Commit Graph

535 Commits

Author SHA1 Message Date
Amara Emerson 2b067e3335 Change TargetLowering::canMergeStoresTo() to take a MF instead of DAG.
DAG is unnecessary and we need this hook to implement store merging on GlobalISel too.
2021-08-06 12:57:53 -07:00
David Green 5561ad8b36 [ARM] Remove PromotedBitwiseVT for NEON types
This removes the promotion of NEON AND, OR and XOR nodes to v2i32/v4i32,
treating them the same as the AArch64 and MVE backends where we just add
the relevant patterns for each legal type. This prevents a lot of
bitcasts from being added to the DAG, which have the potential to make
optimizations more difficult. It does mean adding extra patterns, and
some codegen can change due to the types now being legal, not promoted.

Differential Revision: https://reviews.llvm.org/D105588
2021-07-19 16:36:33 +01:00
David Green ca78151001 [ARM] Introduce MVEEXT ISel lowering
Similar to D91921 (and D104515) this introduces two MVESEXT and MVEZEXT
nodes that larger-than-legal sext and zext are lowered to. These either
get optimized away or end up becoming a series of stack loads/store, in
order to perform the extending whilst keeping the order of the lanes
correct. They are generated from v8i16->v8i32, v16i8->v16i16 and
v16i8->v16i32 extends, potentially with a intermediate extend for the
larger v16i8->v16i32 extend. A number of combines have been added for
obvious cases that come up in tests, notably MVEEXT of shuffles. More
may be needed in the future, but this seems to cover most of the cases
that come up in the tests.

Differential Revision: https://reviews.llvm.org/D105090
2021-07-13 07:21:20 +01:00
Daniel Egger 98c2e4115d [ARM] Add lowering of uadd_sat to uq{add|sub}8 and uq{add|sub}16
This follow the lead of https://reviews.llvm.org/D68974 to add lowering
of unsigned saturated addition/subtraction.

Differential Revision: https://reviews.llvm.org/D105413
2021-07-11 15:58:11 +01:00
Krzysztof Parzyszek df88c26f0d [OpaquePtr] Add type parameter to emitLoadLinked
Differential Revision: https://reviews.llvm.org/D105353
2021-07-02 13:07:40 -05:00
David Green 5955812927 [ARM] Introduce MVETRUNC ISel lowering
Currently, when encountering store(trunc(..)) where the trunc is double
a legal vector lenth in MVE, we spilt the node into two different stores
each performing half of the trunc from the wider type. This works well
for efficiently lowering wider than legal types, else the trunc becomes
a series of individual lane moves. Unfortunately this splitting is
currently one of the first combines attempted, so can happen before any
other combines which might be more preferable.

This patch instead introduces the concept of a MVETRUNC ISel node that
the trunk is initially lowered to, to keep it intact as a single item as
opposed to splitting it up. This allows us to push the store(trunc(..))
combine later, allowing other optimisations to potentially happen on the
trunc first. The store(trunc(..)) splitting can then be done later in
the legalisation period if needed, or else fall back to a buildvector as
before.

This can also be used in the future to lower to loads/stores, as opposed
to the more expensive lane extracts/inserts. Some extra combines are
added to keep all the existing tests happy.

Differential Revision: https://reviews.llvm.org/D91921
2021-06-26 22:00:26 +01:00
David Spickett e4ecd83fe9 [llvm][AArch64] Handle arrays of struct properly (from IR)
This only applies to FastIsel. GlobalIsel seems to sidestep
the issue.

This fixes https://bugs.llvm.org/show_bug.cgi?id=46996

One of the things we do in llvm is decide if a type needs
consecutive registers. Previously, we just checked if it
was an array or not.
(plus an SVE specific check that is not changing here)

This causes some confusion when you arbitrary IR like:
```
%T1 = type { double, i1 };
define [ 1 x %T1 ] @foo() {
entry:
  ret [ 1 x %T1 ] zeroinitializer
}
```

We see it is an array so we call CC_AArch64_Custom_Block
which bails out when it sees the i1, a type we don't want
to put into a block.

