviews.llvm.org/D124313
This patch extends the scope of VPlan to also include the exit (aka
middle) block.
For now, the exit block remains empty, but handling of exit values will
subsequently be moved to VPlan, by adding recipes to model exit values
in the exit block.
As a first step, this will allow fixing #51366.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123457
This patch moves SCEV expansion of steps used by
VPWidenIntOrFpInductionRecipes to the pre-header using
VPExpandSCEVRecipe. This ensures that those steps are expanded while the
CFG is in a valid state. Previously, SCEV expansion may happen during
vector body code-generation, during which the CFG may be invalid,
causing issues with SCEV expansion.
Depends on D122095.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122096
Until now we would only accept a broadcast load pattern if it is only used
by a single vector of instructions.
This patch relaxes this, and allows for the broadcast to have more than one
user vector, as long as all of its uses are internal to the SLP graph and
vectorized.
Differential Revision: https://reviews.llvm.org/D121940
With opaque pointers, the stored value and address can be the same.
Previously the code in VPWidenMemoryInstructionRecipe::onlyFirstLaneDemanded
incorrectly considers stores with matching store and pointer operands as
only demanding the first lane, causing a crash.
This addresses an existing TODO by keeping a mapping of external IR
Value * definitions wrapped in VPValues for use in a VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123700
Currently SLP vectorizer walks through the instructions and selects
3 main classes of values: 1) reduction operations - instructions with same
reduction opcode (add, mul, min/max, etc.), which build the reduction,
2) reduced values - instructions with the same opcodes, but different
from the reduction opcode, 3) extra arguments - all other values,
instructions from the different basic block rather than the root node,
instructions with to many/less uses.
This scheme is not very efficient. It excludes some instructions and all
non-instruction values from the reductions (constants, proficient
gathers), to many possibly reduced values are marked as extra arguments.
Patch improves this process by introducing a bit extended analysis
stage. During this stage, we still try to select 3 classes of the
values: 1) reduction operations - same as before, 2) possibly reduced
values - all instructions from the current block/non-instructions, which
may build a vectorization tree, 3) extra arguments - instructions from
the different basic blocks. Additionally, an extra sorting of the
possibly reduced values occurs to build the scalar sequences which
highly likely will bed vectorized, e.g. loads are grouped by the
distance between them, constants are grouped together, cmp instructions
are sorted by their compare types and predicates, extractelement
instructions are sorted by the vector operand, etc. Also, these groups
are reordered by their length so the longest group is the first in the
list of the possibly reduced values.
The vectorization process tries to emit the reductions for all these
groups. These reductions, remaining non-vectorized possible reduced
values and extra arguments are then combined into the final expression
just like it was before.
Differential Revision: https://reviews.llvm.org/D114171
After D121624 models the pre-header in VPlan, VPExpandSCEVRecipes can be
placed there. This ensures SCEV expansion happens before modifying the
CFG during VPlan execution, when CFG is incomplete.
Depends on D121624.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122095
This patch extends the scope of VPlan to also model the pre-header.
The pre-header can be used to place recipes that should be code-gen'd
outside the loop, like SCEV expansion.
Depends on D121623.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121624
This fixes the code to actually use the location of the instruction, if
available. Previously, SetInsertPoint would overwrite the insert point
set from the instruction.
When creating induction resume values, SCEV queries may rely on
LoopInfo. Make sure vector.body gets added to the loop of the pre-header
during skeleton construction.
%vector.body will be moved to the vector preheader during VPlan
execution.
Fixes#54745.
Update VPInterleavedAccessInfo to use the generic getVectorLoopRegion
helper instead of relying on the entry block being the top-most vector
loop region.
This was exposed by 14e3650f. The recommit of 14e3650f will hit the
problematic code path requiring the workaround.
test case that crashes without the workaround.
During skeleton construction for the epilogue vector loop, generic
helpers use getOrCreateTripCount, which will re-expand the trip count
computation. Instead, re-use the TripCount created during main loop
vectorization.
This reverts the revert commit 2760cdc9c6.
This version pulls in the code to create the vector loop object in VPlan
from D121624.
This is needed because otherwise existing LoopInfo verification will
fail, as a loop block doesn't have in-loop successors now that we
do not replace the branch.
Now that we do not add new loops during skeleton construction, there's
also no need to verify LI there.
The only remaining use was to get the exit block of the loop. Instead of
relying on the loop, use the successor of VectorHeaderBB
(LoopMiddleBlock) directly to set VPTransformState::CFG::ExitB
Depends on D121621.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121623
When MaximizeVectorBandwidth is enabled, we can end up (via calls to
collectUniformsAndScalars/setCostBasedWideningDecision through
calculateRegisterUsage) making widening decisions before we have decided
whether to fold the tail by masking. These decisions will be wrong if we
later decided to fold the tail, for example when the trip count is very
low. It will use incorrect costs for loads that should get masked, using
standard memory operation costs instead.
This still at the moment uses the EmulatedMaskMemRefHack costs (a bit
unfortunately), but the old costs without this change were 1, leading to
too optimistic vectorization.
This slightly changes the way that the MaximizeVectorBandwidth option
works to make it easier to test, always honouring the option if it is
set.
Differential Revision: https://reviews.llvm.org/D120215
Instead of looking up the vector loop using the header, keep track of
the current vector loop in VPTransformState. This removes the
requirement for the vector header block being part of the loop up front.
A follow-up patch will move the code to generate the Loop object for the
vector loop to VPRegionBlock.
Depends on D121619.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121621
Now that all dependencies on creating the latch block up-front have been
removed, there is no need to create it early.
Depends on D121618.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121619
In some case, like in the added test case, we can reach
selectInterleaveCount with loops that actually have a cost of 0.
