The only subexpression that is considered an error now is TypoExpr, but
we plan to add expressions with errors to improve editor tooling on broken
code. We intend to use the same mechanism to guard against spurious
diagnostics on those as well.
See the follow-up revision for an actual usage of the flag.
Original patch from Ilya.
Reviewers: sammccall
Reviewed By: sammccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65591
Module.h takes 86ms to parse, mostly parsing the class itself. Avoid it
if possible. ASTContext.h depends on ExternalASTSource.h.
A few NFC changes were needed to make this possible:
- Move ASTSourceDescriptor to Module.h. This needs Module to be
complete, and seems more related to modules and AST files than
external AST sources.
- Move "import complete" bit from Module* pointer int pair to
NextLocalImport pointer. Required because PointerIntPair<Module*,...>
requires Module to be complete, and now it may not be.
Reviewed By: aaron.ballman, hans
Differential Revision: https://reviews.llvm.org/D75784
a dependent context.
This matches the GCC behavior.
We track the enclosing template depth when determining whether a
statement expression is within a dependent context; there doesn't appear
to be any other reliable way to determine this.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
Fix a bug in IRGen where it wasn't destructing compound literals in C
that are ObjC pointer arrays or non-trivial structs. Also diagnose jumps
that enter or exit the lifetime of the compound literals.
rdar://problem/51867864
Differential Revision: https://reviews.llvm.org/D64464
isSameEntity was missing constraints checking, causing constrained overloads
to not travel well accross serialization. (bug #45115)
Add constraints checking to isSameEntity.
As per comment on https://reviews.llvm.org/D72860, it is suggested to
revert this change in the meantime, since it has introduced regression.
This reverts commit 83f4c3af02.
Summary:
This changes introduces an enum to represent dependencies as a bitmask
and extract common patterns from code that computes dependency bits into
helper functions.
Reviewers: rsmith, martong, shafik, ilya-biryukov, hokein
Subscribers: hokein, sammccall, Mordante, riccibruno, merge_guards_bot, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71920
This swaps out the OpenMPDefaultClauseKind enum with a
llvm::omp::DefaultKind enum which is stored in OMPConstants.h.
This should not change any functionality.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D74513
This patch implements an almost complete handling of OpenMP
contexts/traits such that we can reuse most of the logic in Flang
through the OMPContext.{h,cpp} in llvm/Frontend/OpenMP.
All but construct SIMD specifiers, e.g., inbranch, and the device ISA
selector are define in `llvm/lib/Frontend/OpenMP/OMPKinds.def`. From
these definitions we generate the enum classes `TraitSet`,
`TraitSelector`, and `TraitProperty` as well as conversion and helper
functions in `llvm/lib/Frontend/OpenMP/OMPContext.{h,cpp}`.
The above enum classes are used in the parser, sema, and the AST
attribute. The latter is not a collection of multiple primitive variant
arguments that contain encodings via numbers and strings but instead a
tree that mirrors the `match` clause (see `struct OpenMPTraitInfo`).
The changes to the parser make it more forgiving when wrong syntax is
read and they also resulted in more specialized diagnostics. The tests
are updated and the core issues are detected as before. Here and
elsewhere this patch tries to be generic, thus we do not distinguish
what selector set, selector, or property is parsed except if they do
behave exceptionally, as for example `user={condition(EXPR)}` does.
The sema logic changed in two ways: First, the OMPDeclareVariantAttr
representation changed, as mentioned above, and the sema was adjusted to
work with the new `OpenMPTraitInfo`. Second, the matching and scoring
logic moved into `OMPContext.{h,cpp}`. It is implemented on a flat
representation of the `match` clause that is not tied to clang.
`OpenMPTraitInfo` provides a method to generate this flat structure (see
`struct VariantMatchInfo`) by computing integer score values and boolean
user conditions from the `clang::Expr` we keep for them.
The OpenMP context is now an explicit object (see `struct OMPContext`).
This is in anticipation of construct traits that need to be tracked. The
OpenMP context, as well as the `VariantMatchInfo`, are basically made up
of a set of active or respectively required traits, e.g., 'host', and an
ordered container of constructs which allows duplication. Matching and
scoring is kept as generic as possible to allow easy extension in the
future.
---
Test changes:
The messages checked in `OpenMP/declare_variant_messages.{c,cpp}` have
been auto generated to match the new warnings and notes of the parser.
The "subset" checks were reversed causing the wrong version to be
picked. The tests have been adjusted to correct this.
We do not print scores if the user did not provide one.
We print spaces to make lists in the `match` clause more legible.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: merge_guards_bot, rampitec, mgorny, hiraditya, aheejin, fedor.sergeev, simoncook, bollu, guansong, dexonsmith, jfb, s.egerton, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71830
According to OpenMP 5.0, cancel and cancellation point constructs are
supported in taskloop directive. Added support for cancellation in
taskloop, master taskloop and parallel master taskloop.
This is a longstanding bug that seems to have been hidden by
a combination of (1) the normal flow being to deserialize the
interface before deserializing its parameter and (2) a precise
ordering of work that was apparently recently disturbed,
perhaps by my abstract-serialization work or Bruno's ObjC
module merging work.
Fixes rdar://59153545.
directive.
According to OpenMP 5.0, The atomic_default_mem_order clause specifies the default memory ordering behavior for atomic constructs that must be provided by an implementation. If the default memory ordering is specified as seq_cst, all atomic constructs on which memory-order-clause is not specified behave as if the seq_cst clause appears. If the default memory ordering is specified as relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the relaxed clause appears.
If the default memory ordering is specified as acq_rel, atomic constructs on which memory-order-clause is not specified behave as if the release clause appears if the atomic write or atomic update operation is specified, as if the acquire clause appears if the atomic read operation is specified, and as if the acq_rel clause appears if the atomic captured update operation is specified.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
There's going to be a lot of common code between RecordDecl and
CXXRecordDecl, factor out some of the logic in preparation for
adding the RecordDecl side.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
Partially reverts 0a2be46cfd as it turned
out to cause redundant module rebuilds in multi-process incremental builds.
When a module was getting out of date, all compilation processes started at the
same time were marking it as `ToBuild`. So each process was building the same
module instead of checking if it was built by someone else and using that
result. In addition to the work duplication, contention on the same .pcm file
wasn't making builds faster.
Note that for a single-process build this change would cause redundant module
reads and validations. But reading a module is faster than building it and
multi-process builds are more common than single-process. So I'm willing to
make such a trade-off.
rdar://problem/54395127
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D72860
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
Allow to build PCH's (with -building-pch-with-obj and the extra .o file)
with -fmodules-codegen -fmodules-debuginfo to allow emitting shared code
into the extra .o file, similarly to how it works with modules. A bit of
a misnomer, but the underlying functionality is the same. This saves up
to 20% of build time here.
