type is a pointer to const. (radar://10595327)
The regions corresponding to the pointer and reference arguments to
a function get invalidated by the calls since a function call can
possibly modify the pointed to data. With this change, we are not going
to invalidate the data if the argument is a pointer to const. This
change makes the analyzer more optimistic in reporting errors.
(Support for C, C++ and Obj C)
llvm-svn: 147002
Check if the input parameters are tainted (or point to tainted data) on
a checkPreStmt<CallExpr>. If the output should be tainted, record it in
the state. On post visit (checkPostStmt<CallExpr>), use the state to
make decisions (in addition to the existing logic). Use this logic for
atoi and fscanf.
llvm-svn: 146793
Some of the test cases do not currently work because the analyzer core
does not seem to call checkers for pre/post DeclRefExpr visits.
(Opened radar://10573500. To be fixed later on.)
llvm-svn: 146536
We are now often generating expressions even if the solver is not known to be able to simplify it. This is another cleanup of the existing code, where the rest of the analyzer and checkers should not base their logic on knowing ahead of the time what the solver can reason about.
In this case, CStringChecker is performing a check for overflow of 'left+right' operation. The overflow can be checked with either 'maxVal-left' or 'maxVal-right'. Previously, the decision was based on whether the expresion evaluated to undef or not. With this patch, we check if one of the arguments is a constant, in which case we know that 'maxVal-const' is easily simplified. (Another option is to use canReasonAbout() method of the solver here, however, it's currently is protected.)
This patch also contains 2 small bug fixes:
- swap the order of operators inside SValBuilder::makeGenericVal.
- handle a case when AddeVal is unknown in GenericTaintChecker::getPointedToSymbol.
llvm-svn: 146343
Fix a bug in SimpleSValBuilder, where we should swap lhs and rhs when calling generateUnknownVal(), - the function which creates symbolic expressions when data is tainted. The issue is not visible when we only create the expressions for taint since all expressions are commutative from taint perspective.
Refactor SymExpr::symbol_iterator::expand() to use a switch instead of a chain of ifs.
llvm-svn: 146336
types are equivalent.
+ A taint test which tests bitwise operations and which was
triggering an assertion due to presence of the integer to integer cast.
llvm-svn: 146240
between the casted type of the return value of a malloc/calloc/realloc
call and the operand of any sizeof expressions contained within
its argument(s).
llvm-svn: 146144
- Created a new SymExpr type - SymbolCast.
- SymbolCast is created when we don't know how to simplify a NonLoc to
NonLoc casts.
- A bit of code refactoring: introduced dispatchCast to have better
code reuse, remove a goto.
- Updated the test case to showcase the new taint flow.
llvm-svn: 145985
class.
We are going into the direction of handling SymbolData and other SymExpr
uniformly, so it makes less sense to keep two different SVal classes.
For example, the checkers would have to take an extra step to reason
about each type separately.
The classes have the same members, we were just using the SVal kind
field for easy differentiation in 3 switch statements. The switch
statements look more ugly now, but we can make the code more readable in
other ways, for example, moving some code into separate functions.
llvm-svn: 145833
ExprEngine.
Teach SimpleConstraintManager::assumeSymRel() to propagate constraints
to symbolic expressions.
+ One extra warning (real bug) is now generated due to enhanced
assumeSymRel().
llvm-svn: 145832
ConstraintManager::canReasonAbout() from the ExprEngine.
ExprEngine should not care if the constraint solver can reason about
something or not. The solver should be able to handle all the SymExprs.
To do this, the solver should be able to keep track of not only the
SymbolData but of all SymExprs. This is why we change SymbolRef to be an
alias of SymExpr*. When encountering an expression it cannot simplify,
the solver should just add the constraints to it.
llvm-svn: 145831
We trigger an error if free is called after a possibly failed allocation. Do not trigger the error if we know that the buffer is not null.
llvm-svn: 145584
We are getting name of the called function or it's declaration in a few checkers. Refactor them to use the helper function in the CheckerContext.
llvm-svn: 145576
explicit template specializations (which represent actual functions somebody wrote).
