This is an alternative to D95563.
This is modeled after a similar feature for AArch64's SVE that uses
predicated scalable vector instructions.a
Rather than use predication, this patch uses an explicit VL operand.
I've limited it to always use LMUL=1 for now, but we can improve this
in the future.
This requires a bunch of new ISD opcodes to carry the VL operand.
I think we can probably lower intrinsics to these ISD opcodes to
cut down on the size of the isel table. Which is why I've added
patterns for all integer/float types and not just LMUL=1.
I'm only testing one vector width right now, but the width is
programmable via the command line.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95705
This adds support for commuting operands and converting between
vfmadd and vfmacc to avoid register copies.
To avoid messing up intrinsic behavior, I've added new pseudo
instructions that have the isCommutable flag set. These pseudos also
force a tail agnostic policy. The intrinsic version still use
the tail undisturbed policy.
For best results it looks like we need to start with fmadd and only
pick fmacc if its beneficial. MachineCSE commutes without contraining
the operands and then commutes back if it didn't help with CSE. So
I've made sure that when the operand choice isn't constrained, we
will keep fmadd for MachineCSE and when it does the second commute,
we get back the original instruction.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95800
This ensures that we'll match immediates consistently regardless
of whether we match them as a standalone splat or as part of
another operation.
While I was there I added complexities to the simm5/uimm5 patterns so
we didn't have to assume that the 1 on the non-immediate was lower
than what tablegen inferred.
I had to make a minor tweak to tablegen to fix one place that
didn't expect to see a ComplexPattern that wasn't a "leaf".
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96199
This patch adds support for both the fadd reduction intrinsic, in both
the ordered and unordered modes.
The fmin and fmax intrinsics are not currently supported due to a
discrepancy between the LLVM semantics and the RVV ISA behaviour with
regards to signaling NaNs. This behaviour is likely fixed in version 2.3
of the RISC-V F/D/Q extension, but until then the intrinsics can be left
unsupported.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95870
This patch adds support for the integer reduction intrinsics supported
by RVV. This excludes "mul" which has no corresponding instruction.
The reduction instructions in RVV have slightly complicated type
constraints given they always produce a single "M1" vector register.
They are lowered to custom nodes including the second "scalar" reduction
operand to simplify the patterns and in the hope that they can be useful
for future DAG combines.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95620
This patch custom-legalizes all integer EXTRACT_VECTOR_ELT nodes where
SEW < XLEN to VMV_S_X nodes to help the compiler infer sign bits from
the result. This allows us to eliminate redundant sign extensions.
For parity, all integer EXTRACT_VECTOR_ELT nodes are legalized this way
so that we don't need TableGen patterns for some and not others.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95741
This patch adds support for lowering the sqrt intrinsic to the RVV
vfsqrt instruction.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96012
The vrgather.vv instruction uses a vector of indices with the same
SEW as operand 0. The vrgather.vx instructions use a scalar index
operand of XLen bits.
By splitting this into 2 intrinsics we are able to use LLVMatchType
in the definition to avoid specifying the type for the index operand
when creating the IR for the intrinsic. For .vv it will match the
operand 0 type. And for .vx it will match the type of the vl operand
we already needed to specify a type for.
I'm considering splitting more intrinsics. This was a somewhat
odd one because the .vx doesn't use the element type, it always
use XLen.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D95979
Due to a clerical error, the sdiv operation was mapping to vdivu and
udiv to vdiv, when the opposite mapping is the correct one.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95869
A follow up patch will add support for commuting operands or
changing opcode to vfmacc and friends.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95662
Rather than materializing the 0xffff immediate for the AND, use
a shift left to remove the upper bits and then shift in zeros
from the right.
This pattern occurs when type legalizing an i16 right shift.
I've implemented this with custom selection code for a number of
reasons. I've limited this to the AND having a single use. We need
to compensate for SimplifyDemandedBits altering the AND mask. I'm
using *W opcodes on RV64. We may want to generlize this in the
future. For all these reason it seemed easiest to do it this way.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95774
We need to add a mask to the shift amount for these operations
to use the FSR/FSL instructions. We were previously doing this
in isel patterns, but custom lowering will make the mask
visible to optimizations earlier.
Not all combinations of SEW and LMUL we need to support. For example, we
only need to support [M1, M2, M4, M8] for SEW = 64. There is no need to
define pseudos for PseudoVLSE64MF8, PseudoVLSE64MF4, and PseudoVLSE64MF2.
Differential Revision: https://reviews.llvm.org/D95667
Various *TargetStreamer.h need formatted_raw_ostream but rely on a
forward declaration of formatted_raw_ostream in MCStreamer.h. This
patch adds forward declarations right in *TargetStreamer.h.
While we are at it, this patch removes the one in MCStreamer.h, where
it is unnecessary.
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
These instructions have been removed from the 0.94 bitmanip spec.
We should focus on optimizing the codegen without using them.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D95302
This patch adds support for the full range of vector int-to-float,
float-to-int, and float-to-float conversions on legal types.
Many conversions are supported natively in RVV so are lowered with
patterns. These include conversions between (element) types of the same
size, and those that are half/double the size of the input. When
conversions take place between types that are less than half or more
than double the size we must lower them using sequences of instructions
which go via intermediate types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95447
In d2927f786e, I added patterns
to remove (and X, 31) from sllw/srlw/sraw shift amounts.
There is code in SelectionDAGISel.cpp that knows to use
computeKnownBits to fill in bits of the mask that were removed
by SimplifyDemandedBits based on bits being known zero.
The non-W shift patterns use immbottomxlenset which allows the
mask to have more than log2(xlen) trailing ones, but doesn't
have a call to computeKnownBits to fill in bits of the mask that may
have been cleared by SimplifyDemandedBits.
This patch copies code from X86 to handle more than log2(xlen)
bottom bits set and uses computeKnownBits to fill in missing bits
before counting.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95422
RISCVBaseInfo.h belongs to the MC layer, but the Pseudo instructions
are only used by the CodeGen layer. So it makes sense to keep this
table in the CodeGen layer.
-Remove the ISD opcode for READ_VL. Just emit the MachineSDNode directly.
-Move segmented fault first only load intrinsic handling completely to
RISCVISelDAGToDAG.cpp and emit the ReadVL MachineSDNode there
instead of lowering to ISD opcodes first.
Remove the RISCVVMVTs namespace because I don't think it provides
a lot of value. If we change the mappings we'd likely have to add
or remove things from the list anyway.
Add a wrapper around addRegisterClass that can determine the
register class from the fixed size of the type.
Reviewed By: frasercrmck, rogfer01
Differential Revision: https://reviews.llvm.org/D95491
This patch fixes some crashes coming from
`RISCVISelLowering::getSetCCResultType`, which would occasionally return
an EVT constructed from an invalid MVT, which has a null Type pointer.
The attached test shows this happening currently for some fixed-length
vectors, which hit this issue when the V extension was enabled, even
though they're not legal types under the V extension. The fix was also
pre-emptively extended to scalable vectors which can't be represented as
an MVT, even though a test case couldn't be found for them.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95434
Move the Suffix string into the VTypeInfo class so we don't need a helper class to get to it.
Adjust pseudo naming scheme for FPRs to put F16/F32/F64 in
place of F in the pseudo instruction name rather than as a suffix.
This avoids special cases like VFMERGE from the original patch.
Differential Revision: https://reviews.llvm.org/D95404
When spilling, the spill size will depend on the size of register class.
For .vf vector instructions, it may spill the floating point scalar
argument. In order to use the correct load/store instructions for
spilling, we need to provide the correct floating point register class
for the .vf vector pseudo instructions.
In this commit, we define the .vf pseudo instructions as three
different kinds of pseudo instructions for half/float/double. For
example, PseudoVFADD_M1 will become as PseudoVFADD_F16_M1,
PseudoVFADD_F32_M1, and PseudoVFADD_F64_M1.
Differential Revision: https://reviews.llvm.org/D95234
This pattern can occur when an unsigned is used to index an array
on RV64.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95290
Original patch by @rogfer01.
This patch adds support for insertelt and extractelt operations on
scalable vectors.
Special care must be taken on RV32 when dealing with i64 vectors as
there are no straightforward ways to insert a 64-bit element without a
register of that size. To that end, both are custom-lowered to different
sequences.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94615
This makes our i8/i16 codegen more similar to the i32 codegen.
I've also added computeKnownBits support for DIVUW/REMUW so
that we can remove zero extending ANDs from the output. Without
this we end up turning DIVUW/REMUW back into DIVU/REMU via some
isel patterns.
Reviewed By: frasercrmck, luismarques
Differential Revision: https://reviews.llvm.org/D95322
As far as I know 32 bits arguments and returns on RV64 are always
sign extended to i64. So I think we should be taking this into
account around libcalls.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95285
This patch adds support for scalable-vector splats in DAGCombiner's
`isConstantOrConstantVector` and `ISD::matchUnaryPredicate` functions,
which enable the SelectionDAG div/rem-by-constant optimizations for
scalable vector types.
It also fixes up one case where the UDIV optimization was generating a
SETCC without first consulting the target for its preferred SETCC result
type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94501
This adds support for ".attribute arch" for all extensions that are
currently supported by the compiler.
Differential Revision: https://reviews.llvm.org/D94931
The patterns that use this really want to know if the operand has at
least 32 sign/zero bits.
This increases opportunities to use W instructions when the original
source used i8/i16. Not sure how much this matters for performance,
but it makes i8/i16 code more consistent with i32.
This avoids being dependent on SimplifyDemandedBits having cleared
those bits.
It could make sense to teach SimplifyDemandedBits to keep all
lower bits 1 in an AND mask when possible. This could be
implemented with slli+srli in the general case rather than
needing to materialize the constant.
We try to do this during DAG combine with SimplifyDemandedBits,
but it fails if there are multiple nodes using the AND. For
example, multiple shifts using the same shift amount.
Similar to our free standing setcc patterns, we can use ADDI to
subtract the immediate from the other operand. Then the cmov
can check if the result is zero or non-zero.
Reviewed By: mundaym
Differential Revision: https://reviews.llvm.org/D95169
This adds an initial set of patterns for these instructions. Its
more complicated that I would like for the sh*add.uw instructions
because there is no guaranteed canonicalization for shl/and with
constants.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D95106
These instructions use a portion of the encodings for grevi and
gorci. The full encodings are only supported with Zbp. Note,
rev8 has a different encoding between rv32 and rv64.
Zbb is closer to being finalized that Zbp which has motivated
some decisions in this patch.
I'm treating rev8 and orc.b as separate instructions when
either Zbb or Zbp is enabled. This allows us to print to suggest
that either feature needs to be enabled to support these mnemonics.
I had tried to put HasStdExtZbbAndNotZbp on the Zbb instructions,
but that caused a diagnostic that said Zbp is required if neither
feature is enabled. We should really mention Zbb since its closer
to final.
This does require extra isel patterns for the different cases so
that bswap will always print as rev8 in assembly listing since
we can't use an InstAlias.
llvm-objdump disassembling should always pick the rev8 or orc.b
instructions. llvm-mc parsing and printing text will not convert
the grevi/gorci spellings to rev8/gorc.b. We could probably fix
this with a special case in processInstruction in the assembly
parser if it its important.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94944
zext.h uses the same encoding as pack rd, rs, x0 in rv32 and
packw rd, rs, x0 in rv64. Encodings without x0 as the second source
are not valid in Zbb.
I've added two new instructions with these specific encodings with
predicates that enable them when either Zbb or Zbp is enabled.
The pack spelling will only be accepted with Zbp. The disassembler
will use the zext.h instruction when either feature is enabled.
Using the pack spelling will print as pack when llvm-mc is
emitting text. We could fix this with some custom code in
processInstruction if this is important, but I'm not sure it is.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94818
Zext.h will need to come back to Zbb, but that only uses specific
encodings of pack.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94742
This didn't make it into the published 0.93 spec, but it was the
intention.