Differential Revision: https://reviews.llvm.org/D69778
If a header contains 'extern template', then the template should be provided
somewhere by an explicit instantiation, so it is not necessary to generate
a copy. Worse, this can lead to an unresolved symbol, because the codegen's
object file will not actually contain functions from such a template
because of the GVA_AvailableExternally, but the object file for the explicit
instantiation will not contain them either because it will be blocked
by the information provided by the module.
Differential Revision: https://reviews.llvm.org/D69779
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
This removes the OpenMPProcBindClauseKind enum in favor of
llvm::omp::ProcBindKind which lives in OpenMPConstants.h and was
introduced in D70109.
No change in behavior is expected.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D70289
Summary:
Basic codegen for the declarations marked as nontemporal. Also, if the
base declaration in the member expression is marked as nontemporal,
lvalue for member decl access inherits nonteporal flag from the base
lvalue.
Reviewers: rjmccall, hfinkel, jdoerfert
Subscribers: guansong, arphaman, caomhin, kkwli0, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71708
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing another crash (added regression test).
Differential Revision: https://reviews.llvm.org/D41910
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing some crashes and warnings.
Differential Revision: https://reviews.llvm.org/D41910
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Phabricator: D41910
Similar motivations to the movement of ASTRecordReader:
AbstractBasicWriter.h already has quite a few dependencies,
and it's going to get pretty large as we generate more and more
into it. Meanwhile, most clients don't depend on this detail of
the implementation and shouldn't need to be recompiled.
I've also made OMPClauseWriter private, like it belongs.
AbstractBasicReader.h has quite a few dependencies already,
and that's only likely to increase. Meanwhile, ASTRecordReader
is really an implementation detail of the ASTReader that is only
used in a small number of places.
I've kept it in a public header for the use of projects like Swift
that might want to plug in to Clang's serialization framework.
I've also moved OMPClauseReader into an implementation file,
although it can't be made private because of friendship.
The basic technical design here is that we have three levels
of readers and writers:
- At the lowest level, there's a `Basic{Reader,Writer}` that knows
how to emit the basic structures of the AST. CRTP allows this to
be metaprogrammed so that the client only needs to support a handful
of primitive types (e.g. `uint64_t` and `IdentifierInfo*`) and more
complicated "inline" structures such as `DeclarationName` can just
be emitted in terms of those primitives.
In Clang's binary-serialization code, these are
`ASTRecord{Reader,Writer}`. For now, a large number of basic
structures are still emitted explicitly by code on those classes
rather than by either TableGen or CRTP metaprogramming, but I
expect to move more of these over.
- In the middle, there's a `Property{Reader,Writer}` which is
responsible for processing the properties of a larger object. The
object-level reader/writer asks the property-level reader/writer to
project out a particular property, yielding a basic reader/writer
which will be used to read/write the property's value, like so:
```
propertyWriter.find("count").writeUInt32(node->getCount());
```
Clang's binary-serialization code ignores this level (it uses
the basic reader/writer as the property reader/writer and has the
projection methods just return `*this`) and simply relies on the
roperties being read/written in a stable order.
- At the highest level, there's an object reader/writer (e.g.
`Type{Reader,Writer}` which emits a logical object with properties.
Think of this as writing something like a JSON dictionary literal.
I haven't introduced support for bitcode abbreviations yet --- it
turns out that there aren't any operative abbreviations for types
besides the QualType one --- but I do have some ideas of how they
should work. At any rate, they'll be necessary in order to handle
statements.
I'm sorry for not disentangling the patches that added basic and type
reader/writers; I made some effort to, but I ran out of energy after
disentangling a number of other patches from the work.
Negligible impact on module size, time to build a set of about 20
fairly large modules, or time to read a few declarations out of them.
There are three significant changes here:
- Most of the methods to read various embedded structures (`APInt`,
`NestedNameSpecifier`, `DeclarationName`, etc.) have been moved
from `ASTReader` to `ASTRecordReader`. This cleans up quite a
bit of code which was passing around `(F, Record, Idx)` arguments
everywhere or doing explicit indexing, and it nicely parallels
how it works on the writer side. It also sets us up to then move
most of these methods into the `BasicReader`s that I'm introducing
as part of abstract serialization.
As part of this, several of the top-level reader methods (e.g.
`readTypeRecord`) have been converted to use `ASTRecordReader`
internally, which is a nice readability improvement.
- I've standardized most of these method names on `readFoo` rather
than `ReadFoo` (used in some of the helper structures) or `GetFoo`
(used for some specific types for no apparent reason).
- I've changed a few of these methods to return their result instead
of reading into an argument passed by reference. This is partly
for general consistency and partly because it will make the
metaprogramming easier with abstract serialization.
This simplifies code where no extra details are required
Also don't write out detail when it is empty.
Differential Revision: https://reviews.llvm.org/D71347
Summary:
The new OpenMPConstants.h is a location for all OpenMP related constants
(and helpers) to live.
This patch moves the directives there (the enum OpenMPDirectiveKind) and
rewires Clang to use the new location.
Initially part of D69785.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: jholewinski, ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69853
function.
We need to perform unqualified lookups from the context of a defaulted
comparison, but not until we implicitly define the function, at which
point we can't do those lookups any more. So perform the lookup from the
end of the class containing the =default declaration and store the
lookup results on the defaulted function until we synthesize the body.
This commit sets the Self and Imp declarations for ObjC method declarations,
in addition to the definitions. It also fixes
a bunch of code in clang that had wrong assumptions about when getSelfDecl() would be set:
- CGDebugInfo::getObjCMethodName and AnalysisConsumer::getFunctionName would assume that it was
set for method declarations part of a protocol, which they never were,
and that self would be a Class type, which it isn't as it is id for a protocol.
Also use the Canonical Decl to index the set of Direct methods so that
when calls and implementations interleave, the same llvm::Function is
used and the same symbol name emitted.
Radar-Id: rdar://problem/57661767
Patch by: Pierre Habouzit
Differential Revision: https://reviews.llvm.org/D71091
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
Re-commit, after fixing some memory bugs.
Patch was reverted because https://bugs.llvm.org/show_bug.cgi?id=44048
The original patch is modified to set the strictfp IR attribute
explicitly in CodeGen instead of as a side effect of IRBuilder.
In the 2nd attempt to reapply there was a windows lit test fail, the
tests were fixed to use wildcard matching.
Differential Revision: https://reviews.llvm.org/D62731
Remove some cognitive load by renaming clang/Serialization/Module.h to
clang/Serialization/ModuleFile.h, since it declares the ModuleFile
class. This also makes editing a bit easier, since the basename of the
file no long conflicts with clang/Basic/Module.h, which declares the
Module class. Also move lib/Serialization/Module.cpp to
lib/Serialization/ModuleFile.cpp.