Unfortunately a loop cost of 0 is also used to communicate that the cost
has not been computed yet. To resolve the crash, bail out if the cost
remains zero after computing it.
This seems like the best option, as there are multiple code paths that
return a cost of 0 to force a computation in selectInterleaveCount.
Computing the cost at multiple places up front there would unnecessarily
complicate the logic.
Fixes#54413.
This patch moves the code to set the correct incoming block for the
backedge value to VPlan::execute.
When generating the phi node, the backedge value is temporarily added
using the pre-header as incoming block. The invalid phi node will be
fixed up during VPlan::execute after main VPlan code generation.
At the same time, the backedge value is also moved to the latch.
This change removes the requirement to create the latch block up-front
for VPWidenInductionPHIRecipe::execute, which in turn will enable
modeling the pre-header in VPlan.
Depends on D121617.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121618
If we vectorize a e.g. store, we leave around a bunch of getelementptrs for the individual scalar stores which we removed. We can go ahead and delete them as well.
This is purely for test output quality and readability. It should have no effect in any sane pipeline.
Differential Revision: https://reviews.llvm.org/D122493
This patch moves the code to set the correct incoming block for the
backedge value to VPlan::execute.
When generating the phi node, the backedge value is temporarily added
using the pre-header as incoming block. The invalid phi node will be
fixed up during VPlan::execute after main VPlan code generation.
At the same time, the backedge value is also moved to the latch.
This change removes the requirement to create the latch block up-front
for VPWidenIntOrFpInductionRecipe::execute, which in turn will enable
modeling the pre-header in VPlan.
As an alternative, the increment could be modeled as separate recipe,
but that would require more work and a bit of redundant code, as we need
to create the step-vector during VPWidenIntOrFpInductionRecipe::execute
anyways, to create the values for different parts.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121617
This simplifies the implementation of eraseInstruction by moving the odd-replace-users-with-undef handling back to the only caller which uses it. This handling was not obviously correct, so add the asserts which make it clear why this is safe to do at all. The result is simpler code and stronger assertions.
The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling). Most of these were fixed over the weekend and have had several days to bake. The last was fixed this morning after being noticed in manual review of test changes yesterday. See the review thread for links to each change.
Original commit message follows:
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
After writing the commit message for 4b1bace28, realized that the mentioned optimization was rather straight forward. We already have the code for scanning a block during region initialization, we can simply keep track if we've seen a stacksave or stackrestore. If we haven't, none of these dependencies are relevant and we can avoid the relatively expensive scans entirely.
This is an extension of commit b7806c to handle one last case noticed in test changes for D118538. Again, this is thought to be a latent bug in the existing code, though this time I have not managed to reduce tests for the original algoritthm.
The prior attempt had failed to account for this case:
%a = alloca i8
stacksave
stackrestore
store i8 0, i8* %a
If we allow '%a' to reorder into the stacksave/restore region, then the alloca will be deallocated before the use. We will have taken a well defined program, and introduced a use-after-free bug.
There's also an inverse case where the alloca originally follows the stackrestore, and we need to prevent the reordering it above the restore.
Compile time wise, we potentially do an extra scan of the block for each alloca seen in a bundle. This is significantly more expensive than the stacksave rooted version and is why I'd tried to avoid this in the initial patch. There is room to optimize this (by essentially caching a "has stacksave" bit per block), but I'm leaving that to future work if it actually shows up in practice. Since allocas in bundles should be rare in practice, I suspect we can defer the complexity for a long while.
Update all places that currently assume the entry block to the plan is
also the vector loop header to use getVectorLoopRegion instead.
getVectorLoopRegion will keep doing the right thing when the pre-header
is modeled explicitly (and becomes the new entry block in the plan).
We can not bitcast pointers across different address spaces. This was
previously fixed in D89577 but then in D93229 an enhancement was added
which peeks further through the ponter operand, opening up the
possibility that address-space violations could be introduced.
Instead of bailing as the previous fix did, simply insert an
addrspacecast cast instruction.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D121787
This patch moves pointer induction handling from VPWidenPHIRecipe to its
own recipe. In the process, it adds all information required to generate
code for pointer inductions without relying on Legal to access the list
of induction phis.
Alternatively VPWidenPHIRecipe could also take an optional pointer to InductionDescriptor.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121615
createInductionResumeValues only uses its loop argument only to get the
pre-header, but the pre-header is already known (we created/cached it
earlier). Remove the unneeded loop argument.
completeLoopSkeleton only uses its loop argument only to get the
pre-header, but the pre-header is already known (we created/cached it
earlier). Remove the unneeded loop argument.
The semantics of an inalloca alloca instruction requires that it not be reordered with a preceeding stacksave intrinsic call. Unfortunately, there's no def/use edge or memory dependence edge. (THe memory point is slightly subtle, but in general a new allocation can't alias with a call which executes strictly before it comes into existance.)
I'd tried to tackle this same case previously in 689babdf6, but the fix chosen there turned out to be incomplete. As such, this change contains a fully revert of the first fix attempt.
This was noticed when investigating problems which surfaced with D118538, but this is definitely an existing bug. This time around, I managed to reduce a couple of additional cases, including one which was being actively miscompiled even without the new scheduling change. (See test diffs)
Compile time wise, we only spend extra time when seeing a stacksave (rare), and even then we walk the block at most once per schedule window extension. Likely a non-issue.
This fixes an active miscompile visible in the test changes. The basic problem is that the scheduling dependency graph didn't have any edges for control dependence within a single basic block. The result is that we could (and in some rare cases *did*) perform reorderings within a block which could introduce new undefined behavior along paths which didn't previously contain any.
