The target does just enough to be able to run llvm-exegesis in latency
mode for at least some opcodes.
Patch by Miloš Stojanović.
Differential Revision: https://reviews.llvm.org/D68649
llvm-svn: 374590
If a "double" (64-bit) value has zero low 32-bits, it's possible to load
such value into a GP/FP registers as an instruction immediate. But now
assembler loads only high 32-bits of the value.
For example, if a target register is GPR the `li.d $4, 1.0` instruction
converts into the `lui $4, 16368` one. As a result, we get `0x3FF00000`
in the register. While a correct representation of the `1.0` value is
`0x3FF0000000000000`. The patch fixes that.
Differential Revision: https://reviews.llvm.org/D68776
llvm-svn: 374544
EXPENSIVE_CHECKS build was failing on new test.
This is fixed by marking $ra register as undef.
Test now has -verify-machineinstrs to check for operand flags.
llvm-svn: 374320
The `expandLoadImmReal` handles four different and almost non-overlapping
cases: loading a "single" float immediate into a GPR, loading a "single"
float immediate into a FPR, and the same couple for a "double" float
immediate.
It's better to move each `else if` branch into separate methods.
llvm-svn: 374164
When -pg option is present than a call to _mcount is inserted into every
function. However since the proper ABI was not followed then the generated
gmon.out did not give proper results. By inserting needed instructions
before every _mcount we can fix this.
Differential Revision: https://reviews.llvm.org/D68390
llvm-svn: 374055
This ensures that frame-based unwinding will continue to work when
calling a noreturn function; there is not much use having the caller's
frame pointer saved if you don't also have the caller's program counter.
Patch by James Clarke.
Differential Revision: https://reviews.llvm.org/D68542
llvm-svn: 373907
J/JAL/JALX/JALS are absolute branches, but stay within the current
256 MB-aligned region, so we must include the high bits of the
instruction address when calculating the branch target.
Patch by James Clarke.
Differential Revision: https://reviews.llvm.org/D68548
llvm-svn: 373906
Replace with the MachineFunction. X86 is the only user, and only uses
it for the function. This removes one obstacle from using this in
GlobalISel. The other is the more tolerable EVT argument.
The X86 use of the function seems questionable to me. It checks hasFP,
before frame lowering.
llvm-svn: 373292
Implement aggregate structure split to simpler types in splitToValueTypes.
splitToValueTypes is used for return values.
According to MipsABIInfo from clang/lib/CodeGen/TargetInfo.cpp,
aggregate structure arguments for O32 always get simplified and thus
will remain unsupported by the MIPS GlobalISel for the time being.
For O32, aggregate structures can be encountered only for complex number
returns e.g. 'complex float' or 'complex double' from <complex.h>.
Differential Revision: https://reviews.llvm.org/D67963
llvm-svn: 372957
Neither the base implementation of findCommutedOpIndices nor any in-tree target modifies the instruction passed in and there is no reason why they would in the future.
Committed on behalf of @hvdijk (Harald van Dijk)
Differential Revision: https://reviews.llvm.org/D66138
llvm-svn: 372882
CC_Mips doesn't accept vararg functions for O32, so we have to explicitly
use CC_Mips_FixedArg.
For lowerCall we now properly figure out whether callee function is vararg
or not, this has no effect for O32 since we always use CC_Mips_FixedArg.
For lower formal arguments we need to copy arguments in register to stack
and save pointer to start for argument list into MipsMachineFunction
object so that G_VASTART could use it during instruction select.
For vacopy we need to copy content from one vreg to another,
load and store are used for that purpose.
Differential Revision: https://reviews.llvm.org/D67756
llvm-svn: 372555
The static analyzer is warning about potential null dereferences, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 372500
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Summary:
As discussed in https://reviews.llvm.org/D62341#1515637,
for MIPS `add %x, -1` isn't optimal. Unlike X86 there
are no fastpaths to matearialize such `-1`/`1` vector constants,
and `sub %x, 1` results in better codegen,
so undo canonicalization
Reviewers: atanasyan, Petar.Avramovic, RKSimon
Reviewed By: atanasyan
Subscribers: sdardis, arichardson, hiraditya, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66805
llvm-svn: 372254
In case of using 32-bit GOT access to the table requires two instructions
with attached %got_hi and %got_lo relocations. This patch implements
correct expansion of 'lw/sw' instructions in that case.
Differential Revision: https://reviews.llvm.org/D67705
llvm-svn: 372251
We need "xgot" flag in the MipsAsmParser to implement correct expansion
of some pseudo instructions in case of using 32-bit GOT (XGOT).
MipsAsmParser does not have reference to MipsSubtarget but has a
reference to "feature bit set".
llvm-svn: 372220
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, JDevlieghere, alexshap, rupprecht, jhenderson
Subscribers: sdardis, nemanjai, hiraditya, kbarton, jakehehrlich, jrtc27, MaskRay, atanasyan, jsji, seiya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67499
llvm-svn: 371742
IRTranslator creates G_DYN_STACKALLOC instruction during expansion of
alloca when argument that tells number of elements to allocate on stack
is a virtual register. Use default lowering for MIPS32.
Differential Revision: https://reviews.llvm.org/D67440
llvm-svn: 371728
G_IMPLICIT_DEF is used for both integer and floating point implicit-def.
Handle G_IMPLICIT_DEF as ambiguous opcode in MipsRegisterBankInfo.
Select G_IMPLICIT_DEF for MIPS32.
Differential Revision: https://reviews.llvm.org/D67439
llvm-svn: 371727
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
When value of immediate in `mips.nori.b` is 255 (which has all ones in
binary form as 8bit integer) DAGCombiner and Legalizer would fall in an
infinite loop. DAGCombiner would try to simplify `or %value, -1` by
turning `%value` into UNDEF. Legalizer will turn it back into `Constant<0>`
which would then be again turned into UNDEF by DAGCombiner. To avoid this
loop we make UNDEF legal for MSA int types on Mips.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D67280
llvm-svn: 371607
microMIPS jump and link exchange instruction stores a target in a
26-bits field. Despite other microMIPS JAL instructions these bits
are target address shifted right 2 bits [1]. The patch fixes the
JALX instruction decoding and uses 2-bit shift.
[1] MIPS Architecture for Programmers Volume II-B: The microMIPS32 Instruction Set
Differential Revision: https://reviews.llvm.org/D67320
llvm-svn: 371428
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67229
llvm-svn: 371200
G_FENCE comes form fence instruction. For MIPS fence is generated in
AtomicExpandPass when atomic instruction gets surrounded with fence
instruction when needed.