Simplify the code by avoiding some state that wasn't being used. The
function-level `Result` was only assigned a value other than `Success`
in the handler for `OPTIONS_BLOCK_ID`, but in that case it also hits an
early return. Remove it at the function-level to make it obvious that
the normal case always returns `Success`.
If ReadASTBlock does not find its top-level submodule, there's something
wrong the with the PCM. Error in that case, to avoid hitting problems
further from the source.
Note that the Swift compiler sometimes hits a case in
CompilerInstance::loadModule where the top-level submodule mysteriously
does not have Module::IsFromModuleFile set. That will emit a confusing
warn_missing_submodule, which was never intended for the main module.
The recent audit of error-handling in ReadAST may have rooted out the
real problem. If not, this commit will help to clarify the real
problem, and replace a confusing warning with an error pointing at the
malformed PCM file.
We're specifically sniffing out whether the top-level submodule was
found/processed, in case there is a malformed module file that is
missing it. If there is an error encountered during ReadSubmoduleBlock
the return status should already propagate through. It would be nice to
detect other missing submodules around here to catch other instances of
warn_missing_submodule closer to the source, but that's left as a future
exercise.
https://reviews.llvm.org/D70063
ReadASTBlock and ReadASTExtensions can both return failures. Be
consistent and remove all the just-loaded modules, just like when
ReadASTCore returns failures.
https://reviews.llvm.org/D70055
These were found via an audit. In the case of `ParseLineTable` this is
actually dead code, since parsing the line table always succeeds, but
it's prudent to be defensive since it's possible an assertion there
could be converted to a `true` return in the future.
Split a loop in ReadAST that visits the just-loaded module chain,
between an initial loop that reads further from the ASTs (and can fail)
and a second loop that does some preloading (and cannot fail). This
makes it less likely for a reading failure to affect the AST.
This is not fixing a known bug and the behaviour change may not be
observable, it's just part of an audit to look at all of the error
handling in the ASTReader.
https://reviews.llvm.org/D70056
As part of an audit of whether all errors are being reported from the
ASTReader, delay err_module_file_conflict if a diagnostic is already in
flight when it is hit. This required plumbing an extra argument through
the delayed diagnostic mechanics in DiagnosticsEngine.
The other paremeters appear to be sufficient to determine which modules
have just been loaded and need to be removed, so stop collecting and
sending in that set explicitly.
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
Summary:
- HIP/CUDA host side needs to use device kernel symbol name to match the
device side binaries. Without a consistent naming between host- and
device-side compilations, it's risky that wrong device binaries are
executed. Consistent naming is usually not an issue until unnamed
types are used, especially the lambda. In this patch, the consistent
name mangling is addressed for the extended lambdas, i.e. the lambdas
annotated with `__device__`.
- In [Itanium C++ ABI][1], the mangling of the lambda is generally
unspecified unless, in certain cases, ODR rule is required to ensure
consisent naming cross TUs. The extended lambda is such a case as its
name may be part of a device kernel function, e.g., the extended
lambda is used as a template argument and etc. Thus, we need to force
ODR for extended lambdas as they are referenced in both device- and
host-side TUs. Furthermore, if a extended lambda is nested in other
(extended or not) lambdas, those lambdas are required to follow ODR
naming as well. This patch revises the current lambda mangle numbering
to force ODR from an extended lambda to all its parent lambdas.
- On the other side, the aforementioned ODR naming should not change
those lambdas' original linkages, i.e., we cannot replace the original
`internal` with `linkonce_odr`; otherwise, we may violate ODR in
general. This patch introduces a new field `HasKnownInternalLinkage`
in lambda data to decouple the current linkage calculation based on
mangling number assigned.
[1]: https://itanium-cxx-abi.github.io/cxx-abi/abi.html
Reviewers: tra, rsmith, yaxunl, martong, shafik
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68818
llvm-svn: 375309
The expression of the priority clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 375026
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is refe$
D41217 on Phabricator.
(recommit after fixing failing Parser test on windows)
llvm-svn: 374903
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
llvm-svn: 374841
The expression of the num_tasks clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374819
The expression of the grainsize clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374810
Added parsing/sema/codegen support for 'parallel master taskloop'
constructs. Some of the clauses, like 'grainsize', 'num_tasks', 'final'
and 'priority' are not supported in full, only constant expressions can
be used currently in these clauses.
llvm-svn: 374791
file.
Reduces duplication and thereby reduces the risk that someone will
forget to update one of these places, as I did when adding
DefaultedDestructorIsConstexpr (though I've been unable to produce
a testcase for which that matters so far).
llvm-svn: 374484
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
has a constexpr destructor.
For constexpr variables, reject if the variable does not have constant
destruction. In all cases, do not emit runtime calls to the destructor
for variables with constant destruction.
llvm-svn: 373159
Fixes static analyzer uninitialized variable warning for the OMPClause - the function appears to cover all cases, but I've added an assertion to make sure.
llvm-svn: 371934
In order to enable future improvements to our attribute diagnostics,
this moves info from ParsedAttr into CommonAttributeInfo, then makes
this type the base of the *Attr and ParsedAttr types. Quite a bit of
refactoring took place, including removing a bunch of redundant Spelling
Index propogation.
Differential Revision: https://reviews.llvm.org/D67368
llvm-svn: 371875
non-trivial C union types
This recommits r365985, which was reverted because it broke a few
projects using unions containing non-trivial ObjC pointer fields in
system headers. We now have a patch to fix the problem (see
https://reviews.llvm.org/D65256).
Original commit message:
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 371275
If contents of a file that is part of a PCM are overridden when reading
it, but weren't overridden when the PCM was being built, the ASTReader
will emit an error. Now it creates a separate FileEntry for recovery,
bypassing the overridden content instead of discarding it. The
pre-existing testcase clang/test/PCH/remap-file-from-pch.cpp confirms
that the new recovery method works correctly.
This resolves a long-standing FIXME to avoid hypothetically invalidating
another precompiled module that's already using the overridden contents.
This also removes ContentCache-related API that would be unsafe to use
across `CompilerInstance`s in an implicit modules build. This helps to
unblock us sinking it from SourceManager into FileManager in the future,
which would allow us to delete `InMemoryModuleCache`.
https://reviews.llvm.org/D66710
llvm-svn: 370546
This prevents a crash when an error should be emitted instead.
During implicit module builds, there are cases where ReadASTCore is called with
ImportedBy set to nullptr, which breaks expectations in ReadModuleMapFileBlock,
leading to crashes.
Fix this by improving ReadModuleMapFileBlock to handle ImportedBy correctly.
This only happens non deterministically in the wild, when the underlying file
system changes while concurrent compiler invocations use implicit modules,
forcing rebuilds which see an inconsistent filesystem state. That said, there's
no much to do w.r.t. writing tests here.
rdar://problem/48828801
llvm-svn: 370422
Marking a module for a rebuild when its signature differs from the
expected one causes redundant module rebuilds for incremental builds.