Impact wise, we have two major cases where control is not guaranteed to reach a later instruction in the block: may throw calls, and calls containing infinite loops.
* The former case was mostly covered by the memory dependencies, and to trigger require a function which can throw, but not write to memory. In theory, such a case is possible, but not likely in practice.
* The later case is likely more of an issue in practice. After this code was first written, we changed the IR semantics to allow well defined infinite loops without satisifying mustprogress. Even for C/C++ - which do imply mustprogress - recent changes to how we treat atomics (e.g. an atomic read does not always imply a write) could expose this issue. I'm a bit shocked we don't seem to have a bug report which hit this in real code actually.
Compile time wise, this results in a single extra scan of the scheduling window in the common case. Since we stop scanning at the next instruction which isn't guaranteed to execute, no matter what order we traverse instructions in, we scan the block once. The exception to this is that when we extend the scheduling window downwards, we invalidate all dependencies, and thus rescan. So the potentially expensive case is when we a call in a big schedule window which is frequently extended. We could optimize this case (by caching the last instruction not guaranteeed to transfer execution and scanning only the extended window) and starting there), but I decided to leave the complexity until it mattered. That same case is already degenerate with memory dependences which is more expensive than the control dependence scan.
We could also consider combining the memory dependence and control dependence sets to reduce memory usage, but since it complicates the code slightly and makes debugging a bit harder, I went with the simplest scheme for now.
This was noticed while trying to understand the failures reported against D118538, but is not otherwise related to that change.
Update functions that previously took a loop pointer but only to get the
pre-header. Instead, pass the block directly. This removes the
requirement for the loop object to be created up-front.
I keep thinking this assumption is probably exploitable for a bug in the existing implementation, but all of my attempts at writing a test case have failed. So for the moment, just document this very subtle assumption.
This patch fixes:
llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp:3917:13: error:
unused function 'needToScheduleSingleInstruction'
[-Werror,-Wunused-function]
This reverts commit 1cfa986d68. See https://github.com/llvm/llvm-project/issues/54256 for why I'm discontinuing the project.
Seperately, it turns out that while this patch does correctly preserve MSSA, it's correct only at the end of the pass; not between vectorization attempts. Even if we decide to resurrect this, we'll need to fix that before reapplying.
Splat loads are inexpensive in X86. For a 2-lane vector we need just one
instruction: `movddup (%reg), xmm0`. Using the standard Splat score leads
to worse code. This patch adds a new score dedicated for splat loads.
Please note that a splat is usually three IR instructions:
- It is usually a load and 2 inserts:
%ld = load double, double* %gep
%ins1 = insertelement <2 x double> poison, double %ld, i32 0
%ins2 = insertelement <2 x double> %ins1, double %ld, i32 1
- But it can also be a load, an insert and a shuffle:
%ld = load double, double* %gep
%ins = insertelement <2 x double> poison, double %ld, i32 0
%shf = shufflevector <2 x double> %ins, <2 x double> poison, <2 x i32> zeroinitializer
Because of this some of the lit tests contain more IR instructions.
Differential Revision: https://reviews.llvm.org/D121354
No need to schedule entry nodes where all instructions are not memory
read/write instructions and their operands are either constants, or
arguments, or phis, or instructions from others blocks, or their users
are phis or from the other blocks.
The resulting vector instructions can be placed at
the beginning of the basic block without scheduling (if operands does
not need to be scheduled) or at the end of the block (if users are
outside of the block).
It may save some compile time and scheduling resources.
Differential Revision: https://reviews.llvm.org/D121121
This uses the existing VPlan helpers to check whether there are scalar
uses of a phi recipe. It remove one of the few remaining dependencies on
the cost model from VPlan code generation.
Depends on D121612.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121613
VPInterleaveRecipe only uses the first lane of the address. Add
onlyFirstLaneUsed implementation. This is needed for a follow-up patch.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121612
This patch ensures scalars (except for uniforms) are no
longer collected (prior to LVP planning phase) for
scalable vectorization.
This is to avoid the chances of generating scalarized
instructions later (during LVP execute phase) as they
are not supported for scalable vectorization.
Relevant test has also been added.
Differential Revision: https://reviews.llvm.org/D121452
No need to schedule entry nodes where all instructions are not memory
read/write instructions and their operands are either constants, or
arguments, or phis, or instructions from others blocks, or their users
are phis or from the other blocks.
The resulting vector instructions can be placed at
the beginning of the basic block without scheduling (if operands does
not need to be scheduled) or at the end of the block (if users are
outside of the block).
It may save some compile time and scheduling resources.
Differential Revision: https://reviews.llvm.org/D121121
This initial patch adds code to preserve MemorySSA through a run of SLP vectorizer. The eventual plan is to use MemorySSA to accelerate SLP's memory dependence checking, but we're a ways from that. In particular, this patch is correct, but really slow. It's being landed so that we can work incrementally in tree, not because it's expected to be useful to anyone just yet.
The broader effort is being tracked in https://github.com/llvm/llvm-project/issues/54256. Its worth noting expicitly that this may not work out, and if not, we will be reverting all of the MSSA support in SLP at some point in the next few weeks.
Differential Revision: https://reviews.llvm.org/D117926
Update places still referencing LoopVectorBody to use the vector loop to
get the vector loop header. This is needed to move vector loop
code-generation to VPlan completely, which in turn is needed to model
pre-header & exit blocks in VPlan as well.
The insertion point for the builder used during VPlan code generation is
set during code generation. Setting the insert point here is dead code
and can be removed.
This patch is a follow-up to D115953. It updates optimizeInductions
to also introduce new VPScalarIVStepsRecipes if an IV has both vector
and scalar uses.