But it is in the tex source as of this commit
d172f029c0
This means zext.w now requires Zba. Not sure if we should still use
pack if Zbp is enabled and Zba isn't. I'll leave that for the future
when pack is closer to being final.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94736
The 0.93 spec has this implementation for add.uw
uint_xlen_t adduw(uint_xlen_t rs1, uint_xlen_t rs2) {
uint_xlen_t rs1u = (uint32_t)rs1;
return rs1u + rs2;
}
The 0.92 spec had the usages of rs1 and rs2 swapped.
Reviewed By: frasercrmck, asb
Differential Revision: https://reviews.llvm.org/D95090
Also renamed Zbe instructions to resolve name conflict even though
that change is in the 0.94 draft.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94653
It's not really clear in the spec that these are in Zbp now, but
that's what I've gather from previous commits to the spec. I've
file an issue to get it documented properly.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94652
This is the first of multiple patches to bring our 0.92
implementation up to 0.93.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94568
The DWARF numbers of vector registers are already defined in
riscv-elf-psabi. The DWARF number for vector is start from 96.
Correct the DWARF numbers of vector registers.
Differential Revision: https://reviews.llvm.org/D94749
These instructions produce 2*SEW result so the input can't have
an LMUL=8 or the result would need a non-existant LMUL=16. So
only create pseudos for LMUL up to 4.
Differential Revision: https://reviews.llvm.org/D95189
The fault-only-first-load instructions can reduce VL if an element
other than element 0 triggers a memory fault. This can be used to
vectorize loops with data dependent exit conditions like strcmp or
strlen.
This patch adds a VL output to these intrinsics so that the new
VL value can be captured by software. This will be expanded to
'csrr gpr, vl' after the vleff instruction during SelectionDAG.
By doing this with one intrinsic we are able to guarantee that the
csrr reads the VL value produced by the vleff instruction. Having
it as a separate intrinsic would make it impossible to guarantee
ordering without making every other vector intrinsic have side
effects.
The intrinsics are expanded during lowering into two ISD nodes
that are glued together. These ISD nodes will go
through isel separately, but should maintain the glue so that they
get emitted adjacently by InstrEmitter.
I've only ran the chain through the vleff instruction, allowing
the READ_VL to be deleted if it is unused.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D94286
Upgrade RISC-V V extension to v1.0-08a0b46.
Indexed load/store have ordered and unordered form.
New whole vector load/store.
Differential Revision: https://reviews.llvm.org/D93614
This recommits 71ed4b6ce5 with
the polarity of some of the pattern corrected.
Original commit message:
The custom expansion of select operations in the RISC-V backend
interferes with the matching of cmov instructions. Legalizing
select when the Zbt extension is available solves that problem.
Reviewed By: luismarques, craig.topper
Differential Revision: https://reviews.llvm.org/D93767
Previously we only matched (and (shl X, C1), 0xffffffff << C1)
which matches the InstCombine canonicalization order. But its
possible to see (shl (and X, 0xffffffff), C1) if the pattern
is introduced in SelectionDAG. For example, through expansion of
a GEP.
There can be muliple patterns that map to the same compressed
instruction. Reversing those leads to multiple ways to uncompress
an instruction, but its not easily controllable which one will
be chosen by the tablegen backend.
This patch adds a flag to mark patterns that should only be used
for compressing. This allows us to leave one canonical pattern
for uncompressing.
The obvious benefit of this is getting c.mv to uncompress to
the addi patern that is aliased to the mv pseudoinstruction. For
the add/and/or/xor/li patterns it just removes some unreachable
code from the generated code.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94894
For Zvlsseg, we need continuous vector registers for the values. We need
to define new register classes for the different combinations of (number
of fields and LMUL). For example,
when the number of fields(NF) = 3, LMUL = 2, the values will be assigned
to (V0M2, V2M2, V4M2), (V2M2, V4M2, V6M2), (V4M2, V6M2, V8M2), ...
We define the vlseg intrinsics with multiple outputs. There is no way to
describe the codegen patterns with multiple outputs in the tablegen
files. We do the codegen in RISCVISelDAGToDAG and use EXTRACT_SUBREG to
extract the values of output.
The multiple scalable vector values will be put into a struct. This
patch is depended on the support for scalable vector struct.
Differential Revision: https://reviews.llvm.org/D94229
Make it easier to reuse for intrinsic vrgatherei16
which needs to encode both LMUL & EMUL in the instruction name,
like PseudoVRGATHEREI16_VV_M1_M1 and PseudoVRGATHEREI16_VV_M1_M2.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94951
NotHasStdExtZbb doesn't have an AssemblerPredicate associated with it
so it didn't do anything. We don't need it either because the sorting
rules in tablegen prioritize by number of predicates. So the
dedicated instructions in the B extension that have predicates
will be prioritized automatically.
If we are able to compare with 0 instead of 1, we might be able
to fold the setcc into a beqz/bnez.
Often these setccs start life as an xor that gets converted to
a setcc by DAG combiner's rebuildSetcc. I looked into a detecting
(xor X, 1) and converting to (seteq X, 0) based on boolean contents
being 0/1 in rebuildSetcc instead of using computeKnownBits. It was
very perturbing to AMDGPU tests which I didn't look closely at.
It had a few changes on a couple other targets, but didn't seem
to be much if any improvement.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D94730
Original patch by @rogfer01.
This patch adds support for sign-, zero-, and any-extension from
scalable mask vector types to integer vector types, as well as
truncation in the opposite direction.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94590
This patch factors out the "VLMax" operand passed to most
scalable-vector ISel patterns into a property of each VType.
This is seen as a preparatory change to allow RVV in the future to
more easily support fixed-length vector types with constrained vector
lengths, with the AVL operand set to the length of the fixed-length
vector. It has no effect on the scalable code generation path.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D94594
Original patch by @rogfer01.
This patch supports vector truncates, which on RVV must be done in a
series of instructions truncating by one power-of-two at a time. This is
done through custom-lowering and a custom node to avoid LLVM
re-combining the split TRUNCATE nodes.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94796
The vcompress intrinsic is defined such that it requires a tail
undisturbed policy. This patch makes it so we can use the tail
agnostic policy if the user has passed vundefined to the dest
operand.
We need to do something similar for masked policy, but we need
annotation of which instructions use the mask policy first.
Not sure if this is sufficient for scheduling or if we'll need to
select different pseudos that don't have a tied def.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D94566
According to "9. Vector Memory Alignment Constraints" in V
specification, the alignment of vector memory access is aligned to the
size of the element. In our current implementation, we support ELEN up
to 64. We could assume the alignment of vector registers is 64 under the
assumption.
Differential Revision: https://reviews.llvm.org/D94751
SimplifyDemandedBits can remove set bits from immediates from instructions
like AND/OR/XOR. This can prevent them from being efficiently
codegened on RISCV.
This adds an initial version that tries to keep or form 12 bit
sign extended immediates for AND operations to enable use of ANDI.
If that doesn't work we'll try to create a 32 bit sign extended immediate
to use LUI+ADDIW.
More optimizations are possible for different size immediates or
different operations. But this is a good starting point that already
has test coverage.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94628
I noticed in D94450 that there were quite a few places where we generate
the sequence:
```
xN <- comparison ...
xN <- xor xN, 1
bnez xN, symbol
```
Given we know the XOR will be used by BRCOND, which only looks at the lowest
bit, I think we can remove the XOR and just invert the branch condition in
these cases?
The case mostly seems to come up in floating point tests, where there is often
more logic to combine the results of multiple SETCCs, rather than a single
(BRCOND (SETCC ...) ...).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94535
Some FP compares expand to a sequence ending with (xor X, 1) to invert the result. If
the consumer is a select_cc we can likely get rid of this xor by fixing
up the select_cc condition.
This patch combines (select_cc (xor X, 1), 0, setne, trueV, falseV) -
(select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D94546
MCTargetDesc includes headers from Utils and Utils includes headers
from MCTargetDesc. So from a library layering perspective it makes sense
for them to be in the same library. I guess the other option might be to
move the tablegen includes from RISCVMCTargetDesc.h to RISCVBaseInfo.h
so that RISCVBaseInfo.h didn't need to include RISCVMCTargetDesc.h.
Everything else that depends on Utils also depends on MCTargetDesc so
having one library seemed simpler.
Differential Revision: https://reviews.llvm.org/D93168
This patch custom lowers ISD::VSCALE into a csrr vlenb followed
by a shift right by 3 followed by a multiply by the scale amount.
I've added computeKnownBits support to indicate that the csrr vlenb
always produces 3 trailng bits of 0s so the shift right is "exact".
This allows the shift and multiply sequence to be nicely optimized
into a single shift or removed completely when the scale amount is
a power of 2.
The non power of 2 case multiplying by 24 is still producing
suboptimal code. We could remove the right shift and use a
multiply by 3. Hopefully we can improve DAG combine to fix that
since it's not unique to this sequence.
This replaces D94144.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D94249
The custom expansion of select operations in the RISC-V backend
interferes with the matching of cmov instructions. Legalizing
select when the Zbt extension is available solves that problem.
Reviewed By: lenary, craig.topper
Differential Revision: https://reviews.llvm.org/D93767
We can use a 0 immediate to avoid needing to materialize 0 into
an FPR first.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94459
Define the `vfclass` IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D94356
Original patch by @rogfer01.
This patch adds ISel patterns for the above operations to the
corresponding vector/vector and vector/scalar RVV instructions, as well
as extra patterns to match operand-swapped scalar/vector vfrsub and
vfrdiv.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94408
Original patch by @rogfer01.
All ordered comparisons except ONE are supported natively, and all
unordered comparisons except UNE are expanded into sequences involving
explicit NaN checks and mask arithmetic.
Additionally, we expand GT,OGT,GE,OGE to their swapped-operand versions, and
pattern-match those back to the "original", swapping operands once more. This
way we catch both operations and both "vf" and "fv" forms with fewer patterns.
Also add support for floating-point splat_vector, with an optimization for
splatting fpimm0.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94242
The Pseudo class sets isCodeGenOnly=1 which causes the asm strings
in the pseudos to be ignored. I think this is why the aliases are
needed at all.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94024
This patch moves all but the BaseInstr to bits in TSFlags.
For the index fields, we can just use a bit to indicate their presence.
The locations of the operands are well defined.
This reduces the llc binary by about 32K on my build. It also
removes the binary search of the table from the custom inserter.
Instead we just check that the SEW op is present.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D94375
This makes the mask align with the position of the bits in TSFlags
which is a little more logical.
I might be adding more fields to TSFlags and some might be single
bits where just ANDing with mask to test the bit would make sense.
While there rename TargetFlags in validateInstruction to reflect
that it's just the constraint bits.
We currently have about 7000 opcodes in the RISCVGenInstrInfo.inc
enum. We can use uint16_t to store these values. We would need to
grow by nearly 9x before we run out of space so this should last
for a little while.
This reduces the llc binary by 32K.
Original patch by @rogfer01.
The RVV integer comparison instructions are defined in such a way that
many LLVM operations are defined by using the "opposite" comparison
instruction and swapping the operands. This is done in this patch in
most cases, except for the mappings where the immediate range must be
adjusted to accomodate:
va < i --> vmsle{u}.vi vd, va, i-1, vm
va >= i --> vmsgt{u}.vi vd, va, i-1, vm
That is left for future optimization; this patch supports all operations
but in the case of the missing mappings the immediate will be moved to
a scalar register first.
Since there are so many condition codes and operand cases to check, it
was decided to reduce the test burden by only testing the "vscale x 8"
vector types.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94168
The TableGen immAllOnesV and immAllZerosV helpers implicitly wrapped the
ISD::isBuildVectorAll(Ones|Zeros) helper functions. This was inhibiting
their use for targets such as RISC-V which use ISD::SPLAT_VECTOR. In
particular, RISC-V had to define its own 'vnot' fragment.
In order to extend the scope of these nodes to include support for
ISD::SPLAT_VECTOR, two new ISD predicate functions have been introduced:
ISD::isConstantSplatVectorAll(Ones|Zeros). These effectively supersede
the older "isBuildVector" predicates, which are now simple wrappers for
the new functions. They pass a defaulted boolean toggle which preserves
the old behaviour. It is hoped that in time all call-sites can be ported
to the "isConstantSplatVector" functions.