When a module is updated, its signature changes. But its consumers still
have the old signature and loading them will result in signature
mismatches. It will correctly cause the rebuilds for the consumers but
we don't need to rebuild the common module for each of them as it is
already up to date.
In practice this bug causes longer build times. We are doing more work
than required and only a single process can build a module, so parallel
builds degrade to a single-process mode where extra processes are just
waiting on a file lock.
Fix by not marking a module dependency for a rebuild on signature
mismatch. We'll check if it is up to date when we load it.
rdar://problem/50212358
Reviewers: dexonsmith, bruno, rsmith
Reviewed By: dexonsmith, bruno
Subscribers: jkorous, ributzka, cfe-commits, aprantl
Differential Revision: https://reviews.llvm.org/D66907
llvm-svn: 370274
Refactor ContentCache::IsSystemFile to IsFileVolatile, checking
SourceManager::userFilesAreVolatile at construction time. This is a
step toward lowering ContentCache down from SourceManager to
FileManager.
No functionality change intended.
https://reviews.llvm.org/D66713
llvm-svn: 369958
construct.
OpenMP 5.0 introduced new clause for declare target directive, device_type clause, which may accept values host, nohost, and any. Host means
that the function must be emitted only for the host, nohost - only for
the device, and any - for both, device and the host.
llvm-svn: 369775
when the FileManager is reused across invocations
This commit introduces a parallel API to FileManager's getFile: getFileEntryRef, which returns
a reference to the FileEntry, and the name that was used to access the file. In the case of
a VFS with 'use-external-names', the FileEntyRef contains the external name of the file,
not the filename that was used to access it.
The new API is adopted only in the HeaderSearch and Preprocessor for include file lookup, so that the
accessed path can be propagated to SourceManager's FileInfo. SourceManager's FileInfo now can report this accessed path, using
the new getName method. This API is then adopted in the dependency collector, which now correctly reports dependencies when a file
is included both using a symlink and a real path in the case when the FileManager is reused across multiple Preprocessor invocations.
Note that this patch does not fix all dependency collector issues, as the same problem is still present in other cases when dependencies
are obtained using FileSkipped, InclusionDirective, and HasInclude. This will be fixed in follow-up commits.
Differential Revision: https://reviews.llvm.org/D65907
llvm-svn: 369680
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
Added basic support for non-rectangular loops. It requires an additional
analysis of min/max boundaries for non-rectangular loops. Since only
linear dependency is allowed, we can do this analysis.
llvm-svn: 368903
- Create ASTContext::attachCommentsToJustParsedDecls so we don't have to load external comments in Sema when trying to attach existing comments to just parsed Decls.
- Keep comments ordered and cache their decomposed location - faster SourceLoc-based searching.
- Optimize work with redeclarations.
- Keep one comment per redeclaration chain (represented by canonical Decl) instead of comment per redeclaration.
- For redeclaration chains with no comment attached keep just the last declaration in chain that had no comment instead of every comment-less redeclaration.
Differential Revision: https://reviews.llvm.org/D65301
llvm-svn: 368732
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
Summary:
Added support for basic analysis of the linear variables and linear step
expression. Linear loop iteration variables must be excluded from this
analysis, only non-loop iteration variables must be analyzed.
Reviewers: NoQ
Subscribers: guansong, cfe-commits, caomhin, kkwli0
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65461
llvm-svn: 368295
Update the callers of FileManager::getFile and FileManager::getDirectory to handle the new llvm::ErrorOr-returning methods.
Signed-off-by: Harlan Haskins <harlan@apple.com>
llvm-svn: 367616
This reverts commit r365985.
Prior to r365985, clang used to mark C union fields that have
non-trivial ObjC ownership qualifiers as unavailable if the union was
declared in a system header. r365985 stopped doing so, which caused the
swift compiler to crash when it tried to import a non-trivial union.
I have a patch that fixes the crash (https://reviews.llvm.org/D65256),
but I'm temporarily reverting the original patch until we can decide on
whether it's taking the right approach.
llvm-svn: 367076
non-trivial C union types
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping
blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 365985
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
The bitstream reader handles errors poorly. This has two effects:
* Bugs in file handling (especially modules) manifest as an "unexpected end of
file" crash
* Users of clang as a library end up aborting because the code unconditionally
calls `report_fatal_error`
The bitstream reader should be more resilient and return Expected / Error as
soon as an error is encountered, not way late like it does now. This patch
starts doing so and adopting the error handling where I think it makes sense.
There's plenty more to do: this patch propagates errors to be minimally useful,
and follow-ups will propagate them further and improve diagnostics.
https://bugs.llvm.org/show_bug.cgi?id=42311
<rdar://problem/33159405>
Differential Revision: https://reviews.llvm.org/D63518
llvm-svn: 364464
Summary:
When using ConstantExpr we often need the result of the expression to be kept in the AST. Currently this is done on a by the node that needs the result and has been done multiple times for enumerator, for constexpr variables... . This patch adds to ConstantExpr the ability to store the result of evaluating the expression. no functional changes expected.
Changes:
- Add trailling object to ConstantExpr that can hold an APValue or an uint64_t. the uint64_t is here because most ConstantExpr yield integral values so there is an optimized layout for integral values.
- Add basic* serialization support for the trailing result.
- Move conversion functions from an enum to a fltSemantics from clang::FloatingLiteral to llvm::APFloatBase. this change is to make it usable for serializing APValues.
- Add basic* Import support for the trailing result.
- ConstantExpr created in CheckConvertedConstantExpression now stores the result in the ConstantExpr Node.
- Adapt AST dump to print the result when present.
basic* : None, Indeterminate, Int, Float, FixedPoint, ComplexInt, ComplexFloat,
the result is not yet used anywhere but for -ast-dump.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, hiraditya, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62399
llvm-svn: 363493
Summary:
this revision adds Lexing, Parsing and Basic Semantic for the consteval specifier as specified by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1073r3.html
with this patch, the consteval specifier is treated as constexpr but can only be applied to function declaration.
Changes:
- add the consteval keyword.
- add parsing of consteval specifier for normal declarations and lambdas expressions.
- add the whether a declaration is constexpr is now represented by and enum everywhere except for variable because they can't be consteval.
- adapt diagnostic about constexpr to print constexpr or consteval depending on the case.
- add tests for basic semantic.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: eraman, efriedma, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61790
llvm-svn: 363362
most / all other Expr subclasses.
This reinstates r362551, reverted in r362597, with a fix to a bug that
caused MemberExprs to sometimes have a null FoundDecl after a round-trip
through an AST file.
llvm-svn: 362756
Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
explicit function specialization with the MemberSpecializationInfo used
everywhere else.
Not NFC: the ad-hoc pattern tracking was not being serialized /
deserialized properly. That's fixed here.
llvm-svn: 359747
Sort the elements of Sema::OpenCLTypeExtMap and Sema::OpenCLDeclExtMap
by TypeIDs and DeclIDs to guarantee a stable serialization order.