Along the way, refactor some other code which similarly cares about whether or
not they are looking at a template instantiation.
llvm-svn: 145547
When the solver and SValBuilder cannot reason about symbolic expressions (ex: (x+1)*y ), the analyzer conjures a new symbol with no ties to the past. This helps it to recover some path-sensitivity. However, this breaks the taint propagation.
With this commit, we are going to construct the expression even if we cannot reason about it later on if an operand is tainted.
Also added some comments and asserts.
llvm-svn: 144932
Change the ArrayBoundCheckerV2 to be more aggressive in reporting buffer overflows
when the offset is tainted. Previously, we did not report bugs when the state was
underconstrained (not enough information about the bound to determine if there is
an overflow) to avoid false positives. However, if we know that the buffer
offset is tainted - comes in from the user space and can be anything, we should
report it as a bug.
+ The very first example of us catching a taint related bug.
This is the only example we can currently handle. More to come...
llvm-svn: 144826
TaintTag.h will contain definitions of different taint kinds and their properties.
TaintManager will be responsible for implementing taint specific operations, storing taint.
ProgramState will provide API to add/remove taint.
llvm-svn: 144824
Analysis by Ted:
"
if (stateZero && !stateNotZero) {
is checking to see if:
(A) "it is possible for the value to be zero" (stateZero)
AND
(B) "it is not possible for the value to be non-zero" (!stateNotZero)
That said, the only way for both B to be true AND A to be false is if the path is completely infeasible by the time we reach the divide-by-zero check. For the most part (all cases?), such cases should automatically get pruned out at branches (i.e., an infeasible path gets dropped), which is the case in our tests. So the question is whether or not such an infeasible path might not get dropped earlier? I can't envision any right now.
Indeed, the rest of the checker assumes that if the bug condition didn't fire then 'stateNotZero' is non-NULL:
C.addTransition(stateNotZero);
"
llvm-svn: 144114
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
implicitly perform an lvalue-to-rvalue conversion if used on an lvalue
expression. Also improve the documentation of Expr::Evaluate* to indicate which
of them will accept expressions with side-effects.
llvm-svn: 143263
Enqueue the nodes generated as the result of processing a statement
inside the Core Engine. This makes sure ExpEngine does not access
CoreEngine's private members and is more concise.
llvm-svn: 143089
A step toward making sure that diagnostics report should only
be generated though the CheckerContext and not though BugReporter
or ExprEngine directly.
llvm-svn: 142947
Remove dead members/parameters: ProgramState, respondsToCallback, autoTransition.
Remove addTransition method since it's the same as generateNode. Maybe we should
rename generateNode to genTransition (since a transition is always automatically
generated)?
llvm-svn: 142946
Get rid of the EndOfPathBuilder completely.
Use the generic NodeBuilder to generate nodes.
Enqueue the end of path frontier explicitly.
llvm-svn: 142943
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
This commit removes the major functional dependency on the ExprEngine::Builder
member variable.
In some cases the code became more verbose. Particularly, we call takeNodes()
and addNodes() to move responsibility for the nodes from one builder to another.
This will get simplified later on.
llvm-svn: 142831
To convert iteratively, we take the nodes the local builder will
process from the from the global builder and add the generated nodes
after the short lived builder is done. PureStmtNodeBuilder is the
one we should eventually use everywhere. Added Stmt index and Builder
context as ExprEngine globals. To avoid passing them around.
llvm-svn: 142828
First step toward removing the global Stmt builder. Added several transitional methods (like takeNodes/addNodes).
+ Stop early if the set of exploded nodes for the next iteration is empty.
llvm-svn: 142827
This moves the responsibility for storing the output node set from the
builder to the clients. The builder is just responsible for transforming
an input set into the output set: {SrcSet/SrcNode} -> {Frontier}.
llvm-svn: 142826
NodeBuilder should not assume it's dealing with a single predecessor. Remove predecessor getters. Modify the BranchNodeBuilder to not be responsible for doing auto-transitions (which depend on a predecessor).
llvm-svn: 142453
It now only depends on a generic NodeBuilder instead. As part of this change, make the generic node builder results finalized by default.
llvm-svn: 142452
Take advantage of the new builders for branch processing. As part of this change pass generic NodeBuilder (instead of BranchNodeBuilder) to the BranchCondition callback and remove the unused methods form BranchBuilder.
llvm-svn: 142448
Currently we have a bunch of different node builders which provide some common
functionality but are difficult to refactor. Each builder generates nodes of
different kinds and calculates the frontier nodes, which should be propagated
to the next step (after the builder dies).