It updates all uses that only need scalar values to use the newly
created recipe for the scalar steps.
This completes untangling of VPWidenIntOrFpInductionRecipe
code-generation. Now the recipe *only* creates the widened vector
values, as it says on the tin.
The code to genereate IR has been moved directly to
VPWidenIntOrFpInductionRecipe::execute.
Note that the recipe has been updated to hold a reference to
ScalarEvolution, which is needed to expand the step, until we can place
the corresponding SCEV expansion in the pre-header.
Depends on D120827.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D120828
This patch adds a helper to check if a recipe only uses scalars of a
given operand. This is similar to onlyFirstLaneUsed, which was
introduced earlier.
By default, usesScalars falls back on onlyFirstLaneUsed.
Will be used by D120828.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D120827
Single value phis won't be modeled in VPlan. If the phi only gets used
outside the loop, the current code misses the fact that the incoming
value is not dead. Update the code to also look through such phis to
check for outside users.
Fixes#54266
The analysis passes output function name encapsulated in `'` braces,
but LV uses `"`. Harmonizing this may help in creating an update script
for the LV costmodel test checks.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D121105
Root issue which triggered the revert was fixed in 689bab. No changes in the reapplied patch.
Original commit message follows:
SLP currently schedules all instructions within a scheduling window which stretches from the first instr
uction potentially vectorized to the last. This window can include a very large number of unrelated instruct
ions which are not being considered for vectorization. This change switches the code to only schedule the su
b-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
While a collection of allocas are technically vectorizeable - by forming a wider alloca - this was not a transform SLP actually knows how to do. Instead, we were forming a bundle with missing dependencies, and then relying on the scheduling code to preserve program order if multiple instructions were scheduleable at once. I haven't been able to write a test case, but I'm 99% sure this was wrong in some edge case.
The unknown op case was flowing down the shufflevector path. This did result in some splat handling being lost with this change, but the same lack of splat handling is visible in a whole bunch of simple examples for the gather path. I didn't consider this interesting to fix given how narrow the splat of allocas case is.
Instead of relying on underlying instructions, this patch updates
VPScalarIVStepsRecipe to only store the required type information.
This removes access to unrelated information, as well as avoiding issues
with the same underlying instruction being shared by multiple recipes.
This change should only change the debug output and not cause any
codegen changes, hence NFCI.
Currently bottom-to-top reordering analysis counts orders of the
operands and then adds natural order counts for the operand users. It is
very conservative, this the user nodes themselves may require
reordering. Patch improves bottom-to-top analysis by checking for the
user nodes if they require/allows the reordring. If the user node must
be reordered, has reused scalars, is an alternate op vectorization node,
is a non-ordered gather node or may allow reordering because of the
reordered operands, such node is considered as the node that allows
reodring and is not counted as a node with the natural order.
Differential Revision: https://reviews.llvm.org/D120492
This reverts the revert commit ff93260bf6.
The underlying issue causing the PPC bot failures has been fixed in
cbaac14734 and a corresponding test case has been added in
ad2cad1c52.
Original message:
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
Exit values of vector inductions are generated completely independent of
the induction recipes. Consider them for removal, if they are not used
in loop.
This fixes a crash exposed by 49b23f451c.
SLP makes very heavy use of aliasing queries to construct pointer dependencies for scheduling purposes. AA internally usings pointerMayBeCaptured to prove some noalias results. In a local profile, we were spending about 4% of total O2 time in capture tracking. By using BatchAA interface - which caches capture results - this drops to 2%.
Note that there is no invalidation of BatchAA here. This assumes that no transformation done by SLP invalidates alias or capture results. This is the same assumption made by the existing AliasCache, so this is not a new assumption in the code.
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This can be used to explicitly model VPValues that depend on SCEV
expansion, like the step for inductions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116288
This patch adds a new transform to remove dead recipes. For now, it only
removes dead recipes in the header, to keep the number tests that require
updating manageable. Future patches will extend this to remove dead
recipes across the whole plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118051
Currently, SLP can insert "shuffle" instruction beween PHI and Landing pad instruction. The problem is demonstrated by LIT test. The solution is to adjust insertion point once we are done with PHI generation.
Differential Revision: https://reviews.llvm.org/D120552
The min/max intrinsic cost is currently too low because in the cost calculation
we subtract the cost of the vector compare as we will not emit it.
For the cost of the vector compare we are currently passing BAD_ICMP_PREDICATE
which returns 3, the worst case cost.
I think we should be passing VecPred instead, since we know the predicates of
the compare instr.
I think this is related to commit b3b993a7ad which introduced the predicate
argument to getCmpSelInstrCost().
https://reviews.llvm.org/rGb3b993a7ad817c3c5801341fa78f34332900eb83
Differential Revision: https://reviews.llvm.org/D120439
This change uses instruction's comesBefore method to simplify the code significantly. There's little compile time concern here because getSpillCost already calls comesBefore on every basic block which contains a vectorization candidate. The only additional times we'll build basic block ordering is when we can't schedule a vector candidate anywhere in the containing block.
Differential Revision: https://reviews.llvm.org/D120364
This cap was first added in 848c1aa45 (back in 2015). Per the original commit message, the purpose was to avoid a compile time explosion in long basic blocks. The algorithmic problem in scheduling has now been fixed in 0539a26d.
In the meantime, the code has rotten fairly badly. Some intermediate refactoring caused the size to only be incremented if *both* iterators advance in the window search. This causes the size to be badly undercounted when near one end of a basic block. We no longer have any test which exercises the logic in an intentional way; there's one test which differs with this change, but the changes appear fairly orthoganol to the purpose of the test file.