Differential Revision: https://reviews.llvm.org/D60835
Reviewed By: Anastasia
Reviewers: Anastasia, lebedev.ri
llvm-svn: 358674
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
allocators.
It is better to deduce omp_allocator_handle_t type from the predefined
allocators, because omp.h header might not define it explicitly. Plus,
it allows to identify the predefined allocators correctly when trying to
build the allcoator for the global variables.
llvm-svn: 356607
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
Summary:
These ObjC AST classes inherit from Stmt, but don't call `VisitStmt(S);`.
Some were founded with help of existing tests (with `NumStmtFields` bumped to `1`),
but some of them don't even have PCH test coverage. :/
Reviewers: arphaman, sammccall, smeenai, aprantl, rsmith, jordan_rose
Reviewed By: jordan_rose
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59197
llvm-svn: 355987
Add an option to cache the generated PCH in the ModuleCache when
emitting it. This protects clients that build PCHs and read them in the
same process, allowing them to avoid race conditions between parallel
jobs the same way that Clang's implicit module build system does.
rdar://problem/48740787
llvm-svn: 355950
Leverage the InMemoryModuleCache to invalidate a module the first time
it fails to import (and to lock a module as soon as it's built or
imported successfully). For implicit module builds, this optimizes
importing deep graphs where the leaf module is out-of-date; see example
near the end of the commit message.
Previously the cache finalized ("locked in") all modules imported so far
when starting a new module build. This was sufficient to prevent
loading two versions of the same module, but was somewhat arbitrary and
hard to reason about.
Now the cache explicitly tracks module state, where each module must be
one of:
- Unknown: module not in the cache (yet).
- Tentative: module in the cache, but not yet fully imported.
- ToBuild: module found on disk could not be imported; need to build.
- Final: module in the cache has been successfully built or imported.
Preventing repeated failed imports avoids variation in builds based on
shifting filesystem state. Now it's guaranteed that a module is loaded
from disk exactly once. It now seems safe to remove
FileManager::invalidateCache, but I'm leaving that for a later commit.
The new, precise logic uncovered a pre-existing problem in the cache:
the map key is the module filename, and different contexts use different
filenames for the same PCM file. (In particular, the test
Modules/relative-import-path.c does not build without this commit.
r223577 started using a relative path to describe a module's base
directory when importing it within another module. As a result, the
module cache sees an absolute path when (a) building the module or
importing it at the top-level, and a relative path when (b) importing
the module underneath another one.)
The "obvious" fix is to resolve paths using FileManager::getVirtualFile
and change the map key for the cache to a FileEntry, but some contexts
(particularly related to ASTUnit) have a shorter lifetime for their
FileManager than the InMemoryModuleCache. This is worth pursuing
further in a later commit; perhaps by tying together the FileManager and
InMemoryModuleCache lifetime, or moving the in-memory PCM storage into a
VFS layer.
For now, use the PCM's base directory as-written for constructing the
filename to check the ModuleCache.
Example
=======
To understand the build optimization, first consider the build of a
module graph TU -> A -> B -> C -> D with an empty cache:
TU builds A'
A' builds B'
B' builds C'
C' builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
If we build TU again, where A, B, C, and D are in the cache and D is
out-of-date, we would previously get this build:
TU imports A
imports B
imports C
imports D (out-of-date)
TU builds A'
A' imports B
imports C
imports D (out-of-date)
builds B'
B' imports C
imports D (out-of-date)
builds C'
C' imports D (out-of-date)
builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
After this commit, we'll immediateley invalidate A, B, C, and D when we
first observe that D is out-of-date, giving this build:
TU imports A
imports B
imports C
imports D (out-of-date)
TU builds A' // The same graph as an empty cache.
A' builds B'
B' builds C'
C' builds D'
imports D'
B' imports C'
imports D'
A' imports B'
imports C'
imports D'
TU imports A'
imports B'
imports C'
imports D'
The new build matches what we'd naively expect, pretty closely matching
the original build with the empty cache.
rdar://problem/48545366
llvm-svn: 355778
Change MemoryBufferCache to InMemoryModuleCache, moving it from Basic to
Serialization. Another patch will start using it to manage module build
more explicitly, but this is split out because it's mostly mechanical.
Because of the move to Serialization we can no longer abuse the
Preprocessor to forward it to the ASTReader. Besides the rename and
file move, that means Preprocessor::Preprocessor has one fewer parameter
and ASTReader::ASTReader has one more.
llvm-svn: 355777
Add a remark for importing modules. Depending on whether this is a
direct import (into the TU being built by this compiler instance) or
transitive import (into an already-imported module), the diagnostic has
two forms:
importing module 'Foo' from 'path/to/Foo.pcm'
importing module 'Foo' into 'Bar' from 'path/to/Foo.pcm'
Also drop a redundant FileCheck invocation in Rmodule-build.m that was
using -Reverything, since the notes from -Rmodule-import were confusing
it.
https://reviews.llvm.org/D58891
llvm-svn: 355477
initializes a local auto variable or is assigned to a local auto
variable that is declared in the scope that introduced the block
literal.
rdar://problem/13289333
https://reviews.llvm.org/D58514
llvm-svn: 355012
This patch implements the parsing and sema support for the OpenMP
'from'-clause with potential user-defined mappers attached.
User-defined mappers are a new feature in OpenMP 5.0. A 'from'-clause
can have an explicit or implicit associated mapper, which instructs the
compiler to generate and use customized mapping functions. An example is
shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target update from(mapper(id): ss) // use the mapper with name 'id' to map ss from device
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58638
llvm-svn: 354817
This patch implements the parsing and sema support for OpenMP to clause
with potential user-defined mappers attached. User defined mapper is a
new feature in OpenMP 5.0. A to/from clause can have an explicit or
implicit associated mapper, which instructs the compiler to generate and
use customized mapping functions. An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target update to(mapper(id): ss) // use the mapper with name 'id' to map ss to device
Contributed-by: <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58523
llvm-svn: 354698
This patch implements the parsing and sema support for OpenMP map
clauses with potential user-defined mapper attached. User defined mapper
is a new feature in OpenMP 5.0. A map clause can have an explicit or
implicit associated mapper, which instructs the compiler to generate
extra data mapping. An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(id: struct S s) map(s, s.d[0:s.len])
struct S ss;
#pragma omp target map(mapper(id) tofrom: ss) // use the mapper with name 'id' to map ss
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D58074
llvm-svn: 354347
For global variables with unordered initialization that are instantiated
within a module, we previously did not emit the global (or its
initializer) at all unless it was used in the importing translation unit
(and sometimes not even then!), leading to misbehavior and link errors.