Introduce a new NodeBuilder which provides very basic node generation facilities
but takes care of the second problem. The idea is that all the other builders
will eventually use it. Use this builder in CheckerContext instead of
StmtNodeBuilder (the way the frontier is propagated to the StmtBuilder
is a hack and will be removed later on).
llvm-svn: 142443
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
- Remove unused FindUndefExpr::ProgramStateManager.
- The Condition parameter of the callback is the terminator of the block, no need to retrieve it again.
llvm-svn: 141027
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: -(id)first:(int)x second:(int)y;
-With a space between the arguments: -(id)first: (int)x second: (int)y;
-For nullary selectors, immediately before ';': -(void)release;
In such cases we infer the locations instead of storing them.
llvm-svn: 140989
to take a FunctionDecl* instead of an llvm::StringRef. Eventually
we might push more logic in there, like using slightly different
conventions for C++ methods.
Also, fix a bug where 'copy' and 'create' were being caught in
non-camel-cased strings. We want copyFoo and CopyFoo and XCopy
but not Xcopy or xcopy.
llvm-svn: 140911
Pull out the declaration of the ScanReachableSymbols so that it can be used directly. Document ProgramState::scanReachableSymbols() methods.
llvm-svn: 140323
- Get rid of PathDiagnosticLocation(SourceRange r,..) constructor by providing a bunch of create methods.
- The PathDiagnosticLocation(SourceLocation L,..), which is used by crate methods, will eventually become private.
- Test difference is in the case when the report starts at the beginning of the function. We used to represent that point as a range of the very first token in the first statement. Now, it's just a single location representing the first character of the first statement.
llvm-svn: 139932
- The closing brace is always a single location, not a range.
- The test case previously had a location key 57:1 followed by a range [57:1 - 57:1].
llvm-svn: 139832
- Fix a fixme and move the logic of creating a PathDiagnosticLocation corresponding to a ProgramPoint into a PathDiagnosticLocation constructor.
- Rename PathDiagnosticLocation::create to differentiate from the added constructor.
llvm-svn: 139825
- Modify all PathDiagnosticLocation constructors that take Stmt to also requre LocationContext.
- Add a constructor which should be used in case there is no valid statement/location (it will grab the location of the enclosing function).
llvm-svn: 139763
- It adds LocationContext to the PathDiagnosticLocation object and uses it to lookup the enclosing statement with a valid location.
- So far, the LocationContext is only available when the object is constructed from the ExplodedNode.
- Already found some subtle bugs(in plist-output-alternate.m) where the intermediate diagnostic steps were not previously shown.
llvm-svn: 139703
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
Remove TransferFuncs from ExprEngine and AnalysisConsumer.
Demote RetainReleaseChecker to a regular checker, and give it the name osx.cocoa.RetainCount (class name change coming shortly). Update tests accordingly.
llvm-svn: 138998
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
Unlike the other callbacks, this one is a simple virtual method, since it is only to be used for debugging.
This new callback replaces the old ProgramState::Printer interface, and allows us to move the printing of refcount bindings from CFRefCount to RetainReleaseChecker.
llvm-svn: 138728
This is a common path for function and C++ method calls, Objective-C messages and property accesses, and C++ construct-exprs.
As support, add message receiver accessors to ObjCMessage and CallOrObjCMessage.
llvm-svn: 138718
Also, allow CallOrObjCMessage to wrap a CXXConstructExpr as well.
Finally, this allows us to remove the clunky whitelisting system from CFRefCount/RetainReleaseChecker. Slight regression due to CXXNewExprs not yet being handled in post-statement callbacks (PR forthcoming).
llvm-svn: 138716
Also convert stack-addr-ps.cpp to use the analyzer instead of just Sema, now
that it doesn't crash, and extract the stack-block test into another file since
it errors, and that prevents the analyzer from running.
llvm-svn: 138613
Because Checkers live for an entire translation unit, this persists summary caches across multiple code bodies and avoids repeated initialization (but probably at the cost of memory). This removes the last references from RetainReleaseChecker to CFRefCount.
llvm-svn: 138529
This is a very small regression (actually introduced in r138309) because it won't catch leaks of objects passed by reference to CFDictionaryCreate (they're considered to have escaped and are ignored). If this is important we can put in a specific eval::Call to restore the functionality.
llvm-svn: 138464
incorrectly in the CFG, and also the static analyzer. This patch regresses the analyzer a bit, but
that needs to be followed up with a better solution.