Unfortunately, we no longer have the original motivating example, so it's possible that it also hits some other issue. I tested locally with a large example, but even at it's worst, that one doesn't demonstrate anything too extreme even without the algorithmic fix. It's clearly faster with, but only by ~20% which doesn't seem in line with the original commit message. If regressions with this patch are seen, please file a bug and I'll try to fix any other algorithmic problems which fall out.
A call to getInsertIndex() in getTreeCost() is returning None,
which causes an assert because a non-constant index value for
insertelement was not expected. This case occurs when the
insertelement index value is defined with a PHI.
Differential Revision: https://reviews.llvm.org/D120223
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
Extends getReductionOpChain to look through Phis which may be part of
the reduction chain. adjustRecipesForReductions will now also create a
CondOp for VPReductionRecipe if the block is predicated and not only if
foldTailByMasking is true.
Changes were required in tryToBlend to ensure that we don't attempt
to convert the reduction Phi into a select by returning a VPBlendRecipe.
The VPReductionRecipe will create a select between the Phi and the reduction.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D117580
If the alternate cmp instruction is a swapped predicate of the main cmp
instruction, need to generate alternate instruction, not the one with
the swapped predicate. Also, the lane with the alternate opcode should
be selected only, if the corresponding operands are not compatible.
Correctness confirmed:
https://alive2.llvm.org/ce/z/94BG66
Differential Revision: https://reviews.llvm.org/D119855
Particularly this breaks vectorization of insertelements where some of
intermediate (i.e. not last) insertelements are used externally.
Fixes PR52275
Fixes#51617
Differential Revision: https://reviews.llvm.org/D119679
Note that this doesn't actually cause the top level predicate to become a non-union just yet.
The * above comes from a case in the LoopVectorizer where a predicate which is later proven no longer blocks vectorization due to a change from checking if predicates exists to whether the predicate is possibly false.
This reverts commit 77a0da926c as we've
received multiple reports of this significantly impacting performance,
in ways that don't seem to just be target specific cost models going
wrong. I would offer some reproducers, but the test changes here seem to
be full of them!
Reverting for now and hopefully we can remove the "hack" more carefully
as we go.
Move out the induction step creation from emitTransformedIndex to the
callers. In some places (e.g. widenIntOrFpInduction) the step is already
created. Passing the step in ensures the steps are kept in sync.
This makes the function independent of shared state in ILV (ensures no
new dependencies on things like the cost model are introduced) and allows
for use directly in recipe's ::execute functions.
The vectorizer will choose at times to "vectorize" loops with a scalar
factor (VF=1) with interleaving (IC > 1). This can occasionally produce
better code than the unroller (notable for reductions where it can
produce independent reduction chains that are combined after the loop).
At times this is not very beneficial though, for example when runtime
checks are needed or when the scalar code requires predication.
This addresses the second point, preventing the vectorizer from
interleaving when the scalar loop will require predication. This
prevents it from making a bit of a mess, that is worse than the original
and better left for the unroller to unroll if beneficial. It helps
reverse some of the regressions from D118090.
Differential Revision: https://reviews.llvm.org/D118566
D43208 extracted `useEmulatedMaskMemRefHack()` from legality into cost model.
What it essentially does is prevents scalarized vectorization of masked memory operations:
```
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
```
While i don't really understand about what specifically `is completely broken`
was talking about, i believe that at least on X86 with AVX2-or-later,
this is no longer true. (or at least, i would like to know what is still broken).
So i would like to follow suit after D111460, and like wise disable that hack for AVX2+.
But since this was added for X86 specifically, let's just instead completely remove this hack.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114779
In scalarizeInstruction(), isUniformAfterVectorization is used to detect
cases where it is sufficient to always access the first lane. This
should map directly checking whether the operand is a uniform replicate
recipe.
Differential Revision: https://reviews.llvm.org/D116654
We can simply compute the value of this field on demand. Doing so clarifies the behavior when one of the instructions within a bundle doesn't have valid dependencies. I vaguely thing this could change behavior slightly, but none of the test cases are affected, and my attempts to write one by hand have failed.
This also minorly reduces memory usage, but that's a secondary value at best.
This adds the assertion that all items in the ready list are in-fact scheduleable entities ready to be scheduled. This involves changing the ReadyInsts structure to be a set, and fixing a couple places where we left nodes on the list when they were no longer ready.
The idea here is to have a verify routine we can call during scheduling to ensure broken invariants are reported. The intent is to help in debugging scheduling bugs.
At the moment, only the most basic properties are checked as adding several I thought held reported failures.
When the main loop is e.g. VF=vscale x 1 and the epilogue VF cannot
be any smaller, the vectorizer should try to estimate how many lanes are
executed at runtime and allow a suitable fixed-width VF to be chosen. It
can use VScaleForTuning to figure out what a suitable fixed-width VF could
be. For the case where the main loop VF is VF=vscale x 1, and VScaleForTuning=8,
it could still choose an epilogue VF upto VF=4.
This was a bit tricky to test, so this patch also introduces a wrapper
function to get 'VScaleForTuning' by also considering vscale_range.
If min and max are equal, then that will be the vscale we compile for.
It makes little sense to tune for a different width if the code
will not be portable for other widths.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D118709
Compiler adds the estimation for the external uses during operands
reordering analysis, which makes it tend to prefer duplicates in the
lanes rather than diamond/shuffled match in the graph. It changes the sizes of
the vector operands and may prevent some vectorization. We don't need
this kind of estimation for the analysis phase, because we just need to
choose the most compatible instruction and it does not matter if it has
external user or used in the non-matching lane. Instead, we count the number
of unique instruction in the lane and see if the reassociation changes
the number of unique scalars to be power of 2 or not. If we have power
of 2 unique scalars in the lane, it is considered more profitable rather
than having non-power-of-2 number of unique scalars.