We now emit the initializer for an instantiated global variable with
unordered initialization with side-effects in a module into every
translation unit that imports the module. This is unfortunate, but
mostly matches the behavior of a non-modular compilation and seems to be
the best that we can reasonably do.
llvm-svn: 353240
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
Store the controlling expression, the association expressions and the
corresponding TypeSourceInfos as trailing objects.
Additionally use the bit-fields of Stmt to store one SourceLocation,
saving one additional pointer. This saves 3 pointers in total per
GenericSelectionExpr.
Differential Revision: https://reviews.llvm.org/D57104
Reviewed By: aaron.ballman
Reviewers: aaron.ballman, steveire
llvm-svn: 352276
Various cleanups to GenericSelectionExpr factored out of D57104. In particular:
1. Move the friend declaration to the top.
2. Introduce a constant ResultDependentIndex instead of the magic "-1".
3. clang-format
4. Group the member function together so that they can be removed as one block
by D57106.
NFC.
Differential Revision: https://reviews.llvm.org/D57238
Reviewed By: aaron.ballman
llvm-svn: 352275
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Use the newly available space in the bit-fields of Stmt to pack
OverloadExpr, UnresolvedLookupExpr and UnresolvedMemberExpr.
Additionally store the results in the overload set in a trailing array.
This saves 1 pointer + 8 bytes per UnresolvedLookupExpr and
UnresolvedMemberExpr.
Differential Revision: https://reviews.llvm.org/D56368
Reviewed By: rjmccall
llvm-svn: 350732
Use the newly available space in the bit-fields of Stmt.
This saves one pointer per CXXNoexceptExpr/SubstNonTypeTemplateParmExpr.
Use this opportunity to run clang-format on these two classes and
fix some style issues. NFC overall.
llvm-svn: 350627
Use the newly available space in the bit-fields of Stmt. Additionally store
FirstQualifierFoundInScope as a trailing object since it is most of the time
null (non-null for 2 of the 35446 CXXDependentScopeMemberExpr when parsing
all of Boost).
It would be possible to move the data for the nested-name-specifier to a
trailing object too to save another 2 pointers, however doing so did actually
regress the time taken to parse all of Boost slightly.
This saves 8 bytes + 1 pointer per CXXDependentScopeMemberExpr in the vast
majority of cases.
Differential Revision: https://reviews.llvm.org/D56367
Reviewed By: rjmccall
llvm-svn: 350625
Store the optional array size expression, optional initialization expression
and optional placement new arguments in a trailing array. Additionally store
the range for the parenthesized type-id in a trailing object if needed since
in the vast majority of cases the type is not parenthesized (not a single new
expression in the translation unit of SemaDecl.cpp has a parenthesized type-id).
This saves 2 pointers per CXXNewExpr in all cases, and 2 pointers + 8 bytes
per CXXNewExpr in the common case where the type is not parenthesized.
Differential Revision: https://reviews.llvm.org/D56134
Reviewed By: rjmccall
llvm-svn: 350527
Use the newly available space in the bit-fields of Stmt.
This saves 1 pointer per DependentScopeDeclRefExpr/CXXUnresolvedConstructExpr.
Additionally rename "TypeSourceInfo *Type;" to "TypeSourceInfo *TSI;"
as was done in D56022 (r350003) (but this is an internal detail anyway),
and clang-format both classes. NFC.
llvm-svn: 350525
This attribute, called "objc_externally_retained", exposes clang's
notion of pseudo-__strong variables in ARC. Pseudo-strong variables
"borrow" their initializer, meaning that they don't retain/release
it, instead assuming that someone else is keeping their value alive.
If a function is annotated with this attribute, implicitly strong
parameters of that function aren't implicitly retained/released in
the function body, and are implicitly const. This is useful to expose
for performance reasons, most functions don't need the extra safety
of the retain/release, so programmers can opt out as needed.
This attribute can also apply to declarations of local variables,
with similar effect.
Differential revision: https://reviews.llvm.org/D55865
llvm-svn: 350422
Store the arguments of CXXConstructExpr in a trailing array. This is very
similar to the CallExpr case in D55771, with the exception that there is
only one derived class (CXXTemporaryObjectExpr) and that we compute the
offset to the trailing array instead of storing it.
This saves one pointer per CXXConstructExpr and CXXTemporaryObjectExpr.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D56022
llvm-svn: 350003
Since CallExpr::setNumArgs has been removed, it is now possible to store the
callee expression and the argument expressions of CallExpr in a trailing array.
This saves one pointer per CallExpr, CXXOperatorCallExpr, CXXMemberCallExpr,
CUDAKernelCallExpr and UserDefinedLiteral.
Given that CallExpr is used as a base of the above classes we cannot use
llvm::TrailingObjects. Instead we store the offset in bytes from the this pointer
to the start of the trailing objects and manually do the casts + arithmetic.
Some notes:
1.) I did not try to fit the number of arguments in the bit-fields of Stmt.
This leaves some space for future additions and avoid the discussion about
whether x bits are sufficient to hold the number of arguments.
2.) It would be perfectly possible to recompute the offset to the trailing
objects before accessing the trailing objects. However the trailing objects
are frequently accessed and benchmarks show that it is slightly faster to
just load the offset from the bit-fields. Additionally, because of 1),
we have plenty of space in the bit-fields of Stmt.
Differential Revision: https://reviews.llvm.org/D55771
Reviewed By: rjmccall
llvm-svn: 349910
A map clause with the close map-type-modifier is a hint to
prefer that the variables are mapped using a copy into faster
memory.
Patch by Ahsan Saghir (saghir)
Differential Revision: https://reviews.llvm.org/D55719
llvm-svn: 349551
Move some diagnostics around between Diagnostic*Kinds.td files. Diagnostics
used in multiple places were moved to DiagnosticCommonKinds.td. Diagnostics
listed in the wrong place (ie, Sema diagnostics listed in
DiagnosticsParseKinds.td) were moved to the correct places. One diagnostic
split into two so that the diagnostic string is in the .td file instead of in
code. Cleaned up the diagnostic includes after all the changes.
llvm-svn: 349125
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
Summary:
Currently the Clang AST doesn't store information about how the callee of a CallExpr was found. Specifically if it was found using ADL.
However, this information is invaluable to tooling. Consider a tool which renames usages of a function. If the originally CallExpr was formed using ADL, then the tooling may need to additionally qualify the replacement.
Without information about how the callee was found, the tooling is left scratching it's head. Additionally, we want to be able to match ADL calls as quickly as possible, which means avoiding computing the answer on the fly.
This patch changes `CallExpr` to store whether it's callee was found using ADL. It does not change the size of any AST nodes.
Reviewers: fowles, rsmith, klimek, shafik
Reviewed By: rsmith
Subscribers: aaron.ballman, riccibruno, calabrese, titus, cfe-commits
Differential Revision: https://reviews.llvm.org/D55534
llvm-svn: 348977
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
Use zip_longest in two locations that compare iterator ranges.
zip_longest allows the iteration using a range-based for-loop and to be
symmetric over both ranges instead of prioritizing one over the other.