This leaves the location of the double in some kind of
intermediate state and leads to odd codegen. Which then crashes
the backend because it doesn't know how to implement
what it's been asked for.

You get this:
```
  renamable $d0 = FMOVD0
  $w0 = COPY killed renamable $d0
```

Rather than this:
```
  $d0 = FMOVD0
  $w0 = COPY $wzr
```

The backend knows how to copy 64 bit to 64 bit registers,
but not 64 to 32. It can certainly be taught how but the real
issue seems to be us even trying to assign a register block
in the first place.

This change makes the logic of
AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters
a bit more in depth. If we find an array, also check that all the
nested aggregates in that array have a single member type.

Then CC_AArch64_Custom_Block's assumption of a type that looks
like [ N x type ] will be valid and we get the expected codegen.

New tests have been added to exercise these situations. Note that
some of the output is not ABI compliant. The aim of this change is
to simply handle these situations and not to make our processing
of arbitrary IR ABI compliant.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D104123
2021-06-16 13:56:01 +00:00
Simon Pilgrim 4eb47e3cd4 [TargetLowering] getABIAlignmentForCallingConv - pass DataLayout by const reference. NFCI.
Avoid unnecessary copies and match every other method in TargetLowering that takes DataLayout as an argument.
2021-06-10 10:55:24 +01:00
Nikita Popov 1ffa6499ea [TargetLowering] Use IRBuilderBase instead of IRBuilder<> (NFC)
Don't require a specific kind of IRBuilder for TargetLowering hooks.
This allows us to drop the IRBuilder.h include from TargetLowering.h.

Differential Revision: https://reviews.llvm.org/D103759
2021-06-06 16:29:50 +02:00
Tim Northover d88f96dff3 ARM: support mandatory tail calls for tailcc & swifttailcc
This adds support for callee-pop conventions to the ARM backend so that it can
ensure a call marked "tail" is actually a tail call.
2021-05-28 11:10:51 +01:00
Kristina Bessonova 44843e2a04 [ARM][NEON] Combine base address updates for vld1x intrinsics
Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D102855
2021-05-25 11:06:39 +02:00
Kristina Bessonova d59a2a32b9 [ARM][NEON] Combine base address updates for vst1x intrinsics
Differential Revision: https://reviews.llvm.org/D102256
2021-05-19 14:05:55 +02:00
David Green dd5c52029d [CPG][ARM] Optimize towards branch on zero in codegenprepare
This adds a simple fold into codegenprepare that converts comparison of
branches towards comparison with zero if possible. For example:
  %c = icmp ult %x, 8
  br %c, bla, blb
  %tc = lshr %x, 3
becomes
  %tc = lshr %x, 3
  %c = icmp eq %tc, 0
  br %c, bla, blb

As a first order approximation, this can reduce the number of
instructions needed to perform the branch as the shift is (often) needed
anyway. At the moment this does not effect very much, as llvm tends to
prefer the opposite form. But it can protect against regressions from
commits like rG9423f78240a2.

Simple cases of Add and Sub are added along with Shift, equally as the
comparison to zero can often be folded with cpsr flags.

Differential Revision: https://reviews.llvm.org/D101778
2021-05-16 17:54:06 +01:00
Malhar Jajoo dfe3ffaa4a [ARM] Transforming memset to Tail predicated Loop
This patch converts llvm.memset intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

The llvm.memset is converted to a TP loop for both
constant and non-constant input sizes (of llvm.memset).

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D100435
2021-05-07 13:35:53 +01:00
Malhar Jajoo 9ff38e2d9d [ARM] Transforming memcpy to Tail predicated Loop
This patch converts llvm.memcpy intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

From an implementation point of view, the patch

- adds an ARM specific SDAG Node (to which the llvm.memcpy intrinsic is lowered to, during first phase of ISel)
- adds a corresponding TableGen entry to generate a pseudo instruction, with a custom inserter,
  on matching the above node.
- Adds a custom inserter function that expands the pseudo instruction into MIR suitable
   to be (by later passes) into a WLSTP loop.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D99723
2021-05-06 23:21:28 +01:00
Malhar Jajoo fc690777fc Revert "[ARM] Transforming memcpy to Tail predicated Loop"
Reverting commit since it causes failure (10462).
This reverts commit b856f4a232.
2021-05-06 12:39:08 +01:00
Malhar Jajoo b856f4a232 [ARM] Transforming memcpy to Tail predicated Loop
This patch converts llvm.memcpy intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).