G_FENCE arguments don't have LLT, because of that there is no job for
legalizer and regbankselect. Instruction select G_FENCE for MIPS32.
Differential Revision: https://reviews.llvm.org/D67181
llvm-svn: 371056
Select G_INTRINSIC_W_SIDE_EFFECTS for Intrinsic::trap for MIPS32
via legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D67180
llvm-svn: 371055
Instead of returning structure by value clang usually adds pointer
to that structure as an argument. Pointers don't require special
handling no matter the SRet flag. Remove unsuccessful exit from
lowerCall for arguments with SRet flag if they are pointers.
Differential Revision: https://reviews.llvm.org/D67179
llvm-svn: 371054
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
On AArch64, s128 types have to be split into s64 GPRs when passed as arguments.
This change adds the generic support in call lowering for dealing with multiple
registers, for incoming and outgoing args.
Support for splitting for return types not yet implemented.
Differential Revision: https://reviews.llvm.org/D66180
llvm-svn: 370822
Now the last `.section` directive in the MIPS asm file preamble
is the `.section .mdebug.abi`. If assembler code injected for example
by the LLVM `module asm` or the C ` __asm` directives do not contain
explicit switching to the `.text` section it goes to the `.mdebug.abi`
section. It might be unexpected to the user and in fact for example
breaks building some existing code like FreeBSD libc [1].
The patch forces switching to the `.text` section after emitting MIPS
assembler file preamble.
[1] https://bugs.llvm.org/show_bug.cgi?id=43119
Fix PR43119.
Differential Revision: https://reviews.llvm.org/D67014
llvm-svn: 370735
Add lower for G_FPTOUI. Algorithm is similar to the SDAG version
in TargetLowering::expandFP_TO_UINT.
Lower G_FPTOUI for MIPS32.
Differential Revision: https://reviews.llvm.org/D66929
llvm-svn: 370431
Both methods `MipsTargetStreamer::emitStoreWithSymOffset` and
`MipsTargetStreamer::emitLoadWithSymOffset` are almost the same and
differ argument names only. These methods are used in the single place
so it's better to inline their code and remove original methods.
llvm-svn: 370354
When a "base" in the `lw/sw $reg1, symbol($reg2)` instruction is
a register and generated code is position independent, backend
does not add the "base" value to the symbol address.
```
lw $reg1, %got(symbol)($gp)
lw/sw $reg1, 0($reg1)
```
This patch fixes the bug and adds the missed `addu` instruction by
passing `BaseReg` into the `loadAndAddSymbolAddress` routine and handles
the case when the `BaseReg` is the zero register to escape redundant
`move reg, reg` instruction:
```
lw $reg1, %got(symbol)($gp)
addu $reg1, $reg1, $reg2
lw/sw $reg1, 0($reg1)
```
Differential Revision: https://reviews.llvm.org/D66894
llvm-svn: 370353
If result of 64-bit address loading combines with 32-bit mask, LLVM
tries to optimize the code and remove "redundant" loading of upper
32-bits of the address. It leads to incorrect code on MIPS64 targets.
MIPS backend creates the following chain of commands to load 64-bit
address in the `MipsTargetLowering::getAddrNonPICSym64` method:
```
(add (shl (add (shl (add %highest(sym), %higher(sym)),
16),
%hi(sym)),
16),
%lo(%sym))
```
If the mask presents, LLVM decides to optimize the chain of commands. It
really does not make sense to load upper 32-bits because the 0x0fffffff
mask anyway clears them. After removing redundant commands we get this
chain:
```
(add (shl (%hi(sym), 16), %lo(%sym))
```
There is no patterns matched `(MipsHi (i64 symbol))`. Due a bug in `SYM_32`
predicate definition, backend incorrectly selects a pattern for a 32-bit
symbols and uses the `lui` instruction for loading `%hi(sym)`.
As a result we get incorrect set of instructions with unnecessary 16-bit
left shifting:
```
lui at,0x0
R_MIPS_HI16 foo
dsll at,at,0x10
daddiu at,at,0
R_MIPS_LO16 foo
```
This patch resolves two problems:
- Fix `SYM_32/SYM_64` predicates to prevent selection of patterns dedicated
to 32-bit symbols in case of using N64 ABI.
- Add missed patterns for 64-bit symbols for `%hi/%lo`.
Fix PR42736.
Differential Revision: https://reviews.llvm.org/D66228
llvm-svn: 370268
There is no pattern matched `add hi, (MipsLo texternalsym)`. As a result,
loading an address of 32-bit symbol requires two registers and one more
additional instruction:
```
addiu $1, $zero, %lo(foo)
lui $2, %hi(foo)
addu $25, $2, $1
```
This patch adds the missed pattern and enables generation more effective
set of instructions:
```
lui $1, %hi(foo)
addiu $25, $1, %lo(foo)
```
Differential Revision: https://reviews.llvm.org/D66771
llvm-svn: 370196
Now `lw/sw $reg, sym+offset` pseudo instructions for global symbol `sym`
are lowering into the following three instructions.
```
lw $reg, %got(symbol)($gp)
addiu $reg, $reg, offset
lw/sw $reg, 0($reg)
```
It's possible to reduce the number of instructions by taking the offset
in account in the final `lw/sw` command. This patch implements that
optimization.
```
lw $reg, %got(symbol)($gp)
lw/sw $reg, offset($reg)
```
Differential Revision: https://reviews.llvm.org/D66553
llvm-svn: 369756
Now pseudo instruction `la $6, symbol+8($6)` is expanding into the following
chain of commands:
```
lw $1, %got(symbol+8)($gp)
addiu $1, $1, 8
addu $6, $1, $6
```
This is incorrect. When a linker handles the `R_MIPS_GOT16` relocation,
it does not expect to get any addend and breaks on assertion. Otherwise
it has to create new GOT entry for each unique "sym + offset" pair.
Offset for a global symbol should be added to result of loading GOT
entry by a separate `add` command.
The patch fixes the problem by stripping off an offset from the expression
passed to the `%got`. That's interesting that even current code inserts
a separate `add` command.
Differential Revision: https://reviews.llvm.org/D66552
llvm-svn: 369755
Prefer `MCFixupKind` where possible and add getTargetKind() to
convert to `unsigned` when needed rather than scattering cast
operators around the place.
Differential Revision: https://reviews.llvm.org/D59890
llvm-svn: 369720
In case of expanding `lw/sw $reg, symbol($reg)` instruction for PIC it's
enough to call the `loadAndAddSymbolAddress` method. Additional work
performed by the `expandLoadAddress` is not required here.
llvm-svn: 369563
r351882 allows different type for shift amount then result and value
being shifted. Fix MIPS Legalizer rules to take r351882 into account.