In that latter case code have to handle the case that the first is
longer than the second, the second is longer than the first, and both
are of the same length, which must partially be checked after the loop.
With zip_longest, this becomes an element comparison within the loop
like the comparison of the elements themselves. The symmetry makes it
clearer that neither the first and second iterators are handled
differently. The iterators are not event used directly anymore, just
the ranges.
Differential Revision: https://reviews.llvm.org/D55468
llvm-svn: 348762
When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
Remove the pointless "+ 0" which I added for some reason when
modifying these statement/expression classes since it looks
like this is a typo. Following the suggestion of aaron.ballman
in D54902. NFC.
llvm-svn: 348150
CallExpr::setNumArgs is the only thing that prevents storing the arguments
in a trailing array. There is only 3 places in Sema where setNumArgs is called.
D54900 dealt with one of them.
This patch remove the other two calls to setNumArgs in ConvertArgumentsForCall.
To do this we do the following changes:
1.) Replace the first call to setNumArgs by an assertion since we are moving the
responsability to allocate enough space for the arguments from
Sema::ConvertArgumentsForCall to its callers
(which are Sema::BuildCallToMemberFunction, and Sema::BuildResolvedCallExpr).
2.) Add a new member function CallExpr::shrinkNumArgs, which can only be used
to drop arguments and then replace the second call to setNumArgs by
shrinkNumArgs.
3.) Add a new defaulted parameter MinNumArgs to CallExpr and its derived
classes which specifies a minimum number of argument slots to allocate.
The actual number of arguments slots allocated will be
max(number of args, MinNumArgs) with the extra args nulled. Note that
after the creation of the call expression all of the arguments will be
non-null. It is just during the creation of the call expression that some of
the last arguments can be temporarily null, until filled by default arguments.
4.) Update Sema::BuildCallToMemberFunction by passing the number of parameters
in the function prototype to the constructor of CXXMemberCallExpr. Here the
change is pretty straightforward.
5.) Update Sema::BuildResolvedCallExpr. Here the change is more complicated
since the type-checking for the function type was done after the creation of
the call expression. We need to move this before the creation of the call
expression, and then pass the number of parameters in the function prototype
(if any) to the constructor of the call expression.
6.) Update the deserialization of CallExpr and its derived classes.
Differential Revision: https://reviews.llvm.org/D54902
Reviewed By: aaron.ballman
llvm-svn: 348145
Use the newly available space in the bit-fields of Stmt
and store the expressions in a trailing array. This saves
2 pointer per ParenListExpr.
Differential Revision: https://reviews.llvm.org/D54675
Reviewed By: rjmccall
llvm-svn: 347320
Use the newly available space in the bit-fields of Stmt and store the
string data in a trailing array of chars after the trailing array
of SourceLocation. This cuts the size of StringLiteral by 2 pointers.
Also refactor slightly StringLiteral::Create and StringLiteral::CreateEmpty
so that StringLiteral::Create is just responsible for the allocation, and the
constructor is responsible for doing all the initialization. This match what
is done for the other classes in general.
This patch should have no other functional changes apart from this.
A concern was raised during review about the interaction between
this patch and serialization abbreviations. I believe however that
there is currently no abbreviation defined for StringLiteral.
The only statements/expressions which have abbreviations are currently
DeclRefExpr, IntegerLiteral, CharacterLiteral and ImplicitCastExpr.
Differential Revision: https://reviews.llvm.org/D54166
Reviewed By: dblaikie, rjmccall
llvm-svn: 346969
Use the newly available space in the bit-fields of Stmt
to store some data from MemberExpr. This saves
one pointer per MemberExpr.
Differential Revision: https://reviews.llvm.org/D54525
Reviewed By: dblaikie
llvm-svn: 346953
This patch breaks Index/opencl-types.cl LIT test:
Script:
--
: 'RUN: at line 1'; stage1/bin/c-index-test -test-print-type llvm/tools/clang/test/Index/opencl-types.cl -cl-std=CL2.0 | stage1/bin/FileCheck llvm/tools/clang/test/Index/opencl-types.cl
--
Command Output (stderr):
--
llvm/tools/clang/test/Index/opencl-types.cl:3:26: warning: unsupported OpenCL extension 'cl_khr_fp16' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:4:26: warning: unsupported OpenCL extension 'cl_khr_fp64' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:8:9: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:11:8: error: declaring variable of type 'half' is not allowed
llvm/tools/clang/test/Index/opencl-types.cl:15:3: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:16:3: error: use of type 'double4' (vector of 4 'double' values) requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:26:26: warning: unsupported OpenCL extension 'cl_khr_gl_msaa_sharing' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:35:44: error: use of type '__read_only image2d_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:36:49: error: use of type '__read_only image2d_array_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:37:49: error: use of type '__read_only image2d_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:38:54: error: use of type '__read_only image2d_array_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm-svn: 346338
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
Only store the NRVO candidate if needed in ReturnStmt.
A good chuck of all of the ReturnStmt have no NRVO candidate
(more than half when parsing all of Boost). For all of them
this saves one pointer. This has no impact on children().
Differential Revision: https://reviews.llvm.org/D53716
Reviewed By: rsmith
llvm-svn: 345605
Don't store the data for the condition variable if not needed.
This cuts the size of WhileStmt by up to a pointer.
The order of the children is kept the same.
Differential Revision: https://reviews.llvm.org/D53715
Reviewed By: rjmccall
llvm-svn: 345597
Don't store the data for the init statement and condition variable
if not needed. This cuts the size of SwitchStmt by up to 2 pointers.
The order of the children is intentionally kept the same.
Also use the newly available space in the bit-fields of Stmt
to store the bit representing whether all enums have been covered
instead of using a PointerIntPair.
Differential Revision: https://reviews.llvm.org/D53714
Reviewed By: rjmccall
llvm-svn: 345510
Summary: This patch adds a new code generation path for bound sharing directives containing distribute parallel for. The new code generation scheme applies to chunked schedules on distribute and parallel for directives. The scheme simplifies the code that is being generated by eliminating the need for an outer for loop over chunks for both distribute and parallel for directives. In the case of distribute it applies to any sized chunk while in the parallel for case it only applies when chunk size is 1.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D53448
llvm-svn: 345509
Summary:
I recently discovered that adding the following code into `opencl-c.h` causes
failure of `test/Headers/opencl-c-header.cl`:
```
#pragma OPENCL EXTENSION cl_my_ext : begin
void cl_my_ext_foobarbaz();
#pragma OPENCL EXTENSIOn cl_my_ext : end
```
Clang crashes at the assertion is `ASTReader::getGlobalSubmoduleID()`:
```
assert(I != M.SubmoduleRemap.end() && "Invalid index into submodule index remap");
```
The root cause of the problem that to deserialize `OPENCL_EXTENSION_DECLS`
section `ASTReader` needs to deserialize a Decl contained in it. In turn,
deserializing a Decl requires information about whether this declaration is
part of a (sub)module, but this information is not read yet because it is
located further in a module file.