From an implementation point of view, the patch

- adds an ARM specific SDAG Node (to which the llvm.memcpy intrinsic is lowered to, during first phase of ISel)
- adds a corresponding TableGen entry to generate a pseudo instruction, with a custom inserter,
  on matching the above node.
- Adds a custom inserter function that expands the pseudo instruction into MIR suitable
   to be (by later passes) into a WLSTP loop.

Note: A cli option is used to control the conversion of memcpy to TP
loop and this option is currently disabled by default. It may be enabled
in the future after further downstream testing.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D99723
2021-05-06 09:34:09 +01:00
David Green 8de7d8b2c2 [ARM] Recognize VIDUP from BUILDVECTORs of additions
This adds a pattern to recognize VIDUP from BUILD_VECTOR of incrementing
adds. This can come up from either geps or adds, and came up recently in
D100550. We are just looking for a BUILD_VECTOR where each lane is an
add of the first lane with N*i, where i is the lane and N is one of 1,
2, 4, or 8, supported by the VIDUP instruction.

Differential Revision: https://reviews.llvm.org/D101263
2021-04-27 19:33:24 +01:00
David Green 7255d1f54f [ARM] Format ARMISD node definitions. NFC
This clang-formats the list of ARMISD nodes. Usually this is something I
would avoid, but these cause problems with formatting every time new
nodes are added.

The list in getTargetNodeName also makes use of MAKE_CASE macros, as
other backends do.
2021-04-24 14:50:32 +01:00
Sander de Smalen 43ace8b5ce [TTI] NFC: Change getScalingFactorCost to return InstructionCost
This patch migrates the TTI cost interfaces to return an InstructionCost.

See this patch for the introduction of the type: https://reviews.llvm.org/D91174
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html

Differential Revision: https://reviews.llvm.org/D100564
2021-04-23 16:06:36 +01:00
Nick Desaulniers c440b97d89 [TargetLowering] move "o" and "X" constraint handling to base class
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.

Reviewed By: echristo, MaskRay

Differential Revision: https://reviews.llvm.org/D100416
2021-04-19 10:53:31 -07:00
David Green fad70c3068 [ARM] Improve WLS lowering
Recently we improved the lowering of low overhead loops and tail
predicated loops, but concentrated first on the DLS do style loops. This
extends those improvements over to the WLS while loops, improving the
chance of lowering them successfully. To do this the lowering has to
change a little as the instructions are terminators that produce a value
- something that needs to be treated carefully.

Lowering starts at the Hardware Loop pass, inserting a new
llvm.test.start.loop.iterations that produces both an i1 to control the
loop entry and an i32 similar to the llvm.start.loop.iterations
intrinsic added for do loops. This feeds into the loop phi, properly
gluing the values together:

  %wls = call { i32, i1 } @llvm.test.start.loop.iterations.i32(i32 %div)
  %wls0 = extractvalue { i32, i1 } %wls, 0
  %wls1 = extractvalue { i32, i1 } %wls, 1
  br i1 %wls1, label %loop.ph, label %loop.exit
...
loop:
  %lsr.iv = phi i32 [ %wls0, %loop.ph ], [ %iv.next, %loop ]
  ..
  %iv.next = call i32 @llvm.loop.decrement.reg.i32(i32 %lsr.iv, i32 1)
  %cmp = icmp ne i32 %iv.next, 0
  br i1 %cmp, label %loop, label %loop.exit

The llvm.test.start.loop.iterations need to be lowered through ISel
lowering as a pair of WLS and WLSSETUP nodes, which each get converted
to t2WhileLoopSetup and t2WhileLoopStart Pseudos. This helps prevent
t2WhileLoopStart from being a terminator that produces a value,
something difficult to control at that stage in the pipeline. Instead
the t2WhileLoopSetup produces the value of LR (essentially acting as a
lr = subs rn, 0), t2WhileLoopStart consumes that lr value (the Bcc).