Metric: SLP.NumVectorInstructions
test-suite :: MultiSource/Benchmarks/FreeBench/distray/distray.test 70.00 86.00 22.9%
test-suite :: External/SPEC/CFP2017rate/544.nab_r/544.nab_r.test 346.00 353.00 2.0%
test-suite :: External/SPEC/CFP2017speed/644.nab_s/644.nab_s.test 346.00 353.00 2.0%
test-suite :: MultiSource/Benchmarks/mediabench/gsm/toast/toast.test 235.00 239.00 1.7%
test-suite :: MultiSource/Benchmarks/MiBench/telecomm-gsm/telecomm-gsm.test 235.00 239.00 1.7%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 8723.00 8834.00 1.3%
test-suite :: MultiSource/Applications/JM/ldecod/ldecod.test 1051.00 1064.00 1.2%
test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test 1628.00 1646.00 1.1%
test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test 1628.00 1646.00 1.1%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 9100.00 9184.00 0.9%
test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test 3565.00 3577.00 0.3%
test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test 3565.00 3577.00 0.3%
test-suite :: External/SPEC/CFP2017rate/511.povray_r/511.povray_r.test 4235.00 4245.00 0.2%
test-suite :: MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4.test 1996.00 1998.00 0.1%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 1671.00 1672.00 0.1%
test-suite :: MultiSource/Benchmarks/Prolangs-C/TimberWolfMC/timberwolfmc.test 783.00 782.00 -0.1%
test-suite :: SingleSource/Benchmarks/Misc/oourafft.test 69.00 68.00 -1.4%
test-suite :: External/SPEC/CINT2017speed/641.leela_s/641.leela_s.test 207.00 192.00 -7.2%
test-suite :: External/SPEC/CINT2017rate/541.leela_r/541.leela_r.test 207.00 192.00 -7.2%
test-suite :: External/SPEC/CINT2017rate/531.deepsjeng_r/531.deepsjeng_r.test 89.00 80.00 -10.1%
test-suite :: External/SPEC/CINT2017speed/631.deepsjeng_s/631.deepsjeng_s.test 89.00 80.00 -10.1%
test-suite :: MultiSource/Benchmarks/mediabench/jpeg/jpeg-6a/cjpeg.test 260.00 215.00 -17.3%
test-suite :: MultiSource/Benchmarks/MiBench/consumer-jpeg/consumer-jpeg.test 256.00 211.00 -17.6%
MultiSource/Benchmarks/Prolangs-C/TimberWolfMC - pretty the same.
SingleSource/Benchmarks/Misc/oourafft.test - 2 <2 x > loads replaced by
one <4 x> load.
External/SPEC/CINT2017speed/641.leela_s - function gets vectorized and
not inlined anymore.
External/SPEC/CINT2017rate/541.leela_r - same
xternal/SPEC/CINT2017rate/531.deepsjeng_r - changed the order in
multi-block tree, the result is pretty the same.
External/SPEC/CINT2017speed/631.deepsjeng_s - same.
MultiSource/Benchmarks/mediabench/jpeg/jpeg-6a - the result is the same
as before.
MultiSource/Benchmarks/MiBench/consumer-jpeg - same.
Differential Revision: https://reviews.llvm.org/D116688
Added support for alternate ops vectorization of the cmp instructions.
It allows to vectorize either cmp instructions with same/swapped
predicate but different (swapped) operands kinds or cmp instructions
with different predicates and compatible operands kinds.
Differential Revision: https://reviews.llvm.org/D115955
Added support for alternate ops vectorization of the cmp instructions.
It allows to vectorize either cmp instructions with same/swapped
predicate but different (swapped) operands kinds or cmp instructions
with different predicates and compatible operands kinds.
Differential Revision: https://reviews.llvm.org/D115955
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
For some reason we limited the epilogue VF to be fixed-width, but there
is not necessarily a reason for doing so. If the main VF=vscale x 16, the
epilogue VF could be either fixed-width, or a scalable VF upto vscale x 8.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D118688
Added support for alternate ops vectorization of the cmp instructions.
It allows to vectorize either cmp instructions with same/swapped
predicate but different (swapped) operands kinds or cmp instructions
with different predicates and compatible operands kinds.
Differential Revision: https://reviews.llvm.org/D115955
This removes another instance of recipe execution still relying on
the cost model.
Depends on D116554.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D116656
Added support for alternate ops vectorization of the cmp instructions.
It allows to vectorize either cmp instructions with same/swapped
predicate but different (swapped) operands kinds or cmp instructions
with different predicates and compatible operands kinds.
Differential Revision: https://reviews.llvm.org/D115955
This removes the remaining dependence on LoopVectorizationCostModel from
buildScalarSteps and is required so it can be moved out of ILV.
It also improves allows us to remove a few unneeded instructions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116554
This patch tries to use an existing VPWidenCanonicalIVRecipe
instead of creating another step-vector for canonical
induction recipes in widenIntOrFpInduction.
This has the following benefits:
1. First step to avoid setting both vector and scalar values for the
same induction def.
2. Reducing complexity of widenIntOrFpInduction through making things
more explicit in VPlan
3. Only need to splat the vector IV for block in masks.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116123
This reverts commit db49a78900. The reasoning in the patch applied to a downstream branch, and I got myself confused when trying to split apart pieces. Thankfully, the assert was simply weaker than the actual invariant currently upstream which is that ReadyInsts is not empty.