Reviewers: Anastasia, yaxunl, JDevlieghere
Reviewed By: Anastasia
Subscribers: sidorovd, cfe-commits, asavonic
Differential Revision: https://reviews.llvm.org/D53200
llvm-svn: 345497
Don't store the data for case statements of the form LHS ... RHS if not
needed. This cuts the size of CaseStmt by 1 pointer + 1 SourceLocation in
the common case.
Also use the newly available space in the bit-fields of Stmt to store the
keyword location of SwitchCase and move the small accessor
SwitchCase::getSubStmt to the header.
Differential Revision: https://reviews.llvm.org/D53609
Reviewed By: rjmccall
llvm-svn: 345472
Only store the needed data in IfStmt. This cuts the size of IfStmt
by up to 3 pointers + 1 SourceLocation. The order of the children
is intentionally kept the same even though it would be more
convenient to put the optional trailing objects last. Additionally
use the newly available space in the bit-fields of Stmt to store
the location of the "if".
The result of this is that for the common case of an
if statement of the form:
if (some_cond)
some_statement
the size of IfStmt is brought down to 8 bytes + 2 pointers,
instead of 8 bytes + 5 pointers + 2 SourceLocation.
Differential Revision: https://reviews.llvm.org/D53607
Reviewed By: rjmccall
llvm-svn: 345464
Make the following changes to PredefinedExpr:
1. Move PredefinedExpr below StringLiteral so that it can use its definition.
2. Rename IdentType to IdentKind to be more in line with clang's conventions,
and propagate the change to its users.
3. Move the location and the IdentKind into the newly available space of
the bit-fields of Stmt.
4. Only store the function name when needed. When parsing all of Boost,
of the 1357 PredefinedExpr 919 have no function name.
Differential Revision: https://reviews.llvm.org/D53605
Reviewed By: rjmccall
llvm-svn: 345460
Although some classes are using the tail padding of Stmt, most of
them are not. In particular the expression classes are not using it
since there is Expr in between, and Expr contains a single pointer.
This patch widen the bit-fields to Stmt to 8 bytes and move some
data from NullStmt, CompoundStmt, LabelStmt, AttributedStmt, SwitchStmt,
WhileStmt, DoStmt, ForStmt, GotoStmt, ContinueStmt, BreakStmt
and ReturnStmt to the newly available space.
In itself this patch do not achieve much but I plan to go through each of
the classes in the statement/expression hierarchy and use this newly
available space. A quick estimation gives me that this should shrink the
size of the statement/expression hierarchy by >10% when parsing all of Boost.
Differential Revision: https://reviews.llvm.org/D53604
Reviewed By: rjmccall
llvm-svn: 345459
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r343518 after fixing a use-after-free bug in function
Sema::ActOnBlockStmtExpr where the BlockScopeInfo was dereferenced after
it was popped and deleted.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343542
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r341754, which was reverted in r341757 because it broke a
couple of bots. r341754 was calling markEscapingByrefs after the call to
PopFunctionScopeInfo, which caused the popped function scope to be
cleared out when the following code was compiled, for example:
$ cat test.m
struct A {
id data[10];
};
void foo() {
__block A v;
^{ (void)v; };
}
This commit calls markEscapingByrefs before calling PopFunctionScopeInfo
to prevent that from happening.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343518
Add support for OMP5.0 requires directive and unified_address clause.
Patches to follow will include support for additional clauses.
Differential Revision: https://reviews.llvm.org/D52359
llvm-svn: 343063
Introduce the following optimizations in DeclarationName(Table):
1. Store common kinds inline in DeclarationName instead of
DeclarationNameExtra. Currently the kind of C++ constructor, destructor,
conversion function and overloaded operator names is stored in
DeclarationNameExtra. Instead store it inline in DeclarationName.
To do this align IdentifierInfo, CXXSpecialName, DeclarationNameExtra
and CXXOperatorIdName to 8 bytes so that we can use the lower 3 bits of
DeclarationName::Ptr. This is already the case on 64 bits archs anyway.
This also allow us to remove DeclarationNameExtra from CXXSpecialName
and CXXOperatorIdName, which shave off a pointer from CXXSpecialName.
2. Synchronize the enumerations DeclarationName::NameKind,
DeclarationName::StoredNameKind and Selector::IdentifierInfoFlag.
This makes DeclarationName::getNameKind much more efficient since we can
replace the switch table by a single comparison and an addition.
3. Put the overloaded operator names inline in DeclarationNameTable to remove
an indirection. This increase the size of DeclarationNameTable a little
bit but this is not important since it is only used in ASTContext, and
never copied nor moved from. This also get rid of the last dynamic
allocation in DeclarationNameTable.
Altogether these optimizations cut the run time of parsing all of Boost by
about 0.8%. While we are at it, do the following NFC modifications:
1. Put the internal classes CXXSpecialName, CXXDeductionGuideNameExtra,
CXXOperatorIdName, CXXLiteralOperatorIdName and DeclarationNameExtra
in a namespace detail since these classes are only meant to be used by
DeclarationName and DeclarationNameTable. Make this more explicit by making
the members of these classes private and friending DeclarationName(Table).
2. Make DeclarationName::getFETokenInfo a non-template since every users are
using it to get a void *. It was supposed to be used with a type to avoid
a subsequent static_cast.
3. Change the internal functions DeclarationName::getAs* to castAs* since when
we use them we already know the correct kind. This has no external impact
since all of these are private.
Reviewed By: erichkeane, rjmccall
Differential Revision: https://reviews.llvm.org/D52267
llvm-svn: 342729
Move declarations for OMPClauseReader, OMPClauseWriter to ASTReader.h
and ASTWriter.h and move implementation to ASTReader.cpp and
ASTWriter.cpp. This change helps generalize the serialization of
OpenMP clauses and will be used in the future implementation of new
OpenMP directives (e.g. requires).
Patch by Patrick Lyster
Differential Revision: https://reviews.llvm.org/D52097
llvm-svn: 342322
declare reduction.
If the declare reduction construct with the non-dependent type is
defined in the template construct, the compiler might crash on the
template instantition. Reworked the whole instantiation scheme for the
declare reduction constructs to fix this problem correctly.
llvm-svn: 342151
submodule visibility is disabled.
Attempting to pick a specific declaration to make visible when the
module containing the merged declaration becomes visible is error-prone,
as we don't yet know which declaration we'll choose to be the definition
when we are informed of the merging.
This reinstates r342019, reverted in r342020. The regression previously
observed after this commit was fixed in r342096.
llvm-svn: 342097