These are then converted into a single t2WhileLoopStartLR at the same
point as t2DoLoopStartTP and t2LoopEndDec. Otherwise we revert the loop
to prevent them from progressing further in the pipeline. The
t2WhileLoopStartLR is a single instruction that takes a GPR and produces
LR, similar to the WLS instruction.

  %1:gprlr = t2WhileLoopStartLR %0:rgpr, %bb.3
  t2B %bb.1
...
bb.2.loop:
  %2:gprlr = PHI %1:gprlr, %bb.1, %3:gprlr, %bb.2
  ...
  %3:gprlr = t2LoopEndDec %2:gprlr, %bb.2
  t2B %bb.3

The t2WhileLoopStartLR can then be treated similar to the other low
overhead loop pseudos, eventually being lowered to a WLS providing the
branches are within range.

Differential Revision: https://reviews.llvm.org/D97729
2021-03-11 17:56:19 +00:00
Serge Pavlov 816053bc71 [FPEnv][ARM] Implement lowering of llvm.set.rounding
Differential Revision: https://reviews.llvm.org/D96501
2021-02-13 11:16:29 +07:00
Craig Topper 11ef356d9e [TargetLowering] Use Align in allowsMisalignedMemoryAccesses.
Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D96097
2021-02-04 19:22:06 -08:00
David Green 40f46cb0e4 [ARM] Add alignment checks for MVE VLDn
The MVE VLD2/4 and VST2/4 instructions require the pointer to be aligned
to at least the size of the element type. This adds a check for that
into the ARM lowerInterleavedStore and lowerInterleavedLoad functions,
not creating the intrinsics if they are invalid for the alignment of
the load/store.

Unfortunately this is one of those bug fixes that does effect some
useful codegen, as we were able to sometimes do some nice lowering of
q15 types. But they can cause problem with low aligned pointers.

Differential Revision: https://reviews.llvm.org/D95319
2021-01-28 13:10:08 +00:00
David Green d14db8c8dc [ARM] Match MVE vqdmulh
This adds ISel matching for a form of VQDMULH. There are several ir
patterns that we could match to that instruction, this one is for:

min(ashr(mul(sext(a), sext(b)), 7), 127)

Which is what llvm will optimize to once it has removed the max that
usually makes up the min/max saturate pattern, as in this case the
compare will always be false. The additional complication to match i32
patterns (which extend into an i64) is that the min will be a
vselect/setcc, as vmin is not supported for i64 vectors. Tablegen
patterns have also been updated to attempt to reuse the MVE_TwoOpPattern
patterns.

Differential Revision: https://reviews.llvm.org/D90096
2020-10-30 13:34:27 +00:00
Sam Tebbs 68e002e181 [ARM] Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV
This folds a select_cc or select(set_cc) of a max or min vector reduction with a scalar value into a VMAXV or VMINV.

    Differential Revision: https://reviews.llvm.org/D87836
2020-10-06 14:44:58 +01:00
Amara Emerson c9f5cdd453 Revert "[ARM]Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV"
This reverts commit 2573cf3c3d.

These seem to break some lit tests.
2020-10-05 10:52:43 -07:00
Sam Tebbs 2573cf3c3d [ARM]Fold select_cc(vecreduce_[u|s][min|max], x) into VMINV or VMAXV
This folds a select_cc or select(set_cc) of a max or min vector reduction with a scalar value into a VMAXV or VMINV.

    Differential Revision: https://reviews.llvm.org/D87836
2020-10-05 15:51:28 +01:00
Matt Arsenault 57bd64ff84 Support addrspacecast initializers with isNoopAddrSpaceCast
Moves isNoopAddrSpaceCast to the TargetMachine. It logically belongs
with the DataLayout.
2020-07-31 10:42:43 -04:00
David Green b37e92201c [ARM] Add predicated mla reduction patterns
Similar to 8fa824d7a3 but this time for MLA patterns, this selects
predicated vmlav/vmlava/vmlalv/vmlava instructions from
vecreduce.add(select(p, mul(x, y), 0)) nodes.