Differential Revision: https://reviews.llvm.org/D66203
llvm-svn: 369510
Add NarrowScalar for G_TRUNC when NarrowTy is half the size of source.
NarrowScalar G_TRUNC to s32 for MIPS32.
Differential Revision: https://reviews.llvm.org/D66202
llvm-svn: 369509
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Currently we can't keep any state in the selector object that we get from
subtarget. As a result we have to plumb through all our variables through
multiple functions. This change makes it non-const and adds a virtual init()
method to allow further state to be captured for each target.
AArch64 makes use of this in this patch to cache a call to hasFnAttribute()
which is expensive to call, and is used on each selection of G_BRCOND.
Differential Revision: https://reviews.llvm.org/D65984
llvm-svn: 368652
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
Fast-isel was picking AFGR64 register class for processing call
arguments when +fp64 options was used. We simply check is option +fp64
is used and pick appropriate register.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D65886
llvm-svn: 368433
I've now needed to add an extra parameter to this call twice recently. Not only
is the signature getting extremely unwieldy, but just updating all of the
callsites and implementations is a pain. Putting the parameters in a struct
sidesteps both issues.
llvm-svn: 368408
G_JUMP_TABLE and G_BRJT appear from translation of switch statement.
Select these two instructions for MIPS32, both pic and non-pic.
Differential Revision: https://reviews.llvm.org/D65861
llvm-svn: 368274
Function MipsAsmParser::expandMemInst() did not properly handle
instruction `sc` with a symbol as an argument because first argument
would be counted twice. We add additional checks and handle this case
separately.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D64252
llvm-svn: 368160
If an operand of the `lw/sw` instructions is a symbol, these instructions
incorrectly lowered using not-position-independent chain of commands.
For PIC code we should use `lw/addiu` instructions with the `R_MIPS_GOT16`
and `R_MIPS_LO16` relocations respectively. Instead of that LLVM generates
position dependent code with the `R_MIPS_HI16` and `R_MIPS_LO16`
relocations.
This patch provides a fix for the bug by handling PIC case separately in
the `MipsAsmParser::expandMemInst`. The main idea is to generate a chain
of PIC instructions to load a symbol address into a register and then
load the address content.
The fix is not optimal and does not fix all PIC-related problems. This
is a task for subsequent patches.
Differential Revision: https://reviews.llvm.org/D65524
llvm-svn: 367580
Fold load/store + G_GEP + G_CONSTANT when
immediate in G_CONSTANT fits into 16 bit signed integer.
Differential Revision: https://reviews.llvm.org/D65507
llvm-svn: 367535
Summary:
This will make it possible to improve IPRA by taking into account
register usage in indirect calls.
NFC yet; this is just laying the groundwork to start building
up patches to take advantage of the information for improved register
allocation.
Reviewers: aditya_nandakumar, volkan, qcolombet, arsenm, rovka, aemerson, paquette
Subscribers: sdardis, wdng, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65488
llvm-svn: 367476
Void return used to have unsigned with value 0 for virtual register
but with addition of Register class and changes to arguments to lowerCall
this is no longer valid.
Check for void return by inspecting the Ty field in OrigRet.
Differential Revision: https://reviews.llvm.org/D65321
llvm-svn: 367107
This introduces a new family of combiner helper routines that re-use the
target specific cost model from SelectionDAG, and generate inline implementations
of the memcpy family of intrinsics.
The combines are only enabled at optimization levels higher than -O0, and give
very substantial performance improvements.
Differential Revision: https://reviews.llvm.org/D65167
llvm-svn: 366951
I plan on adding memcpy optimizations in the GlobalISel pipeline, but we can't
do that unless we delay lowering to actual function calls. This patch changes
the translator to generate G_INTRINSIC_W_SIDE_EFFECTS for these functions, and
then have each target specify that using the new custom legalizer for intrinsics
hook that they want it expanded it a libcall.
Differential Revision: https://reviews.llvm.org/D64895
llvm-svn: 366516
Add narrowScalar to half of original size for G_ICMP.
ClampScalar G_ICMP's operands 2 and 3 to to s32.
Select G_ICMP for pointers for MIPS32. Pointer compare is same
as for integers, it is enough to declare them as legal type.
Differential Revision: https://reviews.llvm.org/D64856
llvm-svn: 366317
This directive forces to use the alternate register for context pointer.
For example, this code:
.cplocal $4
jal foo
expands to:
ld $25, %call16(foo)($4)
jalr $25
Differential Revision: https://reviews.llvm.org/D64743
llvm-svn: 366300
As well as other LLVM targets we do not handle "offsettable"
memory addresses in any special way. In other words, the "o" constraint
is an exact equivalent of the "m" one. But some existing code require
the "o" constraint support.
This fixes PR42589.
Differential Revision: https://reviews.llvm.org/D64792
llvm-svn: 366299
There is not match for the `MipsJmpLink texternalsym` and `MipsJmpLink
tglobaladdr` patterns for microMIPS R6. As a result LLVM incorrectly
selects the `JALRC16` compact 2-byte instruction which takes a target
instruction address from a register only and assign `R_MIPS_32` relocation
for this instruction. This relocation completely overwrites `JALRC16`
and nearby instructions.
This patch adds missed matching patterns, selects `BALC` instruction and
assign a correct `R_MICROMIPS_PC26_S1` relocation.
Differential Revision: https://reviews.llvm.org/D64552
llvm-svn: 365870
Skip copies between virtual registers during search for UseDefs
and DefUses.
Since each operand has one def search for UseDefs is straightforward.
But since operand can have many uses, we have to check all uses of
each copy we traverse during search for DefUses.
Differential Revision: https://reviews.llvm.org/D64486
llvm-svn: 365744
When one of the uses/defs of ambiguous instruction is also ambiguous
visit it recursively and search its uses/defs for instruction with
only one mapping available.
When all instruction in a chain are ambiguous arbitrary mapping can
be selected. For s64 operands in ambiguous chain fprb is selected since
it results in less instructions then having to narrow scalar s64 to s32.
For s32 both gprb and fprb result in same number of instructions and
gprb is selected like a general purpose option.
At the moment we always avoid cross register bank copies.
TODO: Implement a model for costs calculations of different mappings
on same instruction and cross bank copies. Allow cross bank copies
when appropriate according to cost model.
Differential Revision: https://reviews.llvm.org/D64485
llvm-svn: 365743
Select gprb or fprb when def/use register operand of G_PHI is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 phi is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64351
llvm-svn: 365494
Select gprb or fprb when def/use register operand of G_SELECT is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 select is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
For selection of floating point s32 or s64 select it is enough to set
fprb of appropriate size and selectImpl will do the rest.