Fixes <rdar://problem/10008112>.
llvm-svn: 138372
1) Create a header file to expose the predefined visitors. And move the parent(BugReporterVisitor) there as well.
2) Remove the registerXXXVisitor functions - the Visitor constructors/getters can be used now to create the object. One exception is registerVarDeclsLastStore(), which registers more then one visitor, so make it static member of FindLastStoreBRVisitor.
3) Modify all the checkers to use the new API.
llvm-svn: 138126
One API change: I added BugReporter as an additional parameter to the BugReporterVisitor::VisitNode() method to allow visitors register other visitors with the report on the fly (while processing a node). This functionality is used by NilReceiverVisitor, which registers TrackNullOrUndefValue when the receiver is null.
llvm-svn: 138001
Having a notion of an actual ProgramPointTag will aid in introspection of the analyzer's behavior.
For example, the GraphViz output of the analyzer will pretty-print the tags in a useful manner.
llvm-svn: 137529
Report errors earlier: on checkDeadSymbols() and clear the state after the symbol we are tracking goes out of scope.
Also, perform lazy error checking. Instead of forcing the paths to be split depending one the return value of the allocator, make the return symbol depend on the allocated data symbol, which prolongs its life span to the time when the allocated data symbol becomes dead.
llvm-svn: 137523
1) Change SymbolDependTy map to keep pointers as data. And other small tweaks like making the DenseMap smaller 64->16 elements; remove removeSymbolDependencies() as it will probably not be used.
2) Do not mark dependents live more then once.
llvm-svn: 137401
The motivation of this large change is to drastically simplify the logic in ExprEngine going forward.
Some fallout is that the output of some BugReporterVisitors is not as accurate as before; those will
need to be fixed over time. There is also some possible performance regression as RemoveDeadBindings
will be called frequently; this can also be improved over time.
llvm-svn: 136419
FullSourceLoc::getInstantiationLoc to ...::getExpansionLoc. This is part
of the API and documentation update from 'instantiation' as the term for
macros to 'expansion'.
llvm-svn: 135914
methods, including indirectly overridden methods like those
declared in protocols and categories. There are mismatches
that we would like to diagnose but aren't yet, but this
is fine for now.
I looked at approaches that avoided doing this lookup
unless we needed it, but the infer-related-result-type
checks were doing it anyway, so I left it with the same
fast-path check for no previous declartions of that
selector.
llvm-svn: 135743
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
- (bounded copies) Be more conservative about how much is being copied.
- (str(n)cat) If we can't compute the exact final length of an append operation, we can still lower-bound it.
- (stpcpy) Fix the conjured return value at the end to actually be returned.
This requires these supporting changes:
- C string metadata symbols are still live even when buried in a SymExpr.
- "Hypothetical" C string lengths, to represent a value that /will/ be passed to setCStringLength() if all goes well. (The idea is to allow for temporary constrainable symbols that may end up becoming permanent.)
- The 'checkAdditionOverflow' helper makes sure that the two strings being appended in a strcat don't overflow size_t. This should never *actually* happen; the real effect is to keep the final string length from "wrapping around" in the constraint manager.
This doesn't actually test the "bounded" operations (strncpy and strncat) because they can leave strings unterminated. Next on the list!
llvm-svn: 133046
There's no associated test for this because fully-constrained symbolic values are evaluated ahead of time in normal expressions. This can only come up in checker-constructed expressions (like the ones in an upcoming patch to CStringChecker).
llvm-svn: 133041
Also, have Environment stop looking through NoOp casts; it didn't match the behavior of LiveVariables. And once that's gone, the whole cast block of that switch is unnecessary.
llvm-svn: 132840
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
Validates inputs are not NULL, checks for overlapping strings, concatenates the strings checking for buffer overflow, sets the length of the destination string to the sum of the s1 length and the s2 length, binds the return value to the s1 value.