While the use of ISD::isBuildVectorAll(Ones|Zeros) has not changed, the
behaviour of the TableGen immAll(Ones|Zeros)V **has**. To test the new
functionality, the custom RISC-V TableGen fragment has been removed and
replaced with the built-in 'vnot'. To test their use as pattern-roots, two
splat patterns have been updated accordingly.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94223
This is a first change needed to fix a crash in which the emergency
spill splot ends being out of reach. This happens when we run the
register scavenger after we have eliminated the frame indexes. The fix
for the actual crash will come in a later change.
This change removes an extra stack size increase we do in
RISCVFrameLowering::determineFrameLayout.
We don't have to change the size of the stack here as
PEI::calculateFrameObjectOffsets is already doing this with the right
size accounting the extra alignment.
Differential Revision: https://reviews.llvm.org/D89237
1. Break MUL with specific constant to a SLLI and an ADD/SUB on riscv32
with the M extension.
2. Break MUL with specific constant to two SLLI and an ADD/SUB, if the
constant needs a pair of LUI/ADDI to construct.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D93619
Define the `vfsqrt` IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D93745
The patterns that want to use 'vnot' use a custom PatFrag. This is
because 'vnot' uses immAllOnesV which implicitly uses BUILD_VECTOR
rather than SPLAT_VECTOR.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94078
nvxXi1 types are legal with V extension and that's the result
vmseq/vmsne/vmslt/etc instructions return.
No test cases yet because the setcc isel patterns aren't in
and we'll need more than basic tests to observe this. I locally
tested that this plus D947078, D94168, D94142, and D94149
was enough to be able to handle the overflow result from
llvm.sadd.overflow.
There is no test coverage for the mulhs or mulhu patterns as I can't get
the DAGCombiner to generate them for scalable vectors. There are a few
places in that still need updating for that to work. I left the patterns
in regardless as they are correct.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94073
If the return values can't be lowered to registers
SelectionDAG performs the sret demotion. This patch
contains the basic implementation for the same in
the GlobalISel pipeline.
Furthermore, targets should bring relevant changes
during lowerFormalArguments, lowerReturn and
lowerCall to make use of this feature.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92953
ComplexPatterns are kind of weird, they don't call any of the predicates on their operands. And their "complexity" used for tablegen ordering purposes in the matcher table is hand specified.
This started as an attempt to just use sext_inreg + SLOIPat to implement SLOIW just to have one less Select function. The matching for the or+shl is the same as long as you know the immediate is less than 32 for SLOIW. But that didn't work out because using uimm5 with SLOIPat didn't do anything if it was a ComplexPattern.
I realized I could just use a PatFrag with the opcodes I wanted to match and an immediate predicate would then evaluate correctly. This also computes the complexity just like any other pattern does. Then I just needed to check the constraints on the immediates in the predicate. Conveniently the predicate is evaluated after the fragment has been matched. So the structure has already been checked, we just need to find the constants.
I'll note that this is unusual, I didn't find any other targets looking through operands in PatFrag predicate. There is a PredicateCodeUsesOperands feature that can be used to collect the operands into an array that is used by AMDGPU/VOP3Instructions.td. I believe that feature exists to handle commuted matching, but since the nodes here use constants, they aren't ever commuted
Differential Revision: https://reviews.llvm.org/D91901
vmsltu.vi v0, v1, 0 is always false there is no unsigned number
less than 0. vmsleu.vi v0, v1, -1 on the other hand is always true
since -1 will be considered unsigned max and all numbers are <=
unsigned max.
A similar problem exists for vmsgeu.vi v0, v1, 0 which is always true,
but becomes vmsgtu.vi v0, v1, -1 which is always false.
To match the GNU assembler we'll emit vmsne.vv and vmseq.vv with
the same register for these cases instead.
I'm using AsmParserOnly pseudo instructions here because we can't
match an explicit immediate in an InstAlias. And we can't use a
AsmOperand for the zero because the output we want doesn't use an
immediate so there's nowhere to name the AsmOperand we want to use.
To keep the implementations similar I'm also handling signed with
pseudo instructions even though they don't have this issue. This
way we can avoid the special renderMethod that decremented by 1 so
the immediate we see for the pseudo instruction in processInstruction
is 0 and not -1. Another option might have been to have a different
simm5_plus1 operand for the unsigned case or just live with the
immediate being pre-decremented. I felt this way was clearer, but I'm
open to other opinions.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94035
This alias for andi x, 255 was recently added to the spec. If we
print it, code we output can't be compiled with -fno-integrated-as
unless the GNU assembler is also a version that supports alias.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D93826
There are vmsle(u).vx and vmsle(u).vi instructions, but there is
only vmslt(u).vx and no vmslt(u).vi. vmslt(u).vi can be emulated
for some immediates by decrementing the immediate and using vmsle(u).vi.
To avoid the user needing to know about this, this patch does this
conversion.
The assembler does the same thing for vmslt(u).vi and vmsge(u).vi
pseudoinstructions. There is no vmsge(u).vx intrinsic or
instruction so this patch is limited to vmslt(u).
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D94070
With the i32 these patterns will only fire on RV32, but they
don't look RV32 specific.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D93843
We could expand vmsge{u}.vx pseudo instructions in RISCVAsmParser.
It is more appropriate to expand it before encoding.
Differential Revision: https://reviews.llvm.org/D93968
Define intrinsics:
1. vfcvt.xu.f.v/vfcvt.x.f.v
2. vfcvt.rtz.xu.f.v/vfcvt.rtz.x.f.v
3. vfcvt.f.xu.v/vfcvt.f.x.v
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Monk Chiang <monk.chiang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93933
Define intrinsics:
1. vfncvt.xu.f.w/vfncvt.x.f.w
2. vfncvt.rtz.xu.f.w/vfncvt.rtz.x.f.w
3. vfncvt.f.xu.w/vfncvt.f.x.w
4. vfncvt.f.f.w/vfncvt.rod.f.f.w
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Monk Chiang <monk.chiang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93932
Define intrinsics:
1. vfwcvt.xu.f.v/vfwcvt.x.f.v
2. vfwcvt.rtz.xu.f.v/vfwcvt.rtz.x.f.v
3. vfwcvt.f.xu.v/vfwcvt.f.x.v
4. vfwcvt.f.f.v
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Monk Chiang <monk.chiang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93855
This patch defines vcompress intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential revision: https://reviews.llvm.org/D93809
Define vsext/vzext intrinsics.and lower to V instructions.
Define new fraction register class fields in LMULInfo and a
NoReg to present invalid LMUL register classes.
Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93893
This complements the existing RVV ISel patterns for arithmetic, bitwise
and shifts with the remaining operations in those categories: sub, and,
xor, sra.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93852
If the destination is tied, then user has some control of the
register used for input. They would have the ability to control
the value of any tail elements. By using tail agnostic we take
this option away from them.
Its not clear that the intrinsics are defined such that this isn't
supposed to work. And undisturbed is a valid implementation for agnostic
so code wouldn't even fail to work on all systems if we always used
agnostic.
The vcompress intrinsic is defined to require tail undisturbed so
at minimum we need this for that instruction or need to redefine
the intrinsic.
I've made an exception here for vmv.s.x/fmv.s.f and reduction
instructions which only write to element 0 regardless of the tail
policy. This allows us to keep the agnostic policy on those which
should allow better redundant vsetvli removal.
An enhancement would be to check for undef input and keep the
agnostic policy, but we don't have good test coverage for that yet.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D93878
The spec for these instructions include this note. "The destination register
cannot overlap either the source register or the mask register ('v0') if the
instruction is masked." So we need earlyclobber to enforce this constraint.
I've regenerated the tests with update_llc_test_checks.py to show the
effects of the earlyclobber.
Reviewed By: khchen, frasercrmck
Differential Revision: https://reviews.llvm.org/D93867
Define vmclr.m/vmset.m intrinsics and lower to vmxor.mm/vmxnor.mm.
Ideally all rvv pseudo instructions could be implemented in C header,
but those two instructions don't take an input, codegen can not guarantee
that the source register becomes the same as the destination.
We expand pseduo-v-inst into corresponding v-inst in
RISCVExpandPseudoInsts pass.
Reviewed By: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D93849
Define those intrinsics and lower to V instructions.
Use update_llc_test_checks.py for viota.m tests to check
earlyclobber is applied correctly.
mask viota.m tests uses the same argument as input and mask for
avoid dependency of D93364.
We work with @rogfer01 from BSC to come out this patch.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D93823
This patch extends the pattern-matching capability of vector-splatted
constants. When illegally-typed constants are legalized they are
canonically sign-extended to XLenVT. This preserves the sign and allows
us to match simm5. If they were zero-extended for whatever reason we'd
lose that ability: e.g. `(i8 -1) -> (XLenVT 255)` would not be matched
under the current logic.
To address this we first manually sign-extend the splatted constant from
the vector element type to int64_t. This preserves the semantics while
removing any implicitly-truncated bits.
The corresponding logic for uimm5 was not updated, the rationale being
that neither sign- nor zero-extending a legal uimm5 immediate should
change that (unless we expect actual "garbage" upper bits).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93837
We weren't consistently marking unary instructions as OneInput
and vid.v is really ZeroInput but we had no way to mark that.
This patch improves this by removing the error prone OneInput constraint.
Instead we just always look for the mask in the last operand.
It appears that the "CheckReg" variable used for the check on the broken
instruction was unitialized or garbage because it was also used for
VS1/VS2 constraints. I've scoped the variable locally to each check now.
I've gone through and set NoConstraint on instructions that don't have
a real VMConstraint and don't have a mask as the last operand.
I've also removed the unused enum values in RISCVBaseInfo.h. We
never use them in C++ and we have separate versions in a td file.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D93784
Define vwredsumu/vwredsum/vfwredosum/vfwredsum
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Differential Revision: https://reviews.llvm.org/D93807
Define vpopc/vfirst intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93795
Define vector mask-register logical intrinsics and lower them
to V instructions. Also define pseudo instructions vmmv.m
and vmnot.m.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Differential Revision: https://reviews.llvm.org/D93705
This patch defines vrgather intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential revision: https://reviews.llvm.org/D93797
integer group:
vredsum/vredmaxu/vredmax/vredminu/vredmin/vredand/vredor/vredxor
float group:
vfredosum/vfredsum/vfredmax/vfredmin
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Differential Revision: https://reviews.llvm.org/D93746
This patch extends the SDNode ISel support for RVV from only the
vector/vector instructions to include the vector/scalar and
vector/immediate forms.
It uses splat_vector to carry the scalar in each case, except when
XLEN<SEW (RV32 SEW=64) when a custom node `SPLAT_VECTOR_I64` is used for
type-legalization and to encode the fact that the value is sign-extended
to SEW. When the scalar is a full 64-bit value we use a sequence to
materialize the constant into the vector register.
The non-intrinsic ISel patterns have also been split into their own
file.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93312
Also include a special case pattern to use vmv.v.x vd, zero when
the argument is 0.0.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D93672
This patch defines vfwmacc, vfwnmacc, vfwmsc, vfwnmsac intrinsics
and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93693
Define vmerge/vfmerge intrinsics and lower to V instructions.
Include support for vector-vector vfmerge by vmerge.vvm.
We work with @rogfer01 from BSC to come out this patch.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93674
Define the vfmin, vfmax IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D93673
This patch defines vfmadd/vfnmacc, vfmsac/vfnmsac, vfmadd/vfnmadd,
and vfmsub/vfnmsub lower to V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93691
This patch defines vwmacc[u|su|us] intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93675
This patch enables jump table lowering in the RISC-V backend.
In addition to the test case included, the new lowering was
tested by compiling the OCaml runtime and running it under qemu.
Differential Revision: https://reviews.llvm.org/D92097
Define vector compare intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93368
Define vleff intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93516
This defines vmadd, vmacc, vnmsub, and vnmsac intrinsics and
lower to V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93632
Define the `vand`, `vor` and `vxor` IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D93574
CanBeUnnamed is rarely false. Splitting to a createNamedTempSymbol makes the
intention clearer and matches the direction of reverted r240130 (to drop the
unneeded parameters).