Differential Revision: https://reviews.llvm.org/D64350
llvm-svn: 365492
The `sge/sgeu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than or equal `Src2/Imm` and
to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64314
llvm-svn: 365476
The `sgt/sgtu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than `Src2/Imm` and to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64313
llvm-svn: 365475
Select gprb or fprb when loaded value is used by either:
copy to physical register or
instruction with only one mapping available for that use operand.
Load of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64269
llvm-svn: 365323
Select gprb or fprb when stored value is defined by either:
copy from physical register or
instruction with only one mapping available for that def operand.
Store of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64268
llvm-svn: 365322
Change the interface of CallLowering::lowerCall to accept several
virtual registers for the call result, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63550
llvm-svn: 364511
Change the interface of CallLowering::lowerFormalArguments to accept
several virtual registers for each formal argument, instead of just one.
This is a follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660. lowerCall
will be refactored in the same way in follow-up patches.
With this change, we forward the virtual registers generated for
aggregates to CallLowering. Therefore, the target can decide itself
whether it wants to handle them as separate pieces or use one big
register. We also copy the pack/unpackRegs helpers to CallLowering to
facilitate this.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was
put into a s64 instead of a p0. Added a test-case which illustrates the
problem more clearly (it crashes without this patch) and fixed the
existing test-case to expect p0.
AMDGPU has been updated to unpack into the virtual registers for
kernels. I think the other code paths fall back for aggregates, so this
should be NFC.
Mips doesn't support aggregates yet, so it's also NFC.
x86 seems to have code for dealing with aggregates, but I couldn't find
the tests for it, so I just added a fallback to DAGISel if we get more
than one virtual register for an argument.
Differential Revision: https://reviews.llvm.org/D63549
llvm-svn: 364510
Allow CallLowering::ArgInfo to contain more than one virtual register.
This is useful when passes split aggregates into several virtual
registers, but need to also provide information about the original type
to the call lowering. Used in follow-up patches.
Differential Revision: https://reviews.llvm.org/D63548
llvm-svn: 364509
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
Add `IsGP64bit` and `IsPTR64bit` to the list of `UnsupportedFeatures`
of the P5600 scheduling definitions. Also mark some MIPS 64-bit
instructions by PTR_64 and GPR_64 predicates. This reduces number
of "No schedule information for" and "lacks information for" errors
in case of marking this scheduler model as complete.
This patch is one of a series of patches. The goal is to make P5600
scheduler model complete and turn on the `CompleteModel` flag.
Differential Revision: https://reviews.llvm.org/D63237
llvm-svn: 363702
Set the hasNoSchedulingInfo flag for the`MipsAsmPseudoInst`. These
pseudo-instructions are never used by codegen. This flag allows to
reduce number of "No schedule information for" and "lacks information
for" errors in case of marking a scheduler model as complete.
This patch is one of a series of patches. The goal is to make P5600
scheduler model complete and turn on the `CompleteModel` flag.
Differential Revision: https://reviews.llvm.org/D63236
llvm-svn: 363701
Add support for s.d instruction for Mips1 which expands into two swc1
instructions.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D63199
llvm-svn: 363184
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
This reverts r362990 (git commit 374571301d)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
The `cfcmsa` and `ctcmsa` instructions accept index of MSA control
register. The MIPS64 SIMD Architecture define eight MSA control
registers. But register index for `cfcmsa` and `ctcmsa` instructions
might be any number in 0..31 range. If the index is greater then 7,
`cfcmsa` writes zero to the destination registers and `ctcmsa` does
nothing [1].
[1] MIPS Architecture for Programmers Volume IV-j:
The MIPS64 SIMD Architecture Module
https://www.mips.com/?do-download=the-mips64-simd-architecture-module
Differential Revision: https://reviews.llvm.org/D62597
llvm-svn: 362299
Handle position independent code for MIPS32.
When callee is global address, lower call will emit callee
as G_GLOBAL_VALUE and add target flag if needed.
Support $gp in getRegBankFromRegClass().
Select G_GLOBAL_VALUE, specially handle case when
there are target flags attached by lowerCall.
Differential Revision: https://reviews.llvm.org/D62589
llvm-svn: 362210
Move initGlobalBaseReg from MipsSEDAGToDAGISel to MipsFunctionInfo.
This way functions used for handling position independent code during
instruction selection, getGlobalBaseReg and initGlobalBaseReg,
end up in same class.
Differential Revision: https://reviews.llvm.org/D62586
llvm-svn: 362206
Lower call for callee that is register for MIPS32.
Register should contain callee function address.
Differential Revision: https://reviews.llvm.org/D62585
llvm-svn: 362204
The D45316 introduced the `shouldTransformMulToShiftsAddsSubs` function
to check that breaking down constant multiplications into a series
of shifts, adds, and subs is efficient. Unfortunately, this function
does not check maximum number of steps on all paths of the algorithm.
This patch fixes this bug.
Fix for PR41929.
Differential Revision: https://reviews.llvm.org/D62166
llvm-svn: 361606
R_ARM_NONE can be used to create references among sections. When
--gc-sections is used, the referenced section will be retained if the
origin section is retained.
Add a generic MCFixupKind FK_NONE as this kind of no-op relocation is
ubiquitous on ELF and COFF, and probably available on many other binary
formats. See D62014.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D61992
llvm-svn: 360980
LLVM previously used `DW_CFA_def_cfa` instruction in .eh_frame to set
the register and offset for current CFA rule. We change it to
`DW_CFA_def_cfa_register` which is the same one used by GAS that only
changes the register but keeping the old offset.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D61899
llvm-svn: 360765
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360727
For some targets, there is a circular dependency between InstPrinter and
MCTargetDesc. Merging them together will fix this. For the other targets,
the merging is to maintain consistency so all targets will have the same
structure.
llvm-svn: 360497
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
Summary:
Targets like ARM, MSP430, PPC, and SystemZ have complex behavior when
printing the address of a MachineOperand::MO_GlobalAddress. Move that
handling into a new overriden method in each base class. A virtual
method was added to the base class for handling the generic case.
Refactors a few subclasses to support the target independent %a, %c, and
%n.
The patch also contains small cleanups for AVRAsmPrinter and
SystemZAsmPrinter.
It seems that NVPTXTargetLowering is possibly missing some logic to
transform GlobalAddressSDNodes for
TargetLowering::LowerAsmOperandForConstraint to handle with "i" extended
inline assembly asm constraints.