Differential Revision: https://reviews.llvm.org/D84102
2020-07-23 21:47:59 +01:00
David Green 8fa824d7a3 [ARM] Add predicated add reduction patterns
Given a vecreduce.add(select(p, x, 0)), we can convert that to a
predicated vaddv, as the else value for the select is the identity
value, a zero. That is what this patch does for the vaddv, vaddva,
vaddlv and vaddlva instructions, copying the existing patterns to also
handle predication through a select.

Differential Revision: https://reviews.llvm.org/D84101
2020-07-22 17:30:02 +01:00
Pavel Iliin b9a6fb6428 [ARM] VBIT/VBIF support added.
Vector bitwise selects are matched by pseudo VBSP instruction
and expanded to VBSL/VBIT/VBIF after register allocation
depend on operands registers to minimize extra copies.
2020-07-16 11:25:53 +01:00
Simon Pilgrim 973685fc78 [TargetLowering] Add DemandedElts arg to ShrinkDemandedConstant
Pre-commit for D82257, this adds a DemandedElts arg to ShrinkDemandedConstant/targetShrinkDemandedConstant which will allow future patches to (optionally) add vector support.
2020-06-29 11:46:58 +01:00
David Green 8532b2ee89 [ARM] MVE VCVT lowering for f16->f32 extends
This adds code to lower f16 to f32 fp_exts's using an MVE VCVT
instructions, similar to a recent similar patch for fp_trunc. Again it
goes through the lowering of a BUILD_VECTOR, but is slightly simpler
only having to deal with interleaved indices. It adds a VCVTL node to
lower to, similar to VCVTN.

Differential Revision: https://reviews.llvm.org/D81339
2020-06-25 20:54:26 +01:00
David Green 3cb2190b0b [ARM] MVE VCVT lowering for f32->f16 truncs
This adds code to lower f32 to f16 fp_trunc's using a pair of MVE VCVT
instructions. Due to v4f16 not being legal, fp_round are often split up
fairly early. So this reconstructs the vcvt's from a buildvector of
fp_rounds from two vector inputs. Something like:

BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
            FP_ROUND(EXTRACT_ELT(Y, 0),
            FP_ROUND(EXTRACT_ELT(X, 1),
            FP_ROUND(EXTRACT_ELT(Y, 1), ...)

It adds a VCVTN node to handle this, which like VMOVN or VQMOVN lowers
into the top/bottom lanes of an MVE instruction.

Differential Revision: https://reviews.llvm.org/D81139
2020-06-25 15:59:36 +01:00
Simon Tatham b769eb02b5 [ARM][BFloat] Legalize bf16 type even without fullfp16.
Summary:
This change permits scalar bfloats to be loaded, stored, moved and
used as function call arguments and return values, whenever the bf16
feature is supported by the subtarget.

Previously that was only supported in the presence of the fullfp16
feature, because the code generation strategy depended on instructions
from that extension. This change adds alternative code generation
strategies so that those operations can be done even without fullfp16.

The strategy for loads and stores is to replace VLDRH/VSTRH with
integer LDRH/STRH plus a move between register classes. I've written
isel patterns for those, conditional on //not// having the fullfp16
feature (so that in the fullfp16 case, the existing patterns will
still be used).

For function arguments and returns, instead of writing isel patterns
to match `VMOVhr` and `VMOVrh`, I've avoided generating those SDNodes
in the first place, by factoring out the code that constructs them
into helper functions `MoveToHPR` and `MoveFromHPR` which have a
fallback for non-fullfp16 subtargets.

The current output code is not especially pretty: in the new test file
you can see unnecessary store/load pairs implementing no-op bitcasts,
and lots of pointless moves back and forth between FP registers and
GPRs. But it at least works, which is an improvement on the previous
situation.