No behavior change.
This patch base on D93366, and define vector fixed-point intrinsics.
1. vaaddu/vaadd/vasubu/vasub
2. vsmul
3. vssrl/vssra
4. vnclipu/vnclip
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Differential Revision: https://reviews.llvm.org/D93508
Define vector vfwmul intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93584
Define vector vfwadd/vfwsub intrinsics and lower them to V
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93583
Define vector vfsgnj/vfsgnjn/vfsgnjx intrinsics and lower them to V
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93581
Define vector vfmul/vfdiv/vfrdiv intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93580
Define vlxe/vsxe intrinsics and lower to vlxei<EEW>/vsxei<EEW>
instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Differential Revision: https://reviews.llvm.org/D93471
To support OpenCL, which typically uses SPIR as an IR, non-zero address
spaces must be accounted for. This patch makes the RISC-V target assume
no-op address space casts across the board, which effectively removes
the need to support addrspacecast instructions in the backend.
For a RISC-V implementation with different configurations or specialized
address spaces where casts aren't no-ops, the function can be adjusted
as required.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D93536
This patch adds two IR intrinsics for vsetvli instruction. One to set the vector length to a user specified value and one to set it to vlmax. The vlmax uses the X0 source register encoding.
Clang builtins will follow in a separate patch
Differential Revision: https://reviews.llvm.org/D92973
The default behavior for any_extend of a constant is to zero extend.
This occurs inside of getNode rather than allowing type legalization
to promote the constant which would sign extend. By using sign extend
with getNode the constant will be sign extended. This gives a better
chance for isel to find a simm5 immediate since all xlen bits are
examined there.
For instructions that use a uimm5 immediate, this change only affects
constants >= 128 for i8 or >= 32768 for i16. Constants that large
already wouldn't have been eligible for uimm5 and would need to use a
scalar register.
If the instruction isn't able to use simm5 or the immediate is
too large, we'll need to materialize the immediate in a register.
As far as I know constants with all 1s in the upper bits should
materialize as well or better than all 0s.
Longer term we should probably have a SEW aware PatFrag to ignore
the bits above SEW before checking simm5.
I updated about half the test cases in some tests to use a negative
constant to get coverage for this.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D93487
This time with tests.
Original message:
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
This adds intrinsics for vmv.x.s and vmv.s.x.
I've used stricter type constraints on these intrinsics than what we've been doing on the arithmetic intrinsics so far. This will allow us to not need to pass the scalar type to the Intrinsic::getDeclaration call when creating these intrinsics.
A custom ISD is used for vmv.x.s in order to implement the change in computeNumSignBitsForTargetNode which can remove sign extends on the result.
I also modified the MC layer description of these instructions to show the tied source/dest operand. This is different than what we do for masked instructions where we drop the tied source operand when converting to MC. But it is a more accurate description of the instruction. We can't do this for masked instructions since we use the same MC instruction for masked and unmasked. Tools like llvm-mca operate in the MC layer and rely on ins/outs and Uses/Defs for analysis so I don't know if we'll be able to maintain the current behavior for masked instructions. So I went with the accurate description here since it was easy.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D93365
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Craig Topper <craig.topper@sifive.com>
Differential Revision: https://reviews.llvm.org/D93514
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: ShihPo Hung <shihpo.hung@sifive.com>
Co-Authored-by: Monk Chiang <monk.chiang@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93366
Define vlse/vsse intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93445
Define vector widening mul intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93381
Define vector mul/div/rem intrinsics and lower them to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93380
If users want to use vector floating point instructions, they need to
specify 'F' extension additionally.
Differential Revision: https://reviews.llvm.org/D93282
Define vle/vse intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93359
Refine tablegen pattern for vector load/store, and follow
D93012 to separate masked and unmasked definitions for
pseudo load/store instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93284
Define vfadd/vfsub/vfrsub intrinsics and lower to V instructions.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93291
Define vwadd/vwaddu/vwsub/vwsubu intrinsics and lower to V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93108
This moves the vtype decoding and printing to RISCVBaseInfo. This keeps all of
the decoding code in the same area as the encoding code. This will make it
easier to change the decoding for the 1.0 spec in the future.
We're now sharing the printing with the debug output for operands in the
assembler. This also fixes that debug output to include the tail and mask
agnostic bits. Since the printing code works on the vtype immediate value, we
now encode the immediate during parsing and store just the immediate in the
operand.
Add simple pass for removing redundant vsetvli instructions within a basic block. This handles the case where the AVL register and VTYPE immediate are the same and no other instructions that change VTYPE or VL are between them.
There are going to be more opportunities for improvement in this space as we development more complex tests.
Differential Revision: https://reviews.llvm.org/D92679
The compiler is making no effort to preserve upper elements. To do so would require another source operand tied with the destination and a different intrinsic interface to give control of this source to the programmer.
This patch changes the tail policy to agnostic so that the CPU doesn't need to make an effort to preserve them.
This is consistent with the RVV intrinsic spec here https://github.com/riscv/rvv-intrinsic-doc/blob/master/rvv-intrinsic-rfc.md#configuration-setting
Differential Revision: https://reviews.llvm.org/D93080
Use RegisterClass::contains instead of going through getMinimalPhysRegClass
and hasSuperClassEq.
Remove the special case for NoRegister. It's identical to the
handling for any other regsiter that isn't VRM2/M4/M8.
There is an in-progress proposal for the following pseudo-instructions
in the assembler, to complement the existing `sext.w` rv64i instruction:
- sext.b
- sext.h
- zext.b
- zext.h
- zext.w
The `.b` and `.h` variants are available with rv32i and rv64i, and `zext.w` is
only available with `rv64i`.
These are implemented primarily as pseudo-instructions, as these instructions
expand to multiple real instructions. In the case of `zext.b`, this expands to a
single rv32/64i instruction, so it is implemented with an InstAlias (like
`sext.w` is on rv64i).
The proposal is available here: https://github.com/riscv/riscv-asm-manual/pull/61
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D92793
If SETUNE isn't legal, UO can use the NOT of the SETO expansion.
Removes some complex isel patterns. Most of the test changes are
from using XORI instead of SEQZ.
Differential Revision: https://reviews.llvm.org/D92008
The register operand was not being marked as a def when it should be. No tests
for this in the main branch as there are not yet any pseudos without a
non-negative VLIndex.
Also change the type of a virtual register operand from unsigned to Register
and adjust formatting.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D92823
This merges the SEW and LMUL enums that each used into singles enums in RISCVBaseInfo.h. The patch also adds a new encoding helper to take SEW, LMUL, tail agnostic, mask agnostic and turn it into a vtype immediate.
I also stopped storing the Encoding in the VTYPE operand in the assembler. It is easy to calculate when adding the operand which should only happen once per instruction.
Differential Revision: https://reviews.llvm.org/D92813
We can use these instructions for single bit immediates that are too large for ANDI/ORI/CLRI.
The _10 test cases are to make sure that we still use ANDI/ORI/CLRI for small immediates.
Differential Revision: https://reviews.llvm.org/D92262
-Reject an "mf1" lmul
-Make sure tail agnostic is exactly "tu" or "ta" not just that it starts with "tu" or "ta"
-Make sure mask agnostic is exactly "mu" or "ma" not just that it starts with "mu" or "ma"
Differential Revision: https://reviews.llvm.org/D92805
APInt's string constructor asserts on error. Since this is the parser and we don't yet know if the string is a valid integer we shouldn't use that.
Instead use StringRef::getAsInteger which returns a bool to indicate success or failure.
Since we no longer need APInt, use 'unsigned' instead.
Differential Revision: https://reviews.llvm.org/D92801
This node returns 2 results and uses a chain. As long as we use a DAG as part of the pseudo instruction definition where we can use the "set" operator, it looks like tablegen can handle use a pattern for this without a problem. I believe the original implementation was copied from PowerPC.
This also fixes the pseudo instruction so that it is marked as having side effects to match the definition of CSRRS and the RV64 instruction. And we don't need to explicitly clear mayLoad/mayStore since those can be inferred now.
Differential Revision: https://reviews.llvm.org/D92786
A rotate by half the bitwidth swaps the bottom and top half which is the same as one of the MSB GREVI stage.
We have to do this as a special combine because we prefer to keep (rotl/rotr X, BitWidth/2) as a rotate rather than a single stage GREVI.
Differential Revision: https://reviews.llvm.org/D92286
On the surface this would be slightly less optimal for the isel
table, but due to a tablegen issue with HW mode this ends up
generating a smaller isel table.
The companion RFC (http://lists.llvm.org/pipermail/llvm-dev/2020-October/145850.html) gives lots of details on the overall strategy, but we summarize it here:
LLVM IR involving vector types is going to be selected using pseudo instructions (only MachineInstr). These pseudo instructions contain dummy operands to represent the vector type being operated and the vector length for the operation.
These two dummy operands, as set by instruction selection, will be used by the custom inserter to prepend every operation with an appropriate vsetvli instruction that ensures the vector architecture is properly configured for the operation. Not in this patch: later passes will remove the redundant vsetvli instructions.
Register classes of tuples of vector registers are used to represent vector register groups (LMUL > 1).
Those pseudos are eventually lowered into the actual instructions when emitting the MCInsts.
About the patch:
Because there is a bit of initial infrastructure required, this is the minimal patch that allows us to select instructions for 3 LLVM IR instructions: load, add and store vectors of integers. LLVM IR operations have "whole-vector" semantics (as in they generate values for all the elements).
Later patches will extend the information represented in TableGen.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Co-Authored-by: Craig Topper <craig.topper@sifive.com>
Differential Revision: https://reviews.llvm.org/D89449
This makes the llvm-objdump output much more readable and closer to binutils objdump. This builds on D76591
It requires changing the OperandType for certain immediates to "OPERAND_PCREL" so tablegen will generate code to pass the instruction's address. This means we can't do the generic check on these instructions in verifyInstruction any more. Should I add it back with explicit opcode checks? Or should we add a new operand flag to control the passing of address instead of matching the name?
Differential Revision: https://reviews.llvm.org/D92147
Rather than having a different opcode for RV32 and RV64. Let's just say the integer type is XLenVT and use a single opcode for both modes.
Differential Revision: https://reviews.llvm.org/D92538
Internally the pass skips any function with the optnone attribute. But that still requires checking each function. If the opt level is set to None we might as well just skip putting in the pipeline at all. This what is already done for many of the passes added by TargetPassConfig.
Differential Revision: https://reviews.llvm.org/D92511
So that instructions like `lla a5, (0xFF + end) - 4` (supported by GNU as) can
be parsed.
Add a missing test that an operand like `foo + foo` is not allowed.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D92293
This enables bswap/bitreverse to combine with other GREVI patterns or each other without needing to add more special cases to the DAG combine or new DAG combines.
I've also enabled the existing GREVI combine for GREVIW so that it can pick up the i32 bswap/bitreverse on RV64 after they've been type legalized to GREVIW.
Differential Revision: https://reviews.llvm.org/D92253
GORCI performs an OR between each stage. So we need to ensure only
one stage is active before doing this combine.
Initial attempts at finding a test case for this failed due to
the order things get combined. It's most likely that we'll form
one stage of GREVI then combine to GORCI before the two stages of
GREVI are able to be formed and combined with each other to form
a multi stage GREVI.
Differential Revision: https://reviews.llvm.org/D92289
Not sure why bswap was treated specially. This also applies to bitreverse
or generic grevi. We can improve this in future patches.
For now I just wanted to get the consistency and the test coverage
as I plan to make some other changes around bswap.
We had an zexti32 after a sign_extend_inreg. The AND X, 0xffffffff
part of the zexti32 should never occur since SimplifyDemandedBits
from the sign_extend_inreg would have removed it.
We also had sexti32 as the root node of a pattern, but SelectionDAGISel
matches assertsext early before the tablegen based patterns are
evaluated.
These patterns are using zexti32 which matches either assertzexti32
or (and X, 0xffffffff). But if we match (and X, 0xffffffff) it will
remove the AND and the inputs may no longer have the zero bits
needed to guarantee the result has enough zeros.