Fixes:
- https://bugs.llvm.org/show_bug.cgi?id=41402
- https://github.com/ClangBuiltLinux/linux/issues/449
Reviewers: echristo, void
Reviewed By: void
Subscribers: void, craig.topper, jholewinski, dschuff, jyknight, dylanmckay, sdardis, nemanjai, javed.absar, sbc100, jgravelle-google, eraman, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, jrtc27, atanasyan, jsji, llvm-commits, kees, tpimh, nathanchance, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60887
llvm-svn: 359337
On Mips32r2 bitcast can be expanded to two sw instructions and an ldc1
when using bitcast i64 to double or an sdc1 and two lw instructions when
using bitcast double to i64. By introducing custom lowering that uses
mtc1/mthc1 we can avoid excessive instructions.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D61069
llvm-svn: 359171
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
Summary:
The MachineFunction should have been created with the correct subtarget. As
long as there is no way to change it, MipsTargetMachine can just capture it
directly from the MachineFunction without calling getSubtargetImpl again.
While there, const correct the Subtarget pointer to avoid a const_cast.
I believe the Mips16Subtarget and NoMips16Subtarget members are never used, but
I'll leave there removal for a separate patch.
Reviewers: echristo, atanasyan
Reviewed By: atanasyan
Subscribers: sdardis, arichardson, hiraditya, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60936
llvm-svn: 359071
As discussed on PR41359, this patch renames the pair of shift-mask target feature functions to make their purposes more obvious.
shouldFoldShiftPairToMask -> shouldFoldConstantShiftPairToMask
preferShiftsToClearExtremeBits -> shouldFoldMaskToVariableShiftPair
llvm-svn: 358526
Because CodeGen can't depend on GlobalISel, we need a way to encapsulate the CSE
configs that can be passed between TargetPassConfig and the targets' custom
pass configs. This CSEConfigBase allows targets to create custom CSE configs
which is then used by the GISel passes for the CSEMIRBuilder.
This support will be used in a follow up commit to allow constant-only CSE for
-O0 compiles in D60580.
llvm-svn: 358368
Summary:
The InlineAsm::AsmDialect is only required for X86; no architecture
makes use of it and as such it gets passed around between arch-specific
and general code while being unused for all architectures but X86.
Since the AsmDialect is queried from a MachineInstr, which we also pass
around, remove the additional AsmDialect parameter and query for it deep
in the X86AsmPrinter only when needed/as late as possible.
This refactor should help later planned refactors to AsmPrinter, as this
difference in the X86AsmPrinter makes it harder to make AsmPrinter more
generic.
Reviewers: craig.topper
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, llvm-commits, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60488
llvm-svn: 358101
To disable using of odd floating-point registers (O32 ABI and
-mno-odd-spreg command line option) such registers and their
super-registers added to the set of reserved registers. In general, it
works. But there is at least one problem - in case of enabled machine
verifier pass some floating-point tests failed because live ranges of
register units that are reserved is not empty and verification pass
failed with "Live segment doesn't end at a valid instruction" error
message.
There is D35985 patch which tries to solve the problem by explicit
removing of register units. This solution did not get approval.
I would like to use another approach for prevent using odd floating
point registers - define `AltOrders` and `AltOrderSelect` for MIPS
floating point register classes. Such `AltOrders` contains reduced set
of registers. At first glance, such solution does not break any test
cases and allows enabling machine instruction verification for all MIPS
test cases.
Differential Revision: http://reviews.llvm.org/D59799
llvm-svn: 357472
The `lowerMSASplatImm` function zero-extends `i32` immediates while
building constant. If target type is `i64`, negative immediate loses
the sign. As a result, for example `__builtin_msa_ldi_d(-1)` lowered
to series of instruction loads incorrect value 0xffffffff to the `$w0`
register instead of single `ldi.d $w0, -1` instruction.
The fix zero-extends unsigned immediates and signed-extend signed
immediates.
Differential Revision: http://reviews.llvm.org/D59884
llvm-svn: 357264
Move selectCopy into MipsInstructionSelector class.
Select copy for arguments from FPRBRegBank for MIPS32.
Differential Revision: https://reviews.llvm.org/D59644
llvm-svn: 356886
Add floating point register bank for MIPS32.
Implement getRegBankFromRegClass for float register classes.
Differential Revision: https://reviews.llvm.org/D59643
llvm-svn: 356883
Lower float and double arguments in registers for MIPS32.
When float/double argument is passed through gpr registers
select appropriate move instruction.
Differential Revision: https://reviews.llvm.org/D59642
llvm-svn: 356882
This was creating a copy of the register the pseudo itself was
def'ing, leaving a copy of an undefined register. I'm not sure how
the verifier is not catching this, but this avoids asserting in a
future change to RegAllocFast
llvm-svn: 356716
Dynamic stack realignment was disabled on micromips by checking if
target has standard encoding. We simply change the condition to skip
Mips16 only.
Patch by Mirko Brkusanin.
Differential Revision: http://reviews.llvm.org/D59499
llvm-svn: 356478
Switch to the `MCParserUtils::parseAssignmentExpression` for parsing
assignment expressions in the `.set` directive reduces code and allows
to print an error message instead of crashing in case of incorrect
recursive using of the `.set`.
Fix for the bug https://bugs.llvm.org/show_bug.cgi?id=41053.
Differential Revision: http://reviews.llvm.org/D59452
llvm-svn: 356461
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
Certain 32 bit constants can be generated with a single instruction
instead of two. Implement materialize32BitImm function for MIPS32.
Differential Revision: https://reviews.llvm.org/D59369
llvm-svn: 356238
Before this change LLVM emits non-microMIPS variant of the `mov.d`
command for microMIPS code.
Differential Revision: http://reviews.llvm.org/D59045
llvm-svn: 356052
To provide mapping between standard and microMIPS R6 variants of the
`sw` command we have to rename SWSP_xxx commands from "sw" to "swsp".
Otherwise `tablegen` starts to show the error `Multiple matches found
for `SW'`. After that to restore printing SWSP command as `sw`, I add
an appropriate `MipsInstAlias` instance.
We also need to implement "size reduction" for microMIPS R6. But this
task is for separate patch. After that the `micromips-lwsp-swsp.ll` test
case will be extended.
Differential Revision: http://reviews.llvm.org/D59046
llvm-svn: 356045
On micromips MipsMTLOHI is always matched to PseudoMTLOHI_DSP regardless
of +dsp argument. This patch checks is HasDSP predicate is present for
PseudoMTLOHI_DSP so PseudoMTLOHI_MM can be matched when appropriate.
Add expansion of PseudoMTLOHI_MM instruction into a mtlo/mthi pair.
Patch by Mirko Brkusanin.