Reviewers: dmgreen, SjoerdMeijer, stuij, chill, miyuki, labrinea

Reviewed By: dmgreen, labrinea

Subscribers: labrinea, kristof.beyls, hiraditya, danielkiss, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82372
2020-06-24 09:36:26 +01:00
Lucas Prates a255931c40 [ARM] Supporting lowering of half-precision FP arguments and returns in AArch32's backend
Summary:
Half-precision floating point arguments and returns are currently
promoted to either float or int32 in clang's CodeGen and there's
no existing support for the lowering of `half` arguments and returns
from IR in AArch32's backend.

Such frontend coercions, implemented as coercion through memory
in clang, can cause a series of issues in argument lowering, as causing
arguments to be stored on the wrong bits on big-endian architectures
and incurring in missing overflow detections in the return of certain
functions.

This patch introduces the handling of half-precision arguments and returns in
the backend using the actual "half" type on the IR. Using the "half"
type the backend is able to properly enforce the AAPCS' directions for
those arguments, making sure they are stored on the proper bits of the
registers and performing the necessary floating point convertions.

Reviewers: rjmccall, olista01, asl, efriedma, ostannard, SjoerdMeijer

Reviewed By: ostannard

Subscribers: stuij, hiraditya, dmgreen, llvm-commits, chill, dnsampaio, danielkiss, kristof.beyls, cfe-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75169
2020-06-18 13:15:13 +01:00
Guillaume Chatelet 94b0c32a0b [Alignment][NFC] Migrate HandleByVal to Align
Summary: Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::HandleByVal` without marking it `override`.

This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81365
2020-06-08 10:50:27 +00:00
Victor Campos c010d4d195 [ARM] Improve codegen of volatile load/store of i64
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.

These improvements cover architectures implementing ARMv5TE or Thumb-2.

The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.

Differential Revision: https://reviews.llvm.org/D70072
2020-05-28 10:52:43 +01:00
Victor Campos 872ee78f65 Revert "[ARM] Improve codegen of volatile load/store of i64"
This reverts commit 8a12553223.

A bug has been found when generating code for Thumb2. In some very
specific cases, the prologue/epilogue emitter generates erroneous stack
offsets for the new LDRD instructions that access the stack.

This bug does not seem to be caused by the reverted patch though. Likely
the latter has made an undiscovered issue emerge in the
prologue/epilogue emission pass. Nevertheless, this reversion is
necessary since it is blocking users of the ARM backend.
2020-05-22 11:01:57 +01:00
David Green 2e1fbf85b6 [ARM] MVE saturating truncates
This adds some custom lowering for VQMOVN, an instruction that can be
used to perform saturating truncates from a pair of min(max(X, -0x8000),
0x7fff), providing those constants are correct. This leaves a VQMOVNBs
which saturates the value and inserts that into the bottom lanes of an
existing vector. We then need to do something with the other lanes,
extending the value using a vmovlb.

Ideally, as will often be the case, only the bottom lane of what remains
will be demanded, allowing the vmovlb to be removed. Which should mean
the instruction is either equal or a win most of the time, and allows
some extra follow-up folding to happen.

Differential Revision: https://reviews.llvm.org/D77590
2020-05-16 15:10:20 +01:00
Christopher Tetreault 245679b62e [SVE] Remove usages of VectorType::getNumElements() from ARM
Reviewers: efriedma, fpetrogalli, kmclaughlin, grosbach, dmgreen

Reviewed By: dmgreen

Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, dmgreen, danielkiss, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79816
2020-05-15 12:55:27 -07:00
Momchil Velikov bc2e572f51 Re-commit: [ARM] CMSE code generation
This patch implements the final bits of CMSE code generation:

* emit special linker symbols

* restrict parameter passing to no use memory

* emit BXNS and BLXNS instructions for returns from non-secure entry
  functions, and non-secure function calls, respectively

* emit code to save/restore secure floating-point state around calls
  to non-secure functions

* emit code to save/restore non-secure floating-pointy state upon
  entry to non-secure entry function, and return to non-secure state

* emit code to clobber registers not used for arguments and returns

* when switching to no-secure state

Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.