This commit changes the patterns to only match assertzexti32.
I'm not sure how to test the broken case since the DIVUW/REMUW nodes
are created during type legalization, but type legalization won't
create an (and X, 0xfffffffff) directly on the inputs.
I've also changed the zexti32 on the root of the pattern to just
checking for AND. We were previously also matching assertzexti32,
but I doubt that pattern would ever occur.
Start with an assumption that FMA is faster than Fmul+FAdd. If thats not true
on some particular implementation we can add a tuning parameter in the future.
I've update the fmuladd test cases and added new test cases for fast math flag
based contraction.
Differential Revision: https://reviews.llvm.org/D91987
This is the logically correct thing to do. But it generates worse
code for i32 umin/umax on the rv64 due to type legalize requesting
zext even though the arguments are sext. Maybe we can teach type
legalizer to use sext for umin/umax for RISCV.
It's also producing possibly worse code on i64 on RV32 since we
still end up with selects that become branches. But this seems
like something we could improve in type legalization or DAG combine.
Hopefully this makes D92095 work for RISCV with Zbb.
This adds custom opcodes for FSLW/FSRW so we can type legalize
fshl/fshr without needing to match a sign_extend_inreg.
I've used the operand order from fshl/fshr to make the isel
pattern similar to the non-W form. It was also hard to decide
another order since the register instruction has the shift amount
as the second operand, but the immediate instruction has it as
the third operand.
Differential Revision: https://reviews.llvm.org/D91479
This is a special calling convention to be used by the GHC compiler.
Patch by Andreas Schwab (schwab)
Differential Revision: https://reviews.llvm.org/D89788
X86 was already specially marking fma as commutable which allowed
tablegen to autogenerate commuted patterns. This moves it to the target
independent definition and fix up the targets to remove now
unneeded patterns.
Unfortunately, the tests change because the commuted version of
the patterns are generating operands in a different than the
explicit patterns.
Differential Revision: https://reviews.llvm.org/D91842
We generate two 4 byte loads or two stores as part of the expansion.
Previously the MemOperand was set the same for both to cover the
full 8 bytes. Now we set a separate 4 byte mem operand for each
with a 4 byte offset for the high part.
Prior to this the DefaultMode was never selected, but RISCVGenDAGISel.inc, RISCVGenRegisterInfo.inc, RISCVGenGlobalISel.inc all ended up with extra table entries for that mode.
This patch removes the RV32 and uses DefaultMode for RV32. This impressively reduces the size of my release+asserts llc binary by about 270K. About 15K from RISCVGenDAGISel.inc, 1-2K from RISCVGenRegisterInfo.inc, but the vast majority from RISCVGenGlobalISel.inc.
Differential Revision: https://reviews.llvm.org/D90973
Previously we required a sra to pattern match these properly in isel. If the consumer didn't need the result sign extended we'll have an srl instead of sra and fail to match.
This patch switches to custom legalizing to GREVIW using portions of D91259.
Differential Revision: https://reviews.llvm.org/D91457
This should result in better utilization of RORIW since we
don't need to look for a SIGN_EXTEND_INREG that may not exist.
Also remove rotl/rotr isel matching to GREVI and just prefer RORI.
This is to keep consistency so we don't have to match ROLW/RORW
to GREVIW as well. I imagine RORI/RORIW performance will be the
same or better than GREVI.
Differential Revision: https://reviews.llvm.org/D91449
This moves the recognition of GREVI and GORCI from TableGen patterns
into a DAGCombine. This is done primarily to match "deeper" patterns in
the future, like (grevi (grevi x, 1) 2) -> (grevi x, 3).
TableGen is not best suited to matching patterns such as these as the compile
time of the DAG matchers quickly gets out of hand due to the expansion of
commutative permutations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D91259
@tangxingxin1008 found a bug that regard vadd.vv v1, v3, a0 as a valid V
instruction. We should remove the VRegAsmOperand operand class and use
VR register class directly.
Patched by: tangxingxin1008, Hsiangkai
Differential Revision: https://reviews.llvm.org/D91712
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
We need to make sure the upper 32 bits are all ones to ensure the result is properly sign extended. Previously we only checked the lower 32 bits of the mask. I've also added a check that the shift amount is less than 32. Without that the original code asserts inside maskLeadingOnes if the SROI check is removed or the SROIW pattern is checked first. I've refactored the code to use early outs to reduce nesting.
I've also updated SLOIW matching with the same changes, but I couldn't find a broken test case with the existing code.
Differential Revision: https://reviews.llvm.org/D90961
Similar to the X86 and AMDGPU targets, this uses a macro to cut down on
repetitive and error-prone code when converting RISCVISD node names to
strings in getTargetNodeName.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D91414
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
-Use MCRegister instead of Register in MC layer.
-Move some enums from RISCVInstrInfo.h to RISCVBaseInfo.h to be with other TSFlags bits.
Differential Revision: https://reviews.llvm.org/D91114
The fshl and fshr intrinsics are defined to modulo their shift amount by the bitwidth of one of their inputs. The FSR/FSL instructions read one extra bit from the shift amount. If that bit is set the inputs are swapped. In order to preserve the semantics of the llvm intrinsics we need to make sure that the extra bit isn't set. DAG combine or instcombine may have removed any mask that was originally present.
We could be smarter here and try to use computeKnownBits to check if the bit is known zero, but wanted to start with correctness.
Differential Revision: https://reviews.llvm.org/D90905
We were creating RISCVISD::SELECT_CC nodes with Glue output that was never being used, and the tablegen SDNode had the SDNPInGlue flag instead of the SDNPOutGlue flag.
Since we don't seem to need the Glue just get rid of it from both places.
Differential Revision: https://reviews.llvm.org/D91199
This uses the shiftop PatFrags to handle the masked shift amount
and unmasked shift amount cases. That also checks XLen as part
of the masked amount check so we don't need separate RV32 and RV64
patterns.
Differential Revision: https://reviews.llvm.org/D91016
Bitconvert requires the bitwidth to match on both sides. On RV64
the GPR size is i64 so bitconvert between f32 isn't possible. The
node should never be generated so the pattern won't ever match, but
moving the patterns under IsRV32 makes it more obviously impossible.
It also moves it to a similar location to the patterns for the
custom nodes we use for RV64.
The multiply part of FMA is commutable, but TargetSelectionDAG.td
doesn't have it marked as commutable so tablegen won't automatically
create the additional patterns.
So manually add commuted patterns.
D80526 added custom lowering to pick the si lib call on RV64, but this custom handling is only enabled when the F and D extension are both disabled. This prevents the si library call from being used for double when F is enabled but D is not.
This patch changes the behavior so we always enable the Custom hook on RV64 and decide in ReplaceNodeResults if we should emit a libcall based on whether the FP type should be softened or not.
Differential Revision: https://reviews.llvm.org/D90817
The _F and _D registers are already sub/super registers. When one gets allocated all its aliases are already marked as allocated. We don't need to explicitly shadow it too.
I believe shadow is for calling conventions like 64-bit Windows on X86 where have rules like this
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>
For that calling convention the argument number determines which register is used regardless of how many scalars or vectors came before it.
Removing this removes a question I had in D90738.
Differential Revision: https://reviews.llvm.org/D90801
There is no FSLI instruction, but we can emulate it using FSRI by swapping operands and subtracting the immediate from the bitwidth.
Differential Revision: https://reviews.llvm.org/D90826
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
The operations in these patterns shouldn't be effected by sign
bits. And the pattern is starting from a sign_extend_inreg so
we aren't expecting sign bits to be passed through either.
Differential Revision: https://reviews.llvm.org/D90739
fsl/fsr take their shift amount in $rs2 or an immediate. The
sources are $rs1 and $rs3.
fshl/fshr ISD opcodes both concatenate operand 0 in the high bits and
operand 1 in the lower bits. fshl returns the high bits after
shifting and fshr returns the low bits. So a shift amount of 0
returns operand 0 for fshl and operand 1 for fshr.
fsl/fsr concatenate their operands in different orders such that
$rs1 will be returned for a shift amount of 0. So $rs1 needs to
come from operand 0 of fshl and operand 1 of fshr.
Differential Revision: https://reviews.llvm.org/D90735
riscv_sllw/srlw only reads the lower 32 bits of the first operand.
And the lower 5 bits of the second operands. Whether the upper
32 bits of the input are sign bits or not doesn't matter.
Also use ineg and not to shorten the patterns.
Differential Revision: https://reviews.llvm.org/D90668
We need to ensure the upper 32 bits of the mask are zero.
So that the srl shifts zeroes into the lower 32 bits.
Differential Revision: https://reviews.llvm.org/D90585
We don't need custom matching, we just a need a predicate to check
the immediate is greater than 32. We can use the existing ImmSub32
to adjust the immediate.
I've also used the new predicate in the other location that used
ImmSub32. I tried to create a test case where we would break without
the greater than 32 check on that pattern, but DAG combine defeated me.
Still seemed safer to have it.
Differential Revision: https://reviews.llvm.org/D90546
DAGCombine doesn't canonicalize rotl/rotr with immediate so we
need patterns for both.
Remove the custom matcher for rotl to RORI and just use a SDNodeXForm
to convert the immediate instead. Doing this gives priority to the
rev32/rev16 versions of grevi over rori since an explicit immediate
is more precise than any immediate. I also added rotr patterns for
rev32/rev16. And removed the (or (shl), (shr)) patterns that should be
combined to rotl by DAG combine.
There is at least one other grev pattern that probably needs a
another rotr pattern, but we need more test coverage first.
Differential Revision: https://reviews.llvm.org/D90575
ADDI often has a frameindex in operand 1, but consumers of this
interface, such as MachineSink, tend to call getReg() on the Destination
and Source operands, leading to the following crash when building
FreeBSD after this implementation was added in 8cf6778d30:
```
clang: llvm/include/llvm/CodeGen/MachineOperand.h:359: llvm::Register llvm::MachineOperand::getReg() const: Assertion `isReg() && "This is not a register operand!"' failed.
PLEASE submit a bug report to https://bugs.llvm.org/ and include the crash backtrace, preprocessed source, and associated run script.
Stack dump:
#0 0x00007f4286f9b4d0 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) llvm/lib/Support/Unix/Signals.inc:563:0
#1 0x00007f4286f9b587 PrintStackTraceSignalHandler(void*) llvm/lib/Support/Unix/Signals.inc:630:0
#2 0x00007f4286f9926b llvm::sys::RunSignalHandlers() llvm/lib/Support/Signals.cpp:71:0
#3 0x00007f4286f9ae52 SignalHandler(int) llvm/lib/Support/Unix/Signals.inc:405:0
#4 0x00007f428646ffd0 (/lib/x86_64-linux-gnu/libc.so.6+0x3efd0)
#5 0x00007f428646ff47 raise /build/glibc-2ORdQG/glibc-2.27/signal/../sysdeps/unix/sysv/linux/raise.c:51:0
#6 0x00007f42864718b1 abort /build/glibc-2ORdQG/glibc-2.27/stdlib/abort.c:81:0
#7 0x00007f428646142a __assert_fail_base /build/glibc-2ORdQG/glibc-2.27/assert/assert.c:89:0
#8 0x00007f42864614a2 (/lib/x86_64-linux-gnu/libc.so.6+0x304a2)
#9 0x00007f428d4078e2 llvm::MachineOperand::getReg() const llvm/include/llvm/CodeGen/MachineOperand.h:359:0
#10 0x00007f428d8260e7 attemptDebugCopyProp(llvm::MachineInstr&, llvm::MachineInstr&) llvm/lib/CodeGen/MachineSink.cpp:862:0
#11 0x00007f428d826442 performSink(llvm::MachineInstr&, llvm::MachineBasicBlock&, llvm::MachineInstrBundleIterator<llvm::MachineInstr, false>, llvm::SmallVectorImpl<llvm::MachineInstr*>&) llvm/lib/CodeGen/MachineSink.cpp:918:0
#12 0x00007f428d826e27 (anonymous namespace)::MachineSinking::SinkInstruction(llvm::MachineInstr&, bool&, std::map<llvm::MachineBasicBlock*, llvm::SmallVector<llvm::MachineBasicBlock*, 4u>, std::less<llvm::MachineBasicBlock*>, std::allocator<std::pair<llvm::MachineBasicBlock* const, llvm::SmallVector<llvm::MachineBasicBlock*, 4u> > > >&) llvm/lib/CodeGen/MachineSink.cpp:1073:0
#13 0x00007f428d824a2c (anonymous namespace)::MachineSinking::ProcessBlock(llvm::MachineBasicBlock&) llvm/lib/CodeGen/MachineSink.cpp:410:0
#14 0x00007f428d824513 (anonymous namespace)::MachineSinking::runOnMachineFunction(llvm::MachineFunction&) llvm/lib/CodeGen/MachineSink.cpp:340:0
```
Thus, check that operand 1 is also a register in the condition.