Differential Revision: http://reviews.llvm.org/D59203
llvm-svn: 356039
AMDGPU target run out of Subtarget feature flags hitting the limit of 64.
AssemblerPredicates uses at most uint64_t for their representation.
At the same time CodeGen has exhausted this a long time ago and switched
to a FeatureBitset with the current limit of 192 bits.
This patch completes transition to the bitset for feature bits extending
it to asm matcher and MC code emitter.
Differential Revision: https://reviews.llvm.org/D59002
llvm-svn: 355839
A pattern needed to match TruncIntFP was missing. This was causing multiple
tests from llvm test suite to fail during compilation for micromips.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D58722
llvm-svn: 355825
Narrow Scalar G_MUL for MIPS32.
Revisit NarrowScalar implementation in LegalizerHelper.
Introduce new helper function multiplyRegisters.
It performs generic multiplication of values held in multiple registers.
Generated instructions use only types NarrowTy and i1.
Destination can be same or two times size of the source.
Differential Revision: https://reviews.llvm.org/D58824
llvm-svn: 355814
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355594
MIPS target supports lowering `RETURNADDR` and `FRAMEADDR` for a current
frame only. It's better to show an error message then crash on assertion
if `__builtin_return_address` is invoked with non-zero argument.
llvm-svn: 355558
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355178
Fixes https://bugs.llvm.org/show_bug.cgi?id=40325 by zero extending
(and x, 1) the condition before branching on it.
To avoid regressing trivial cases, I'm combining emission of cmp+br
sequences for the single-use + same block case (similar to what we
do in x86). icmpbr1.ll still regresses due to the cross-bb usage
of the condition.
Differential Revision: https://reviews.llvm.org/D58576
llvm-svn: 354808
Filling a delay slot in 32bit jump instructions with a 16bit instruction
can cause issues. According to the documentation such an operation is
unpredictable.
This patch adds opcode Mips::PseudoIndirectBranch_MM alongside
Mips::PseudoIndirectBranch and other instructions that are expanded to jr
instruction and do not allow a 16bit instruction in their delay slots.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D58507
llvm-svn: 354672
DAG combiner combines two shifts into shift + and with bitmask.
Avoid such combines for vectors since leaving two vector shifts
as they are produces better end results.
Differential Revision: https://reviews.llvm.org/D58225
llvm-svn: 354461
Select G_BR and G_BRCOND for MIPS32.
Unconditional branch G_BR does not have register operand,
for that reason we only add tests.
Since conditional branch G_BRCOND compares register to zero on MIPS32,
explicit extension must be performed on i1 condition in order to set
high bits to appropriate value.
Differential Revision: https://reviews.llvm.org/D58182
llvm-svn: 354022
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Make behavior of G_LOAD in widenScalar same as for G_ZEXTLOAD and
G_SEXTLOAD. That is perform widenScalarDst to size given by the target
and avoid additional checks in common code. Targets can reorder or add
additional rules in LegalizeRuleSet for the opcode to achieve desired
behavior.
Select extending load that does not have specified type of extension
into zero extending load.
Select truncating store that stores number of bytes indicated by size
in MachineMemoperand.
Differential Revision: https://reviews.llvm.org/D57454
llvm-svn: 353520
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
Instruction abs.[ds] is not generating correct result when working
with NaNs for revisions prior mips32r6 and mips64r6.
To generate a sequence which always produce a correct result, but also
to allow user more control on how his code is compiled, attribute
+abs2008 is added, so user can choose legacy or 2008.
By default legacy mode is used on revisions prior R6. Mips32r6 and
mips64r6 use abs2008 mode by default.
Differential Revision: https://reviews.llvm.org/D35983
llvm-svn: 352370
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
Select zero extending and sign extending load for MIPS32.
Use size from MachineMemOperand to determine number of bytes to load.
Differential Revision: https://reviews.llvm.org/D57099
llvm-svn: 352038
Use CombinerHelper to combine extending load instructions.
G_LOAD combined with G_ZEXT, G_SEXT or G_ANYEXT gives G_ZEXTLOAD,
G_SEXTLOAD or G_LOAD with same type as def of extending instruction
respectively.
Similarly G_ZEXTLOAD combined with G_ZEXT gives G_ZEXTLOAD and
G_SEXTLOAD combined with G_SEXT gives G_SEXTLOAD with same type
as def of extending instruction.
Differential Revision: https://reviews.llvm.org/D56914
llvm-svn: 352037
This reapplies commit r351987 with a failed test fix. Now the test
accepts both DW_OP_GNU_push_tls_address and DW_OP_form_tls_address
opcode.
Original commit message:
```
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
```
llvm-svn: 352034
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
llvm-svn: 351987
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.
X86 uses i8, but seemed to be hacking around this before.
llvm-svn: 351882
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The callee address is added as an optional operand (MCSymbol) in
AdjustInstrPostInstrSelection() and then used by asm printer to insert:
'.reloc tmplabel, R_MIPS_JALR, symbol
tmplabel:'.
Controlled with '-mips-jalr-reloc', default is true.
Differential revision: https://reviews.llvm.org/D56694
llvm-svn: 351485
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
With this patch, shifts are lowered to optimal number of instructions
necessary to shift types larger than the general purpose register size.
This resolves PR/32293.
Thanks to Kyle Butt for reporting the issue!
Differential Revision: https://reviews.llvm.org/D56320
llvm-svn: 351059
Introduce GlobalISel pre legalizer pass for MIPS.
It will be used to cope with instructions that require
combining before legalization.
Differential Revision: https://reviews.llvm.org/D56269
llvm-svn: 351046
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
The following code requests 64-bit PC-relative relocations unsupported
by MIPS ABI. Now it triggers an assertion. It's better to show an error
message.
```
foo:
.quad bar - foo
```
llvm-svn: 350152
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Add support for s64 libcalls for G_SDIV, G_UDIV, G_SREM and G_UREM
and use integer type of correct size when creating arguments for
CLI.lowerCall.
Select G_SDIV, G_UDIV, G_SREM and G_UREM for types s8, s16, s32 and s64
on MIPS32.
Differential Revision: https://reviews.llvm.org/D55651
llvm-svn: 349499
Add narrowScalar for G_AND and G_XOR.
Legalize G_AND G_OR and G_XOR for types other then s32
with clampScalar on MIPS32.
Differential Revision: https://reviews.llvm.org/D55362
llvm-svn: 349475
This patch introduces a generic function to determine whether a given vector type is known to be a splat value for the specified demanded elements, recursing up the DAG looking for BUILD_VECTOR or VECTOR_SHUFFLE splat patterns.
It also keeps track of the elements that are known to be UNDEF - it returns true if all the demanded elements are UNDEF (as this may be useful under some circumstances), so this needs to be handled by the caller.