Differential Revision: https://reviews.llvm.org/D76518
2020-05-14 16:46:16 +01:00
David Green fa15255d8a [ARM] Convert floating point splats to integer
Under MVE a vdup will always take a gpr register, not a floating point
value. During DAG combine we convert the types to a bitcast to an
integer in an attempt to fold the bitcast into other instructions. This
is OK, but only works inside the same basic block. To do the same trick
across a basic block boundary we need to convert the type in
codegenprepare, before the splat is sunk into the loop.

This adds a convertSplatType function to codegenprepare to do that,
putting bitcasts around the splat to force the type to an integer. There
is then some adjustment to the code in shouldSinkOperands to handle the
extra bitcasts.

Differential Revision: https://reviews.llvm.org/D78728
2020-05-13 15:24:16 +01:00
Momchil Velikov fb18dffaeb Revert "[ARM] CMSE code generation"
This reverts commit 7cbbf89d23.

The regression tests fail with the expensive checks.
2020-05-05 19:05:40 +01:00
Momchil Velikov 7cbbf89d23 [ARM] CMSE code generation
This patch implements the final bits of CMSE code generation:

* emit special linker symbols

* restrict parameter passing to not use memory

* emit BXNS and BLXNS instructions for returns from non-secure entry
  functions, and non-secure function calls, respectively

* emit code to save/restore secure floating-point state around calls
  to non-secure functions

* emit code to save/restore non-secure floating-pointy state upon
  entry to non-secure entry function, and return to non-secure state

* emit code to clobber registers not used for arguments and returns
  when switching to no-secure state

Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.

Differential Revision: https://reviews.llvm.org/D76518
2020-05-05 18:23:28 +01:00
Matt Arsenault 84aa58cbe2 CodeGen: Use Register in TargetLowering 2020-04-08 12:10:58 -04:00
Simon Tatham 1adfa4c991 [ARM,MVE] Add ACLE intrinsics for the vaddv/vaddlv family.
Summary:
I've implemented them as target-specific IR intrinsics rather than
using `@llvm.experimental.vector.reduce.add`, on the grounds that the
'experimental' intrinsic doesn't currently have much code generation
benefit, and my replacements encapsulate the sign- or zero-extension
so that you don't expose the illegal MVE vector type (`<4 x i64>`) in
IR.

The machine instructions come in two versions: with and without an
input accumulator. My new IR intrinsics, like the 'experimental' one,
don't take an accumulator parameter: we represent that by just adding
on the input value using an ordinary i32 or i64 add. So if you write
the `vaddvaq` C-language intrinsic with an input accumulator of zero,
it can be optimised to VADDV, and conversely, if you write something
like `x += vaddvq(y)` then that can be combined into VADDVA.

Most of this is achieved in isel lowering, by converting these IR
intrinsics into the existing `ARMISD::VADDV` family of custom SDNode
types. For the difficult case (64-bit accumulators), isel lowering
already implements the optimization of folding an addition into a
VADDLV to make a VADDLVA; so once we've made a VADDLV, our job is
already done, except that I had to introduce a parallel set of ARMISD
nodes for the //predicated// forms of VADDLV.

For the simpler VADDV, we handle the predicated form by just leaving
the IR intrinsic alone and matching it in an ordinary dag pattern.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76491
2020-03-20 15:42:33 +00:00
Simon Tatham 28c5d97bee [ARM,MVE] Add intrinsics and isel for MVE integer VMLA.
Summary:
These instructions compute multiply+add in integers, with one of the
operands being a splat of a scalar. (VMLA and VMLAS differ in whether
the splat operand is a multiplier or the addend.)

I've represented these in IR using existing standard IR operations for
the unpredicated forms. The predicated forms are done with target-
specific intrinsics, as usual.

When operating on n-bit vector lanes, only the bottom n bits of the
i32 scalar operand are used. So we have to tell that to isel lowering,
to allow it to remove a pointless sign- or zero-extension instruction
on that input register. That's done in `PerformIntrinsicCombine`, but
first I had to enable `PerformIntrinsicCombine` for MVE targets
(previously all the intrinsics it handled were for NEON), and make it
a method of `ARMTargetLowering` so that it can get at
`SimplifyDemandedBits`.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76122
2020-03-18 10:55:04 +00:00