The fact we could have a block with a valid scheduling window, but nothing to schedule was surprising to me. After digging through the code, this can only happen if we don't find anything to directly vectorize. However, the reduction handling code relies on this mode, so we can't simply consider such trees unvectorizeable. The assert conveys both that this situation can happen, but also that it can *only* happen for an immediate gather.
Context: We built the bundle before deciding that vectorization of a bundle is possible. A side effect of bundle construction is manipulating the scheduling window, so a bundle which isn't vectorizable can cause the creation or expansion of a scheduling window.
No need to reorder the top nodes, if they are not stores or
insertelement instructions and each node should be analized only
once, when the bottom-to-top analysis is performed.
We still endup with extractelements for the top node scalars and
the final shuffle just adds an extra cost and currently
crashes the compiler for PHI nodes.
Differential Revision: https://reviews.llvm.org/D116760
This explicitly records whether a scalar IV is needed in the
VPWidenIntOrFpInductionRecipe, to remove a dependence on the cost-model
during its ::execute.
It will also be used in D116123 to determine if a vector phi will be
generated.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118167
Use shufflevector to do the subvector extracts. This allows a lot more
load merging on AMDGPU and also on NVPTX when <2 x half> is involved.
Differential Revision: https://reviews.llvm.org/D117219
isCandidateForEpilogueVectorization will currently return false for loops
which contain reductions. This patch removes this restriction and makes
the following changes to support epilogue vectorisation with reductions:
- `fixReduction`: If fixReduction is being called during vectorisation of the
epilogue, the phi node it creates will need to additionally carry incoming
values from the middle block of the main loop.
- `createEpilogueVectorizedLoopSkeleton`: The incoming values of the phi
created by fixReduction are updated after the vec.epilog.iter.check block
is added. The phi is also moved to the preheader of the epilogue.
- `processLoop`: The start value of any VPReductionPHIRecipes are updated before
vectorising the epilogue loop. The getResumeInstr function added to the ILV
will return the resume instruction associated with the recurrence descriptor.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D116928
This patch updates createBlockInMask to always generate
VPWidenCanonicalIVRecipe and adds a transform to optimize it away later,
if it is not needed.
This is a step towards breaking up VPWidenIntOrFpInductionRecipe and
explicitly distinguishing between vector phis and scalarizing.
Split off from D116123.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117140
This patch adds VPWidenIntOrFpInductionRecipe::isCanonical to check if
an induction recipe is canonical. The code is also updated to use it
instead of isCanonicalID.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117551
After resetting the start value of the canonical IV, it might not be
canonical any more. Add an assertion to make sure it is only used by its
increment, to avoid potential mis-use. Suggested in D117140.
When SVE is enabled for AArch64 targets it makes more sense to use the
get.active.lane.mask intrinsic, because SVE has an exact 1-1 mapping
from the intrinsic to the 'whilelo' instruction for legal vector types.
This instruction neatly takes overflow into account as well. This patch
fixes an issue in VPInstruction::generateInstruction that assumed we are
only dealing with fixed-width vectors.
Differential Revision: https://reviews.llvm.org/D117109
After d4a8fc3a87 LV stopped adding metadata to disable runtime
unrolling to the vectorized epilogue loop. This was missed because
278aa65cc4 removed the relevant test coverage.
This patch fixes that by adding the relevant metadata after
vector loop generation.
This reverts the revert commit 073c27b5e5.
A reduced test case has been added in 5e4966cbae and the code has
been updated to handle the case where getInductionOpcode returns
BinaryOpsEnd. In this case, the original code was always using
Instruction::Add. Do the same in the patch.
Note this commit may slightly change the value naming, because it now
also assigns the 'induction' name in the floating point case.
Causes a crash with the following (creduce'd) test-case:
clang -O3 '--target=aarch64-grtev4-linux-gnu' -xc - -c -o /dev/null <<EOF
int *e;
int f;
int g() {
int h;
int *j = 0;
while (&f - j > 0) {
int k;
k = j;
if (e == j && *e)
k = 5;
h = k;
j++;
}
return h;
}
EOF
This reverts commit 7ce48be0fd.
This patch adds a new BranchOnCount VPInstruction opcode with 2
operands. It first compares its 2 operands (increment of canonical
induction and vector trip count), followed by a branch to either the
exit block or back to the vector header.
It must be the last recipe in the exit block of the topmost vector loop
region.
This extracts parts from D113224 and was discussed in D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116479
This is required to query the legality more precisely in the LoopVectorizer.
This adds another TTI function named 'forceScalarizeMaskedGather/Scatter'
function to work around the hack introduced for MVE, where
isLegalMaskedGather/Scatter would return an answer by second-guessing
where the function was called from, based on the Type passed in (vector
vs scalar). The new interface makes this explicit. It is also used by
X86 to check for vector widths where gather/scatters aren't profitable
(or don't exist) for certain subtargets.
Differential Revision: https://reviews.llvm.org/D115329
The code in VPWidenCanonicalIVRecipe::execute only worked for fixed-width
vectors due to the way we generate the values per lane. This patch changes
the code to use a combination of vector splats and step vectors to get
the same result. This then works for both fixed-width and scalable vectors.
Tests that exercise this code path for scalable vectors have been added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
Differential Revision: https://reviews.llvm.org/D113180
This patch fixes up an issue with InnerLoopVectorizer::getOrCreateVectorTripCount
whereby we weren't correctly generating the runtime trip count
for scalable vectors when tail-folding.
It also removes some asserts in the tail-folding path for cases when
the VF is not scalable.
In this patch I have only permitted tail-folding to be enabled
explicitly for scalable vectors when the user has specified one
of the following flags:
-prefer-predicate-over-epilogue=predicate-dont-vectorize
-prefer-predicate-over-epilogue=predicate-else-scalar-epilogue
For now it's best not to enable tail-folding with scalable vectors for
low trip counts or when optimising for code size, since there has been
no analysis on whether this is worth it.