A wrapper variant is also provided that doesn't take the DemandedElts or UndefElts arguments for cases where we just want to know if the SDValue is a splat or not (with/without UNDEFS).
I had hoped to completely remove the X86 local version of this function, but I'm seeing some regressions in shift/rotate codegen that will take a little longer to fix and I hope to get this in sooner so I can continue work on PR38243 which needs more capable splat detection.
Differential Revision: https://reviews.llvm.org/D55426
llvm-svn: 348953
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
When replacing jal with jalr, also emit '.reloc R_MIPS_JALR' (R_MICROMIPS_JALR
for micromips). The linker might then be able to turn jalr into a direct
call.
Add '-mips-jalr-reloc' to enable/disable this feature (default is true).
Differential revision: https://reviews.llvm.org/D55292
llvm-svn: 348760
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
The `DIEExpr` is used in debug information entries for either TLS variables
or call sites. For now the last case is unsupported for targets with delay
slots, for MIPS in particular.
The `DIEExpr::EmitValue` method calls a virtual `EmitDebugThreadLocal`
routine which, in case of MIPS, always emits either `.dtprelword` or
`.dtpreldword` directives. That is okay for "main" code, but in unit
tests `DIEExpr` instances can be created not for TLS variables only even
on MIPS hosts. That is a reason of the `TestDWARF32Version5Addr8AllForms`
failure because handling of the `R_MIPS_TLS_DTPREL` relocation writes
incorrect value into dwarf structures. And anyway unconditional emitting
of `.dtprelword` directives will be incorrect when/if debug information
entries for call sites become supported on MIPS.
The patch solves the problem by wrapping expression created in the
`MipsTargetObjectFile::getDebugThreadLocalSymbol` method in to the
`MipsMCExpr` expression with a new `MEK_DTPREL` tag. This tag is
recognized in the `MipsAsmPrinter::EmitDebugThreadLocal` method and
`.dtprelword` directives created in this case only. In other cases the
expression saved as a regular data.
Differential Revision: http://reviews.llvm.org/D54937
llvm-svn: 348194
This reverts r294500. DwarfCompileUnit::addAddressExpr uses DIEExpr
for PCOffset. In that case the expression is unrelated to thread locals
and so emitting a value of the DIEExpr does not have to always mean
emit-debug-thread-local.
llvm-svn: 347744
R_MIPS_JALR/R_MICROMIPS_JALR can now be parsed in .s files and emitted to .o.
They are still not generated with JALR.
Differential revision: https://reviews.llvm.org/D54721
llvm-svn: 347398
Set operands order for G_MERGE_VALUES and G_UNMERGE_VALUES so
that least significant bits always go first, regardless of endianness.
Differential Revision: https://reviews.llvm.org/D54098
llvm-svn: 346305
The `sigrie` instruction signals a Reserved Instruction Exception.
This patch adds support for assembling / disassembling the instruction.
Differential Revision: http://reviews.llvm.org/D53861
llvm-svn: 346230
Expand on LONG_BRANCH_LUi and LONG_BRANCH_(D)ADDiu pseudo
instructions by creating variants which support
less operands/accept GPR64Opnds as their operand in order
to appease the machine verifier pass.
Differential Revision: https://reviews.llvm.org/D53977
llvm-svn: 346133
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
When matching MipsISD::JmpLink t9, TargetExternalSymbol:i32'...',
wrong JALR16_MM is selected. This patch adds missing pattern for
JmpLink, so that JAL instruction is selected.
Differential Revision: https://reviews.llvm.org/D53366
llvm-svn: 345830
In MipsBranchExpansion::splitMBB, upon splitting
a block with two direct branches, remove the successor
of the newly created block (which inherits successors from
the original block) which is pointed to by the last
branch in the original block only if the targets of two
branches differ.
This is to fix the failing test when ran with
-verify-machineinstrs enabled.
Differential Revision: https://reviews.llvm.org/D53756
llvm-svn: 345821
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
When a landing pad is calculated in a program that is compiled
for micromips, it will point to an even address. Such an error will
cause a segmentation fault, as the instructions in micromips are
aligned on odd addresses. This patch sets the last bit of the offset
where a landing pad is, to 1, which will effectively be
an odd address and point to the instruction exactly.
Differential Revision: https://reviews.llvm.org/D52985
llvm-svn: 344591
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344516
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344511
Failure was discovered upon running
projects/compiler-rt/test/builtins/Unit/divtc3_test.c
in a stage2 compiler build.
When compiling projects/compiler-rt/lib/builtins/divtc3.c,
a call to fmaxl within the divtc3 implementation had its
return values read from registers $2 and $3 instead of $f0 and $f2.
Include fmaxl in the list of long double emulation routines
to have its return value correctly interpreted as f128.
Almost exact issue here: https://reviews.llvm.org/D17760
Differential Revision: https://reviews.llvm.org/D52649
llvm-svn: 344326
CodePointerSize and CalleeSaveStackSlotSize values are used in DWARF
generation. In case of MIPS it's incorrect to check for Triple::isMIPS64()
only this function returns true for N32 ABI too.
Now we do not have a method to recognize N32 if it's specified by a command
line option and is not a part of a target triple. So we check for
Triple::GNUABIN32 only. It's better than nothing.
Differential revision: https://reviews.llvm.org/D52874
llvm-svn: 344039
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.
NFC.
Review: Simon Pilgrim
https://reviews.llvm.org/D52316
llvm-svn: 343851
Lower integer arguments larger then 32 bits for MIPS32.
setMostSignificantFirst is used in order for G_UNMERGE_VALUES and
G_MERGE_VALUES to always hold registers in same order, regardless of
endianness.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D52409
llvm-svn: 343315
Debian uses different triples for MIPS r6 and paths. Here we use SubArch
to determine whether it is r6, if we found `r6' in CPU section of triple.
These new triples include:
mipsisa32r6-linux-gnu
mipsisa32r6el-linux-gnu
mipsisa64r6-linux-gnuabi64
mipsisa64r6el-linux-gnuabi64
mipsisa64r6-linux-gnuabin32
mipsisa64r6el-linux-gnuabin32
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D50857
llvm-svn: 343185
The r337288 tried to fix result of icmp i1 when its input is not sanitized
by falling back to DagISel. While it now produces the correct result for
bit 0, the other bits can still hold arbitrary value which is not supported
by MipsFastISel branch lowering. This patch fixes the issue by falling back
to DagISel in this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D52045
llvm-svn: 342884
The patch extends size reduction pass for MicroMIPS. Two MOVE
instructions are transformed into one MOVEP instrucition.