llvm-svn: 129215
to be reworked to model CallEnter/CallExit (just like all other calls). For now, treat constructors mostly
like other function calls, making the analysis of C++ code just a little more useful.
llvm-svn: 129166
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
Models mempcpy() so that if length is NULL the destination pointer is returned. Otherwise, the source and destination are confirmed not to be NULL and not overlapping. Finally the copy is validated to not cause a buffer overrun and the return value is bound to the address of the byte after the last byte copied.
llvm-svn: 128677
from how we process ordinary function calls, had a tremendous about of redundancy, and relied
strictly on inlining behavior (which was incomplete) to provide semantics instead of falling
back to the conservative analysis we use for C functions. This is a significant step into
making C++ analyzer support more useful.
llvm-svn: 128557
This rename serves two purposes:
- It reflects the actual functionality of this analysis.
- We will have more than one reachability analysis.
llvm-svn: 127930
conventional categories into Basic and AST. Update the self-init checker
to use this logic; CFRefCountChecker is complicated enough that I didn't
want to touch it.
llvm-svn: 126817
- renames evalCastNL and evalCastL to evalCastFromNonLoc and
evalCastFromLoc (avoid abbreviations that aren't well known).
- makes all function parameter names start with a lower case letter
for consistency and distinction from member variables.
- avoids abbreviations in function parameter names.
Reviewed by kremenek@apple.com.
llvm-svn: 126722
They cooperate in that NSErrorChecker listens for ImplicitNullDerefEvent events that
DereferenceChecker can dispatch.
ImplicitNullDerefEvent is when we dereferenced a location that may be null.
llvm-svn: 126659
A checker can register as receiver/listener of "events" (basically it registers a callback
with a function getting called with an argument of the event type) and other checkers can
register as "dispatchers" and can pass an event object to all the listeners.
This allows cooperation amongst checkers but with very loose coupling.
llvm-svn: 126658
For example, if 'core.experimental.UnreachableCode' is hidden, it should not be enabled with 'core.experimental'.
Note that this requires llvm commit r126436.
llvm-svn: 126439
This fixes a crash reported in PR9287, and also fixes a false positive involving the value of such ternary
expressions not properly getting propagated.
llvm-svn: 126362
-Introduce EndOfFunctionNodeBuilder::withCheckerTag to allow it be "specialized" with a
checker tag and not require the checkers to pass a tag.
-For EndOfFunctionNodeBuilder::generateNode, reverse the order of tag/P parameters since
there are actual calls that assume the second parameter is ExplodedNode.
llvm-svn: 126332
-In general, don't have the BugReporter deleting BugTypes, BugTypes will eventually become owned by checkers
and outlive the BugReporter. In the meantime, there will be some leaks since some checkers assume that
the BugTypes they create will be destroyed by the BugReporter.
-Have BugReporter::EmitBasicReport create BugTypes that are reused if the same name & category strings
are passed to EmitBasicReport. These BugTypes are owned and destroyed by the BugReporter.
This allows bugs reported through EmitBasicReport to be coalesced.
-Remove the llvm::FoldingSet<BugReportEquivClass> from BugType and move it into the BugReporter.
For uniquing BugReportEquivClass also use the BugType* so that we can iterate over all of them using only one set.
llvm-svn: 126272
-Migrate ObjCSelfInitChecker to CheckerV2. In the process remove the 'preCallSelfFlags' field
from the checker class and use GRState for storing that info.
-Get ExprEngine to start delegating checker running to CheckerManager.
llvm-svn: 126229
This yields a minor memory reduction (for larger functions) on Sqlite at the cost of slightly
higher memory usage on some functions because of the increased size of GRState (which can be optimized).
I expect the real memory savings from this enhancement will come when we aggressively
canabilize more of the ExplodedGraph.
llvm-svn: 126012
The relative checker package is 'debug':
'-dump-live-variables' is replaced by '-analyzer-checker=debug.DumpLiveVars'
'-cfg-view' is replaced by '-analyzer-checker=debug.ViewCFG'
'-cfg-dump' is replaced by '-analyzer-checker=debug.DumpCFG'
llvm-svn: 125780
-Introduce CheckerV2, a set of templates for convenient declaration & registration of checkers.