Reviewed By: arichardson, luismarques
Differential Revision: https://reviews.llvm.org/D89090
The code is looking for (sext_inreg (or (shl X, C2), (shr (and Y, C3), C1))).
We need to ensure X and Y are the same.
Differential Revision: https://reviews.llvm.org/D90580
As discussed on D90322, some MSVC builds are failing with is_trivially_copyable static asserts (see D86126) - we can avoid this by not using the std::pair<unsigned,unsigned> which held both the FP+DP Registers, just handle the FP register and convert to DP on the fly.
This reverts 781917254d and recommits
781917254d.
I've changed getRegForInlineAsmConstraint to not use a std::pair
of Register in a previous commit. Hopefully that fixes the reported
issue with expensive checks on Windows. I'm still not sure exactly
why this commit removing an include affected a different file.
Original message:
RISCVRegisterInfo.h is part of the CodeGen layer. The Utils library
is intended to be shared with the MC layer so shouldn't use files
from the CodeGen layer.
The register enum names are already available from
RISCVMCTargetDesc.h. It appears what was coming from this include
was a transitive include of the Register class which I've replaced
with MCRegister. Register has a constructor from MCRegister so it
should be convertible.
The return value of this interface still uses an 'unsigned' on all
targets. So we convert Register back to unsigned at the end.
I'm hoping this will prevent the issue that caused the revert of
D90322.
Just return the new node, which is the standard practice.
I also noticed what appeared to be an unnecessary attempt at
creating an ANY_EXTEND where the type should already be correct.
I replace with an assert to verify the type.
Differential Revision: https://reviews.llvm.org/D90444
This combine makes two calls to SimplifyDemandedBits, one for the LHS and one
for the RHS. If the LHS call returns true, we don't make the RHS call. When
SimplifyDemandedBits makes a change, it will add the nodes around the change to
the DAG combiner worklist. If the simplification happens on the first recursion
step, the N will get added to the worklist. But if the simplification happens
deeper in the recursion, then N will not be revisited until the next time the
DAG combiner runs.
This patch explicitly addes N to the worklist anytime a Simplification is made.
Without this we might miss additional simplifications on the LHS or never
simplify the RHS. Special care also needs to be taken to not add N if it has
been CSEd by the simplification. There are similar examples in DAGCombiner and
the X86 target, but I don't have a test for it for RISC-V. I've also returned
SDValue(N, 0) instead of SDValue() so DAGCombiner knows a change was made and
will update its Statistic variable.
The test here was constructed so that 2 simplifications happen to the LHS.
Without this fix one happens in the post type legalization DAG combine and the
other happens after LegalizeDAG. This prevents the RHS from ever being
simplified causing the left and right shift to clear the upper 32 bits of the
RHS to be left behind.
Differential Revision: https://reviews.llvm.org/D90339
RISCVRegisterInfo.h is part of the CodeGen layer. The Utils library
is intended to be shared with the MC layer so shouldn't use files
from the CodeGen layer.
The register enum names are already available from
RISCVMCTargetDesc.h. It appears what was coming from this include
was a transitive include of the Register class which I've replaced
with MCRegister. Register has a constructor from MCRegister so it
should be convertible.
- The goal of this patch is improve option compatible with RISCV-V GCC,
-mcpu support on GCC side will sent patch in next few days.
- -mtune only affect the pipeline model and non-arch/extension related
target feature, e.g. instruction fusion; in td file it called
TuneFeatures, which is introduced by X86 back-end[1].
- -mtune accept all valid option for -mcpu and extra alias processor
option, e.g. `generic`, `rocket` and `sifive-7-series`, the purpose is
option compatible with RISCV-V GCC.
- Processor alias for -mtune will resolve according the current target arch,
rv32 or rv64, e.g. `rocket` will resolve to `rocket-rv32` or `rocket-rv64`.
- Interaction between -mcpu and -mtune:
* -mtune has higher priority than -mcpu for pipeline model and
TuneFeatures.
[1] https://reviews.llvm.org/D85165
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D89025
Implement vmsge{u}.vx pseudo instruction.
According to RISC-V V specification, there are different scenarios for this
pseudo instruction. I list them below.
unmasked va >= x
pseudoinstruction: vmsge{u}.vx vd, va, x
expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
masked va >= x, vd != v0
pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
masked va >= x, vd == v0
pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
expansion: vmslt{u}.vx vt, va, x; vmandnot.mm vd, vd, vt
Use pseudo instruction to model vmsge{u}.vx. The pseudo instruction will convert
to different expansion according to the condition.
Differential Revision: https://reviews.llvm.org/D84732
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
Scheduling information is of little value when they may disrupt the
pipeline. This patch allows omitting the scheduling information for CSR
instructions while still setting `SchedMachineModel::CompleteModel`. For
specific cases, any scheduling information added will be used by the
scheduler.
Differential revision: https://reviews.llvm.org/D85366
This does not result in changes for any of the current tests, but it might
improve debug information in some cases.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D86522
Currenlty assume x18 is used as pointer to shadow call stack. User shall pass
flags:
"-fsanitize=shadow-call-stack -ffixed-x18"
Runtime supported is needed to setup x18.
If SCS is desired, all parts of the program should be built with -ffixed-x18 to
maintain inter-operatability.
There's no particuluar reason that we must use x18 as SCS pointer. Any register
may be used, as long as it does not have designated purpose already, like RA or
passing call arguments.
Differential Revision: https://reviews.llvm.org/D84414
We weren't using this before, so none of the MachineFunction CFG edges had the
branch probability information added. As a result, block placement later in the
pipeline was flying blind.
This is enabled only with optimizations enabled like SelectionDAG.
Differential Revision: https://reviews.llvm.org/D86824
There's a special case in hasAttribute for None when pImpl is null. If pImpl is not null we dispatch to pImpl->hasAttribute which will always return false for Attribute::None.
So if we just want to check for None its sufficient to just check that pImpl is null. Which can even be done inline.
This patch adds a helper for that case which I hope will speed up our getSubtargetImpl implementations.
Differential Revision: https://reviews.llvm.org/D86744
Since the canonical floatig-point move is fsgnj rd, rs, rs, we should
handle this case in RISCVInstrInfo::isAsCheapAsAMove().
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D86518
The isTriviallyRematerializable hook is only called for instructions that are
tagged as isAsCheapAsAMove. Since ADDI 0 is used for "mv" it should definitely
be marked with "isAsCheapAsAMove". This change avoids one stack spill in most of
the atomic-rmw.ll tests functions. It also avoids stack spills in two of our
out-of-tree CHERI tests.
ORI/XORI with zero may or may not be the same as a move micro-architecturally,
but since we are already doing it for register == x0, we might as well
do the same if the immediate is zero.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D86480
Implements the assemble and disassemble support of RISCV Vector
extension zvamo instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D85069
PseudoBRIND had seemingly inherited incorrect annotations denoting it as
a call instruction and that it defines X1/ra. This caused excess
save/restore code to be emitted for ra.
Differential Revision: https://reviews.llvm.org/D86286
In SelectionDAGBuilder always translate the fshl and fshr intrinsics to
FSHL and FSHR (or ROTL and ROTR) instead of lowering them to shifts and
ORs. Improve the legalization of FSHL and FSHR to avoid code quality
regressions.
Differential Revision: https://reviews.llvm.org/D77152
This ensures that we never encode an instruction which is unavailable,
such as if we explicitly insert a forbidden instruction when lowering.
This is particularly important on RISC-V given its high degree of
modularity, and will become increasingly important as new standard
extensions appear.
Reviewed By: asb, lenary
Differential Revision: https://reviews.llvm.org/D85015
This implements the assemble and disassemble support of RISCV Vector
extension Zvlsseg instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D84416
The RISC-V Privileged Specification 1.11 defines `mcountinhibit`, which
has the same numeric CSR value as `mucounteren` from 1.09.1. This patch
enables the use of the old `mucounteren` name.
Patch by Yuichi Sugiyama.
Reviewed By: lenary, jrtc27, pzheng
Differential Revision: https://reviews.llvm.org/D85067
This fixes the "Unable to insert indirect branch" fatal error sometimes
seen when generating position-independent code.
Patch by msizanoen1
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D84833
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
Summary:
1. gcc uses `-march` and `-mtune` flag to chose arch and
pipeline model, but clang does not have `-mtune` flag,
we uses `-mcpu` to chose both infos.
2. Add SiFive e31 and u54 cpu which have default march
and pipeline model.
3. Specific `-mcpu` with rocket-rv[32|64] would select
pipeline model only, and use the driver's arch choosing
logic to get default arch.
Reviewers: lenary, asb, evandro, HsiangKai
Reviewed By: lenary, asb, evandro
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D71124
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the ternary subset (zbt subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79875
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the single-bit subset (zbs subextension) of
the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79874
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions belonging to both the permutation and the base
subsets of the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79873
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the permutation subset (zbp subextension) of
the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79871
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the base subset (zbb subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79870
Summary:
Without these, the generic branch relaxation pass will underestimate the
range required for branches spanning these and we can end up with
"fixup value out of range" errors rather than relaxing the branches.
Some of the instructions in the expansion may end up being compressed
but exactly determining that is awkward, and these conservative values
should be safe, if slightly suboptimal in rare cases.
Reviewers: asb, lenary, luismarques, lewis-revill
Reviewed By: asb, luismarques
Subscribers: hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77443
Because of the layout of stores (that don't have a destination operand)
this check is exactly the same as the one in
RISCVInstrInfo::isLoadFromStackSlot.
Differential Revision: https://reviews.llvm.org/D81805
The GlobalISelEmitter is stricter about matching timm instruction
outputs to timm inputs (although in an accidental sort of way that
doesn't hit a proper import failure error). Also, apparently no
intrinsic patterns were importing since the ID enum declaration was
missing.
Since the `RISCVExpandPseudo` pass has been split from
`RISCVExpandAtomicPseudo` pass, it would be nice to run the former as
early as possible (The latter has to be run as late as possible to
ensure correctness). Running earlier means we can reschedule these pairs
as we see fit.
Running earlier in the machine pass pipeline is good, but would mean
teaching many more passes about `hasLabelMustBeEmitted`. Splitting the
basic blocks also pessimises possible optimisations because some
optimisations are MBB-local, and others are disabled if the block has
its address taken (which is notionally what `hasLabelMustBeEmitted`
means).
This patch uses a new approach of setting the pre-instruction symbol on
the AUIPC instruction to a temporary symbol and referencing that. This
avoids splitting the basic block, but allows us to reference exactly the
instruction that we need to. Notionally, this approach seems more
correct because we do actually want to address a specific instruction.
This then allows the pass to be moved much earlier in the pass pipeline,
before both scheduling and register allocation. However, to do so we
must leave the MIR in SSA form (by not redefining registers), and so use
a virtual register for the intermediate value. By using this virtual
register, this pass now has to come before register allocation.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D82988
For an addition with an immediate in specific ranges, a pair of
addi-addi can be generated instead of the ordinary lui-addi-add serial.
Reviewed By: MaskRay, luismarques
Differential Revision: https://reviews.llvm.org/D82262
... to shift/add or shift/sub.
Do not enable it on riscv32 with the M extension where decomposeMulByConstant
may not be an optimization.