Various tests have been added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
Transforms/LoopVectorize/AArch64/sve-tail-folding-forced.ll
The tests cannot be target independent because they require masked
load/store support, i.e. TTI.isLegalMaskedLoad and TTI.isLegalMaskedStore
need to return true.
Differential Revision: https://reviews.llvm.org/D113003
There is no need to sort inserted instructions by dominance, as the
deletion loop still requires RAUW with undef before deleting. Removing
instructions in reverse insertion order should still insure that the
number of uselist updates is kept to a minimum.
No need to include the order of the scalars beeing used as part of the
alternate vectorization into account when trying to reorder the whole
graph. Such elements better to reorder in the following phase because
the subtree still ends up in shuffle.
Part of D116688, fixes the regression in D116690.
Differential Revision: https://reviews.llvm.org/D116740
There is a bug in the reordering analysis stage. If the element with the
given hash is not added to the map but has the same number of APOs and
instructions with same parent, but different instruction opcode, it will
be initalized with default values and then the counter is increased by
1. But the lane is not updated and default to 0 instead of the actual
`Lane` value. It leads to the fact that the analysis is useless in
many cases and default to lane 0 instead of actual lane with the
minimum amount of APO operands.
Differential Revision: https://reviews.llvm.org/D116690
This was originally added in rG22174f5d5af1eb15b376c6d49e7925cbb7cca6be
although that patch doesn't really mention any reasons for ignoring the
pointer type in this calculation if the memory access isn't consecutive.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D115356
At the moment, the primary induction variable for the vector loop is
created as part of the skeleton creation. This is tied to creating the
vector loop latch outside of VPlan. This prevents from modeling the
*whole* vector loop in VPlan, which in turn is required to model
preheader and exit blocks in VPlan as well.
This patch introduces a new recipe VPCanonicalIVPHIRecipe to represent the
primary IV in VPlan and CanonicalIVIncrement{NUW} opcodes for
VPInstruction to model the increment.
This allows us to partly retire createInductionVariable. At the moment,
a bit of patching up is done after executing all blocks in the plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113223
For loops that contain in-loop reductions but no loads or stores, large
VFs are chosen because LoopVectorizationCostModel::getSmallestAndWidestTypes
has no element types to check through and so returns the default widths
(-1U for the smallest and 8 for the widest). This results in the widest
VF being chosen for the following example,
float s = 0;
for (int i = 0; i < N; ++i)
s += (float) i*i;
which, for more computationally intensive loops, leads to large loop
sizes when the operations end up being scalarized.
In this patch, for the case where ElementTypesInLoop is empty, the widest
type is determined by finding the smallest type used by recurrences in
the loop instead of falling back to a default value of 8 bits. This
results in the cost model choosing a more sensible VF for loops like
the one above.
Differential Revision: https://reviews.llvm.org/D113973
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
Setting the loop metadata for the vector loop after VPlan execution
allows generating the full loop body during VPlan execution. This is in
preparation for D113224.
Rather than checking for nounwind in particular, make sure the
instruction is guaranteed to transfer execution, which will also
handle non-willreturn calls correctly.
Fixes https://github.com/llvm/llvm-project/issues/52950.
VPWidenCanonicalIVRecipe does not create PHI instructions, so it does
not need to be placed in the phi section of a VPBasicBlock.
Also tidies the code so the WidenCanonicalIV recipe and the
compare/lane-masks are created in the header.
Discussed D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116473
Need to clear CurrentOrder order mask if it is determined that
extractelements form identity order and need to use a vector-like
construct when iterating over ordered entries in the reorderTopToBottom
function.
This patch adds a new prepareToExecute helper to set up live-ins, so
VPTransformState doesn't need to hold values like TripCount.
This also requires making the trip count operand for ActiveLaneMask
explicit in VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116320
We should not lose analysis precision if an 'add' has both no-wrap
flags (nsw and nuw) compared to just one or the other.
This patch is modeled on a similar construct that was added with
D59386.
I don't think it is possible to expose a problem with an unsigned
compare because of the way this was coded (nuw is handled first).
InstCombine has an assert that fires with the example from:
https://github.com/llvm/llvm-project/issues/52884
...because it was expecting InstSimplify to handle this kind of
pattern with an smax.
Fixes#52884
Differential Revision: https://reviews.llvm.org/D116322
Not all header phis widen the phi, e.g. like the new
VPCanonicalIVPHIRecipe in D113223. To let those recipes also inherit
from a phi-like base class, add a more generic VPHeaderPHIRecipe
abstract base class.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116304
By creating the header and latch blocks up front and adding blocks and
recipes in between those 2 blocks we ensure that the entry and exits of
the plan remain valid throughout construction.
In order to avoid test changes and keep printing of the plans the same,
we use the new header block instead of creating a new block on the first
iteration of the loop traversing the original loop.
We also fold the latch into its predecessor.
This is a follow up to a post-commit suggestion in D114586.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115793
The availability of SVE should be sufficient to enable scalable
auto-vectorization.
This patch adds a new TTI interface to query the target what style of
vectorization it wants when scalable vectors are available. For other
targets than AArch64, this currently defaults to 'FixedWidthOnly'.
Differential Revision: https://reviews.llvm.org/D115651
Need to check for the number of the unique non-constant values since the
unique values may include several constants.
Differential Revision: https://reviews.llvm.org/D115939
Need to check for the number of the unique non-constant values since the
unique values may include several constants.
Differential Revision: https://reviews.llvm.org/D115939