Patch by Milena Vujosevic Janicic.
Differential revision: https://reviews.llvm.org/D52037
llvm-svn: 342572
The patch fixes definition of MOVEP instruction. Two registers are used
instead of register pairs. This is necessary as machine verifier cannot
handle register pairs.
Patch by Milena Vujosevic Janicic.
Differential revision: https://reviews.llvm.org/D52035
llvm-svn: 342571
Add support mips64(el)-linux-gnuabin32 triples, and set them to N32.
Debian architecture name mipsn32/mipsn32el are also added. Set
UseIntegratedAssembler for N32 if we can detect it.
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51408
llvm-svn: 342416
This implements suggesting alternative mnemonics when an invalid one is
specified. For example `addru $9, $6, 17767` leads to the following
error message:
error: unknown instruction, did you mean: add, addiu, addu, maddu?
Differential revision: https://reviews.llvm.org/D40646
llvm-svn: 342119
An fp_to_sint node would be incorrectly lowered to a TruncIntFP node in
single-float mode. This would trigger an "Unexpected illegal type!"
assert.
Patch by Dan Ravensloft.
Differential revision: https://reviews.llvm.org/D51810
llvm-svn: 341952
MIPS ISAs start to support third operand for the `rdhwr` instruction
starting from Revision 6. But LLVM generates assembler code with
three-operands version of this instruction on any MIPS64 ISA. The third
operand is always zero, so in case of direct code generation we get
correct code.
This patch fixes the bug by adding an instruction alias. The same alias
already exists for 32-bit ISA.
Ideally, we also need to reject three-operands version of the `rdhwr`
instruction in an assembler code if ISA revision is less than 6. That is
a task for a separate patch.
This fixes PR38861 (https://bugs.llvm.org/show_bug.cgi?id=38861)
Differential revision: https://reviews.llvm.org/D51773
llvm-svn: 341919
This patch modifies hasStandardEncoding() / inMicroMipsMode() /
inMips16Mode() methods of the MipsSubtarget class so only one can be
true at any one time. That prevents the selection of microMIPS and MIPS
instructions and patterns that are defined in TableGen files at the same
time. A few new patterns and instruction definitions hae been added to
keep test cases passed.
Differential revision: https://reviews.llvm.org/D51483
llvm-svn: 341338
The `mtc1` and `mfc1` definitions in the MipsInstrFPU.td have MMRel,
but do not have StdMMR6Rel tags. When these instructions are emitted
for microMIPS R6 targets, `Mips::MipsR62MicroMipsR6` nor
`Mips::Std2MicroMipsR6` cannot find correct op-codes and as a result the
backend uses mips32 variant of the instructions encoding.
The patch fixes this problem by adding the StdMMR6Rel tag and check
instructions encoding in the test case.
Differential revision: https://reviews.llvm.org/D51482
llvm-svn: 341221
..Move all target-dependent checks into new isCopyInstrImpl method.
This change allows us to treat MoveReg-type instructions and generic
COPY instruction in the same way
Differential Revision: https://reviews.llvm.org/D49913
llvm-svn: 341072
MipsSEInstrInfo class defines for internal purpose unconditional
branches as Mips::B nad Mips:J even in case of microMIPS code
generation. Under some conditions that leads to the bug - for rather long
branch which fits to Mips jump instruction offset size, but does not fit
to microMIPS jump offset size, we generate 'short' branch and later show
an error 'out of range PC16 fixup' after check in the isBranchOffsetInRange
routine.
Differential revision: https://reviews.llvm.org/D50615
llvm-svn: 340932
Involves microMIPS's jump in the analyzable branch set to reduce some
code patterns.
Differential revision: https://reviews.llvm.org/D50613
llvm-svn: 340931
For a certain combination of options, BuildPairF64_{64}, ExtractElementF64{_64}
may be expanded into instructions using stack.
Add implicit operand $sp for such cases so that ShrinkWrapping doesn't move
prologue setup below them.
Fixes MultiSource/Benchmarks/MallocBench/cfrac for
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfpxx -mnan=2008'
and
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfp64 -mnan=2008 -mno-odd-spreg'.
Differential Revision: https://reviews.llvm.org/D50986
llvm-svn: 340927
Legalize G_ADD for types smaller than i32.
LegalizationArtifactCombiner replaces extend instructions with appropriate
bitwise instructions.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D51213
llvm-svn: 340697
Lower integer arguments smaller than i32.
Support both register and stack arguments.
Define setLocInfo function for setting LocInfo field in ArgLocs vector.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D51031
llvm-svn: 340572
Add patterns for unhandled CondCode enumerables:
SETEQ, SETGE, SETGT, SETLE, SETLT, SETNE.
Stated at the ISD::CondCode enum declaration:
`All of these (except for the 'always folded ops')
should be handled for floating point.`
Add patterns which use these nodes, same as corresponding
'ordered' CondCode nodes.
Referring to 'Ordered means that neither operand is a QNAN'
we assume it is safe to match ex. SETLT node to the same
instruction as SETOLT.
Differential Revision: https://reviews.llvm.org/D50757
llvm-svn: 340392
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
When potential jump instruction and target are in the same segment, use
jump instruction with immediate field.
In cases where offset does not fit immediate value of a bc/j instructions,
offset is stored into register, and then jump register instruction is used.
Differential Revision: https://reviews.llvm.org/D48019
llvm-svn: 339126
Override getTypeForExtReturn so that functions returning
an i32 typed value have it sign extended on MIPS64.
Also provide patterns to get rid of unneeded sign extensions
for arithmetic instructions which implicitly sign extend
their results.
Differential Revision: https://reviews.llvm.org/D48374
llvm-svn: 338019
Add support for lowering pointer arguments.
Changing type from pointer to integer is already done in
MipsTargetLowering::getRegisterTypeForCallingConv.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D49419
llvm-svn: 337912
The target independent AsmParser doesn't recognise .hword, .word, .dword
which are required for Mips. Currently MipsAsmParser recognises these
through dispatch to MipsAsmParser::parseDataDirective. This contains
equivalent logic to AsmParser::parseDirectiveValue. This patch allows
reuse of AsmParser::parseDirectiveValue by making use of
addAliasForDirective to support .hword, .word and .dword.
Original patch provided by Alex Bradbury at D47001 was modified to fix
handling of microMIPS symbols. The `AsmParser::parseDirectiveValue`
calls either `EmitIntValue` or `EmitValue`. In this patch we override
`EmitIntValue` in the `MipsELFStreamer` to clear a pending set of
microMIPS symbols.
Differential revision: https://reviews.llvm.org/D49539
llvm-svn: 337893