Reviewed By: luismarques, MaskRay
Differential Revision: https://reviews.llvm.org/D82660
We can often fold an ADDI into the offset of load/store instructions:
(load (addi base, off1), off2) -> (load base, off1+off2)
(store val, (addi base, off1), off2) -> (store val, base, off1+off2)
This is possible when the off1+off2 continues to fit the 12-bit immediate.
We remove the previous restriction where we would never fold the ADDIs if
the load/stores had nonzero offsets. We now do the fold the the resulting
constant still fits a 12-bit immediate, or if off1 is a variable's address
and we know based on that variable's alignment that off1+offs2 won't overflow.
Differential Revision: https://reviews.llvm.org/D79690
The pass to split atomic and non-atomic RISC-V pseudo-instructions was itself
split into two passes in D79635 / commit rG2cb0644f90b7, with the splitting of
non-atomic instructions being moved to the PreSched2 phase. A comment was
added to D79635 detailing a case where this caused problems, so this commit
moves the non-atomic split pass back to the PreEmitPass2 phase. This allows
the bulk of the changes from D79635 to remain committed, while addressing the
the reported problem (the pass split is now almost NFC). Once the root problem
is fixed we can move the (non-atomic) instruction splitting pass back to
earlier in the pipeline.
The pass to split atomic and non-atomic RISC-V pseudo-instructions was itself
split into two passes in D79635 / commit rG2cb0644f90b7, with the splitting of
non-atomic instructions being moved to the PreSched2 phase. A comment was
added to D79635 detailing a case where this caused problems, so this commit
moves the non-atomic split pass back to the PreEmitPass2 phase. This allows
the bulk of the changes from D79635 to remain committed, while addressing the
the reported problem (the pass split is now almost NFC). Once the root problem
is fixed we can move the (non-atomic) instruction splitting pass back to
earlier in the pipeline.
Summary:
This implements two hooks that attempt to avoid control flow for RISC-V. RISC-V
will lower SELECTs into control flow, which is not a great idea.
The hook `hasMultipleConditionRegisters()` turns off the following
DAGCombiner folds:
select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
The second hook `setJumpIsExpensive` controls a flag that has a similar purpose
and is used in CodeGenPrepare and the SelectionDAGBuilder.
Both of these have the effect of ensuring more logic is done before fewer jumps.
Note: with the `B` extension, we may be able to lower select into a conditional
move instruction, so at some point these hooks will need to be guarded based on
enabled extensions.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D79268
Extracts the atomic pseudo-instructions' splitting from `riscv-expand-pseudo`
/ `RISCVExpandPseudo` into its own pass, `riscv-expand-atomic-pseudo` /
`RISCVExpandAtomicPseudo`. This allows for the expansion of atomic operations
to continue to happen late (the new pass is added in `addPreEmitPass2`, so
those expansions continue to happen in the same place), while the remaining
pseudo-instructions can now be expanded earlier and benefit from more
optimization passes. The nonatomics pass is now added in `addPreSched2`.
Differential Revision: https://reviews.llvm.org/D79635
Assemble/disassemble RISC-V V extension instructions according to
latest version spec in https://github.com/riscv/riscv-v-spec/.
I have tested this patch using GNU toolchain. The encoding is aligned
to GNU assembler output. In this patch, there is a test case for each
instruction at least.
The V register definition is just for assemble/disassemble. Its type
is not important in this stage. I think it will be reviewed and modified
as we want to do codegen for scalable vector types.
This patch does not include Zvamo, Zvlsseg, and Zvediv.
Differential revision: https://reviews.llvm.org/D69987
Since i32 is not legal in riscv64,
it always promoted to i64 before emitting lib call and
for conversions like float/double to int and float/double to unsigned int
wrong lib call was emitted. This commit fix it using custom lowering.
Differential Revision: https://reviews.llvm.org/D80526
Currently, some fairly arbitrary subset of overriden methods in
RISCVISelLowering are private rather than public (which is the
visibility they have in TargetLowering). I suspect this is a holdover
from too closely copying another backend.
D78545 pointed out this can be difficult for some downstream patches,
and nobody has come forward to suggest a reason for keeping the
visibility as-is.
This commit simply makes all overridden methods match the public
visiblity of the parent.
Differential Revision: https://reviews.llvm.org/D79928
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
Summary:
RISC-V uses a post-select peephole pass to optimise
`(load/store (ADDI $reg, %lo(addr)), 0)` into `(load/store $reg, %lo(addr))`.
This peephole wasn't firing for accesses to constant pools, which is how we
materialise most floating point constants.
This adds support for the constantpool case, which improves code generation for
lots of small FP loading examples. I have not added any tests because this
structure is well-covered by the `fp-imm.ll` testcases, as well as almost
all other uses of floating point constants in the RISC-V backend tests.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D79523
Summary:
RISC-V uses a post-select peephole pass to optimise
`(load/store (ADDI $reg, %lo(addr)), 0)` into `(load/store $reg, %lo(addr))`.
This peephole wasn't firing for accesses to constant pools, which is how we
materialise most floating point constants.
This adds support for the constantpool case, which improves code generation for
lots of small FP loading examples. I have not added any tests because this
structure is well-covered by the `fp-imm.ll` testcases, as well as almost
all other uses of floating point constants in the RISC-V backend tests.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D79523
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
Summary:
The RISC-V debug register was named dscratch in a previous draft of the RISC-V
debug mode spec. The number of registers has been increased to 2 in the latest
ratified version of the debug mode spec and the registers were named dscratch0
and dscratch1. We still support using the old register name "dscratch", but it
would be disassembled as "dscratch0" with this change.
Reviewers: apazos, asb, lenary, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, sameer.abuasal, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78764
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
Summary:
The current lowering of `select` on RISC-V uses a branch instruction to load a
register with one or other value. This is inefficient, especially in the case of
small constants that can be computed easily.
By implementing the TargetLowering::convertSelectOfConstantsToMath hook, some of
the simpler cases are covered that let us avoid introducing a branch in these
cases.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D79260
Summary:
This patch addresses some weird assembly sequences we were seeing during
comparing floats. In particular, comparing a float to itself tells you whether
it is NaN or not, which we were doing correctly, but with an extra unneeded
`and` instruction.
This patch specialises the existing patterns to remove the `and` instructions
when both their operands are the same.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D78908
Preserving liveness can be useful even late in the pipeline, if we're
doing substantial optimization work afterwards. (See, for example,
D76065.) Teach MachineOutliner how to correctly set live-ins on the
basic block in outlined functions.
Differential Revision: https://reviews.llvm.org/D78605
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
This adds the instruction encoding and mnenomics for the proposed
RISC-V Bit Manipulation extension (version 0.92). It is implemented with
each category of instruction as its own target feature, with the 'b'
extension feature enabling all options. Since this extension is not yet
ratified, all target features are prefixed with 'experimental-' to note
their status.
Differential Revision: https://reviews.llvm.org/D65649
This implements the instruction analysis required to print branch
targets as part of llvm-objdump's disassembly.
Note, this only handles those branches which can be analyzed in a single
instruction, a future patch will handle multiple-instruction patterns,
such as AUIPC/LUI+JALR instruction pairs.
Differential Revision: https://reviews.llvm.org/D77567
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
For the downstream RISCV maintenance, it would be easier to inherent
RISCVISelDAGToDAG by including header and only override the method that needs
to be customized for the provider non-standard ISA extension without touching
RISCVISelDAGToDAG.cpp which may cause conflict when upgrading the downstream
LLVM version.
Differential Revision: https://reviews.llvm.org/D77117
Leverage ARM ELF build attribute section to create ELF attribute section
for RISC-V. Extract the common part of parsing logic for this section
into ELFAttributeParser.[cpp|h] and ELFAttributes.[cpp|h].
Differential Revision: https://reviews.llvm.org/D74023
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
-fuse-init-array is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
X86SpeculativeLoadHardeningPass::tracePredStateThroughCall can call
MCContext::createTempSymbol before TargetLoweringObjectFileELF::Initialize().
We need to call TargetLoweringObjectFileELF::Initialize() ealier.
test/CodeGen/X86/speculative-load-hardening-indirect.ll
Differential Revision: https://reviews.llvm.org/D71360
UseInitArray is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
Differential Revision: https://reviews.llvm.org/D71360
This reverts commit e9f22fd429.
When building with -DLLVM_USE_SANITIZER="Thread", check-llvm has 70
failing tests with this revision, and 29 without this revision.
Floating point positive zero can be selected using fmv.w.x / fmv.d.x /
fcvt.d.w and the zero source register.
Differential Revision: https://reviews.llvm.org/D75729
This patch generates TableGen descriptions for the specified register
banks which contain a list of register sizes corresponding to the
available HwModes. The appropriate size is used during codegen according
to the current HwMode. As this HwMode was not available on generation,
it is set upon construction of the RegisterBankInfo class. Targets
simply need to provide the HwMode argument to the
<target>GenRegisterBankInfo constructor.
The RISC-V RegisterBankInfo constructor has been updated accordingly
(plus an unused argument removed).
Differential Revision: https://reviews.llvm.org/D76007
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
For context, the proposed RISC-V bit manipulation extension has a subset
of instructions which require one of two SubtargetFeatures to be
enabled, 'zbb' or 'zbp', and there is no defined feature which both of
these can imply to use as a constraint either (see comments in D65649).
AssemblerPredicates allow multiple SubtargetFeatures to be declared in
the "AssemblerCondString" field, separated by commas, and this means
that the two features must both be enabled. There is no equivalent to
say that _either_ feature X or feature Y must be enabled, short of
creating a dummy SubtargetFeature for this purpose and having features X
and Y imply the new feature.
To solve the case where X or Y is needed without adding a new feature,
and to better match a typical TableGen style, this replaces the existing
"AssemblerCondString" with a dag "AssemblerCondDag" which represents the
same information. Two operators are defined for use with
AssemblerCondDag, "all_of", which matches the current behaviour, and
"any_of", which adds the new proposed ORing features functionality.
This was originally proposed in the RFC at
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139138.html
Changes to all current backends are mechanical to support the replaced
functionality, and are NFCI.
At this stage, it is illegal to combine features with ands and ors in a
single AssemblerCondDag. I suspect this case is sufficiently rare that
adding more complex changes to support it are unnecessary.
Differential Revision: https://reviews.llvm.org/D74338
The patch fixes some typos and introduces ReadFMemBase, ReadFSGNJ32,
ReadFSGNJ64, WriteFSGNJ32, WriteFSGNJ64, ReadFMinMax32, ReadFMinMax64,
WriteFMinMax32, WriteFMinMax64, so the target CPU with different pipeline model
could use them to describe latency.
Differential Revision: https://reviews.llvm.org/D75515
When running under LTO, it is common to not specify the architecture
spec, which is used for setting up the target machine, and instead rely
on features specified in each function to generate the correct
instructions.
This works for the code generator, but the RISC-V backend uses the
AsmPrinter to do instruction compression, which does not see these
features but instead uses a MCSubtargetInfo object to see whether
compression is enabled. Since this is configured based on the
TargetMachine at startup, it will result in compressed instructions not
being emitted when it has not been given the 'c' TargetFeature, but the
function has it.
This changes the RISCVAsmPrinter to re-initialize the STI feature set
based on the current MachineFunction, such that compressed instructions
are now correctly emitted regardless of the method used to enable them.
Differential revision: https://reviews.llvm.org/D73339
Implement TargetLowering callback mayBeEmittedAsTailCall for riscv in CodeGenPrepare,
which will duplicate return instructions to enable tailcall optimization.
Differential Revision: https://reviews.llvm.org/D73699
CallPreservedMask is used to describe the register liveness after a
function call. The function call in an interrupt handler should use the same
CallPreservedMask as normal functions. So that only callee save registers
can live through the function call.
This patch adds the support required for using the __riscv_save and
__riscv_restore libcalls to implement a size-optimization for prologue
and epilogue code, whereby the spill and restore code of callee-saved
registers is implemented by common functions to reduce code duplication.
Logic is also included to ensure that if both this optimization and
shrink wrapping are enabled then the prologue and epilogue code can be
safely inserted into the basic blocks chosen by shrink wrapping.