Currently useful just for checkers working on the AST not the path-sensitive ones.
-Enhance CheckerManager to actually collect the checkers and turn it into the entry point for
running the checkers.
-Use the new mechanism for the LLVMConventionsChecker.
llvm-svn: 125778
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
CStringChecker
ChrootChecker
MallocChecker
PthreadLockChecker
StreamChecker
UnreachableCodeChecker
MallocChecker creates implicit dependencies between checkers and needs to be handled differently.
llvm-svn: 125598
-Update tablegen files for checkers, use the tablegen class name for the checker class name.
-Update ClangSACheckersProvider to not look into hidden checker packages.
llvm-svn: 125560
StackAddrLeakChecker
ObjCAtSyncChecker
UnixAPIChecker
MacOSXAPIChecker
The rest have/create implicit dependencies between checkers and need to be handled differently.
llvm-svn: 125559
-Checkers will be defined in the tablegen file 'Checkers.td'.
-Apart from checkers, we can define checker "packages" that will contain a collection of checkers.
-Checkers can be enabled with -analyzer-checker=<name> and disabled with -analyzer-disable-checker=<name> e.g:
Enable checkers from 'cocoa' and 'corefoundation' packages except the self-initialization checker:
-analyzer-checker=cocoa -analyzer-checker=corefoundation -analyzer-disable-checker=cocoa.SelfInit
-Introduces CheckerManager and CheckerProvider. CheckerProviders get the set of checker names to enable/disable and
register them with the CheckerManager which will be the entry point for all checker-related functionality.
Currently only the self-initialization checker takes advantage of the new mechanism.
llvm-svn: 125503
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
The optimization involves eagerly pruning ExplodedNodes from the ExplodedGraph that contain
practically no difference between the predecessor and successor nodes. For example, if
the state is different between a predecessor and a node, the node is left in. Only for
the 'environment' component of the state do we not care if the ExplodedNodes are different.
This paves the way for future optimizations where we can reclaim the environment objects.
llvm-svn: 125154
Eventually there will also be a lib/StaticAnalyzer/Frontend that will handle initialization and checker registration.
Yet another library to avoid cyclic dependencies between Core and Checkers.
llvm-svn: 125124
A common pattern in classes with multiple initializers is to put the
subclass's common initialization bits into a static function that receives
the value of 'self', e.g:
if (!(self = [super init]))
return nil;
if (!(self = _commonInit(self)))
return nil;
It was reported that 'self' was not set to the result of [super init].
Until we can use inter-procedural analysis, in such a call, transfer the
ObjCSelfInitChecker flags associated with 'self' to the result of the call.
Fixes rdar://8937441 & http://llvm.org/PR9094
llvm-svn: 124940
We translate property accesses to obj-c messages by simulating "loads" or "stores" to properties
using a pseudo-location SVal kind (ObjCPropRef).
Checkers can now reason about obj-c messages for both explicit message expressions and implicit
messages due to property accesses.
llvm-svn: 124161
messages that are sent for handling properties in dot syntax.
Replace all direct uses of ObjCMessageExpr in the checkers and checker interface with ObjCMessage.
llvm-svn: 124159
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
the case where the called function has fewer
formal arguments than actual arguments. This
fixes a crash in the analyzer when doing
function call inlining.
Patch by Zhenbo Xu!
llvm-svn: 123458
dead stores within nested assignments. I have
never seen an actual bug found by this specific
warning, and it can lead to many false positives.
llvm-svn: 123394
a struct value to a symbolic index into array.
RegionStore can't actually reason about this,
so we were getting bogus warnings about loading
uninitialized values from the array. The solution
is invalidate the entire array when we cannot
represent the binding explicitly.
Fixes <rdar://problem/8848957>
llvm-svn: 123368
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
SimpleSValBuilder. This clears up some
false positives emitted by ArrayBoundCheckerV2
due to the lack of support for pointer arithmetic.
llvm-svn: 122546
layout. :)
Rename the 'EntoSA' directories to 'StaticAnalyzer'.
Internally we will still use the 'ento' namespace
for the analyzer engine (unless there are further
sabre rattlings...).
llvm-svn: 122514