Differential Revision: https://reviews.llvm.org/D62686
Summary:
Add a new method (tryParseRegister) that attempts to parse a register specification.
MASM allows the use of IFDEF <register>, as well as IFDEF <symbol>. To accommodate this, we make it possible to check whether a register specification can be parsed at the current location, without failing the entire parse if it can't.
Reviewers: thakis
Reviewed By: thakis
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73486
ADDI(C.ADDI) may achieve better code size than XORI, since XORI has no C extension.
This patch transforms two patterns and gets almost equivalent results.
Differential Revision: https://reviews.llvm.org/D71774
When the FP exists, the FP base CFI directive offset should take the size of variable arguments into account.
Differential Revision: https://reviews.llvm.org/D73862
Remove code from LegalizeTypes that allowed this to work.
We were already using BUILD_PAIR for this in some places so this
standardizes on a single way to do this.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
Summary:
Implements the jump pseudo-instruction, which is used in e.g. the Linux kernel.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73178
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Pipeline scheduler model for the RISC-V Rocket micro-architecture using the
MIScheduler interface. Support for both 32 and 64-bit Rocket cores is
implemented.
Differential revision: https://reviews.llvm.org/D68685
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
1. if users don't specific -mattr, the default target-feature come
from IR attribute.
2. fixed bug and re-land this patch
Reviewers: lenary, asb
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70837
These names have been changed from CamelCase to camelCase, but there were
many places (comments mostly) that still used the old names.
This change is NFC.
Except AMDGPU/R600RegisterInfo (a bunch of MIR tests seem to have
problems), every target overrides it with true. PostMachineScheduler
requires livein information. Not providing it can cause assertion
failures in ScheduleDAGInstrs::addSchedBarrierDeps().
This include file was created in October and has a "using namespace llvm". This seems to get exposed to other include files and finally onto cpp files. While this somewhat okay for llvm itself, its bad for other projects that use llvm as a library and includes a header file that picks this up. This was found by ISPC which has some class names at gloal scope with the same names as LLVM.
It looks like RISCV accidentally became dependent on this. I fixed it by reordering some includes in the RISCV code, but maybe we want to change the TableGenEmitter to put "namespace llvm {" in the generated file instead? But we probably want to do the simplest thing first so we can merge it to 10.0.
Differential Revision: https://reviews.llvm.org/D72895
if users don't specific -mattr, the default target-feature come
from IR attribute.
Reviewers: lenary, asb
Reviewed By: lenary, asb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70837
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
Enabling shrink wrapping requires ensuring the insertion point of the
epilogue is correct for MBBs without a terminator, in which case the
instruction to adjust the stack pointer is the last instruction in the
block.
Differential Revision: https://reviews.llvm.org/D62190
Summary: These seem to be the machine operand types currently needed by the
RISC-V target.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72275
Summary:
It is useful to keep statistics on how many instructions we have
compressed, so we can see if future changes are increasing or decreasing this
number.
Reviewers: asb, luismarques
Reviewed By: asb, luismarques
Subscribers: xbolva00, sameer.abuasal, hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67495
Summary:
AMO memory operands use a custom parser in order to accept both (reg)
and 0(reg). However, the validation predicate used for these operands
was only checking that they were registers, and not the register class,
so non-GPRs (such as FPRs) were also accepted. Thus, fix this by making
the predicate check that they are GPRs.
Reviewers: asb, lenary
Reviewed By: asb, lenary
Subscribers: hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72471
The argument is llvm::null() everywhere except llvm::errs() in
llvm-objdump in -DLLVM_ENABLE_ASSERTIONS=On builds. It is used by no
target but X86 in -DLLVM_ENABLE_ASSERTIONS=On builds.
If we ever have the needs to add verbose log to disassemblers, we can
record log with a member function, instead of passing it around as an
argument.
Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.
Summary:
This is analogous to D58943, which correctly finds the corresponding
fixup. However, when linker relaxations are disabled and we evaluate the
fixup, we need to also ensure we use an offset of 0 rather than the size
of the previous fragment.
Reviewers: asb, efriedma, lenary
Reviewed By: efriedma
Subscribers: hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71978
printInst prints a branch/call instruction as `b offset` (there are many
variants on various targets) instead of `b address`.
It is a convention to use address instead of offset in most external
symbolizers/disassemblers. This difference makes `llvm-objdump -d`
output unsatisfactory.
Add `uint64_t Address` to printInst(), so that it can pass the argument to
printInstruction(). `raw_ostream &OS` is moved to the last to be
consistent with other print* methods.
The next step is to pass `Address` to printInstruction() (generated by
tablegen from the instruction set description). We can gradually migrate
targets to print addresses instead of offsets.
In any case, downstream projects which don't know `Address` can pass 0 as
the argument.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D72172
When the "disable-tail-calls" attribute was added, checks were added for
it in various backends. Now this code has proliferated, and it is
something the target is responsible for checking. Move that
responsibility back to the ISels (fast, global, and SD).
There's no major functionality change, except for targets that never
implemented this check.
This LLVM attribute was originally added in
d9699bc7bd (2015).
Reviewers: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D72118
This allows us to delete InlineAsm::Constraint_i workarounds in
SelectionDAGISel::SelectInlineAsmMemoryOperand overrides and
TargetLowering::getInlineAsmMemConstraint overrides.
They were introduced to X86 in r237517 to prevent crashes for
constraints like "=*imr". They were later copied to other targets.
Summary: Instead of crashing due to the `llvm_unreachable`, provide a proper
error when invalid fixups/relocations are encountered.
Reviewers: asb, lenary
Reviewed By: asb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71536
This patch enables the machine outliner for RISC-V and adds the
necessary logic for checking whether sequences can be safely outlined,
and describing how they should be outlined. Outlined functions are
called using the register t0 (x5) as the return address register, which
must be available for an occurrence of a sequence to be safely outlined.
Differential Revision: https://reviews.llvm.org/D66210
expected failed test (RV32IF-ILP32F) will be fixed in a subsequent patch.
Reviewers: efriedma, lenary, asb
Reviewed By: efriedma, lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70116
This fixes an assertion failure that triggers inside
getMemOperandWithOffset when Machine Sinking calls it on a MachineInstr
that is not a memory operation.
Different backends implement getMemOperandWithOffset differently: some
return false on non-memory MachineInstrs, others assert.
The Machine Sinking pass in at least SinkingPreventsImplicitNullCheck
relies on getMemOperandWithOffset to return false on non-memory
MachineInstrs, instead of asserting.
This patch updates the documentation on getMemOperandWithOffset that it
should return false on any MachineInstr it cannot handle, instead of
asserting. It also adapts the in-tree backends accordingly where
necessary.
Differential Revision: https://reviews.llvm.org/D71359
Currently -fuse-init-array option is not effective when target triple
does not specify os, on x86,x86_64.
i.e.
// -fuse-init-array is not honored.
$ clang -target i386 -fuse-init-array test.c -S
// -fuse-init-array is honored.
$ clang -target i386-linux -fuse-init-array test.c -S
This patch fixes first case.
And does cleanup.
Reviewers: rnk, craig.topper, fhahn, echristo
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71360
Summary:
This copy ensures that debug location information is kept for
compressed instructions. There are places where both compressInstruction and
uncompressInstruction are called that were not doing this copy, discarding some
debug info.
This change merely moves the copy into the generated file, so you cannot forget
to copy the location over when compressing or uncompressing.
Reviewers: asb, luismarques
Reviewed By: luismarques
Subscribers: sameer.abuasal, aprantl, hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67493
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Soon Intrinsic::ID will be a plain integer, so this overload will not be
possible.
Rename both overloads to ensure that downstream targets observe this as
a build failure instead of a runtime failure.
Split off from D71320
Reviewers: efriedma
Differential Revision: https://reviews.llvm.org/D71381
This adds support for printing improved missing feature error messages
from the assembler, which now indicates which feature caused the parse
to fail.
Differential Revision: https://reviews.llvm.org/D69899
Summary:
Forcing Local Exec TLS requires the use of copy relocations. Copy
relocations need special handling in the runtime linker when being used
against TLS symbols, which is present in glibc, but not in FreeBSD nor
musl, and so cannot be relied upon. Moreover, copy relocations are a
hack that embed the size of an object in the ABI when it otherwise
wouldn't be, and break protected symbols (which are expected to be DSO
local), whilst also wasting space, thus they should be avoided whenever
possible. As discussed in D70398, RISC-V should move away from forcing
Local Exec, and instead use Initial Exec like other targets, with
possible linker relaxation to follow. The RISC-V GCC maintainers also
intend to adopt this more-conventional behaviour (see
https://github.com/riscv/riscv-elf-psabi-doc/issues/122).
Reviewers: asb, MaskRay
Reviewed By: MaskRay
Subscribers: emaste, krytarowski, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, llvm-commits, bsdjhb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70649
Summary: Adds tablegen patterns to explicitly handle fcopysign where the
magnitude and sign arguments have different types, due to the sign value casts
being removed the by DAGCombiner. Support for RV32IF follows in a separate
commit. Adds tests for all relevant scenarios except RV32IF.
Reviewers: lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70678
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
Summary:
The RISC-V backend used to generate `add <reg>, x0, <reg>` in a few
instances. It seems most places no longer generate this sequence.
This is semantically equivalent to `addi <reg>, <reg>, 0`, but the
latter has the advantage of being noted to be the canonical instruction
to be used for moves (which microarchitectures can and should recognise
as such).
The changed testcases use instruction aliases - `mv <reg>, <reg>` is an
alias for `addi <reg>, <reg>, 0`.
Reviewers: luismarques
Reviewed By: luismarques
Subscribers: hiraditya, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70124
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
Summary: When using the split sp adjustment and using the frame-pointer
we were still emitting CFI CFA directives based on the sp value. The
final sp-based offset also didn't reflect the two-stage sp adjust. There
remain CFI issues that aren't related to the split sp adjustment, and
thus will be addressed in a separate patch.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary, shiva0217
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69385
Summary: Adds tests necessary to properly show the impact of other
patches that affect the emission of CFI directives.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69721
The following testcase
function:
.Lpcrel_label1:
auipc a0, %pcrel_hi(other_function)
addi a1, a0, %pcrel_lo(.Lpcrel_label1)
.p2align 2 # Causes a new fragment to be emitted
.type other_function,@function
other_function:
ret
exposes an odd behaviour in which only the %pcrel_hi relocation is
evaluated but not the %pcrel_lo.
$ llvm-mc -triple riscv64 -filetype obj t.s | llvm-objdump -d -r -
<stdin>: file format ELF64-riscv
Disassembly of section .text:
0000000000000000 function:
0: 17 05 00 00 auipc a0, 0
4: 93 05 05 00 mv a1, a0
0000000000000004: R_RISCV_PCREL_LO12_I other_function+4
0000000000000008 other_function:
8: 67 80 00 00 ret
The reason seems to be that in RISCVAsmBackend::shouldForceRelocation we
only consider the fragment but in RISCVMCExpr::evaluatePCRelLo we
consider the section. This usually works but there are cases where the
section may still be the same but the fragment may be another one. In
that case we end forcing a %pcrel_lo relocation without any %pcrel_hi.
This patch makes RISCVAsmBackend::shouldForceRelocation use the section,
if any, to determine if the relocation must be forced or not.
Differential Revision: https://reviews.llvm.org/D60657
Summary: Introduces the `InstrInfo::areMemAccessesTriviallyDisjoint`
hook. The test could check for instruction reorderings, but to avoid
being brittle it just checks instruction dependencies.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67046
Summary: The hook should work for any RISC-V register. Non-allocatable registers
do not need to be reserved, for the remaining the hook will only succeed
if you pass clang the -ffixed-xX flag. This builds upon D67185, which
currently only allows reserving GPRs.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69130
Summary:
Until this commit, these have lowered to a call to abort().
`llvm.trap()` now lowers to `unimp`, which should trap on all systems.
`llvm.debugtrap()` now lowers to `ebreak`, which is exactly what this
instruction is for.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69390
Complete fp16 support by ensuring that load extension / truncate store
operations are properly expanded.
Reviewers: asb, lenary
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D69246