This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code.
Unlike a previous attempt (https://reviews.llvm.org/D104726), this patch moves the type conversion into separate files which remedies the linker error which was only caught by CI.
Differential Revision: https://reviews.llvm.org/D104834
This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code
Differential Revision: https://reviews.llvm.org/D104726
First step in adding alignment as an attribute to MLIR global definitions. Alignment can be specified for global objects in LLVM IR. It can also be specified as a named attribute in the LLVMIR dialect of MLIR. However, this attribute has no standing and is discarded during translation from MLIR to LLVM IR. This patch does two things: First, it adds the attribute to the syntax of the llvm.mlir.global operation, and by doing this it also adds accessors and verifications. The syntax is "align=XX" (with XX being an integer), placed right after the value of the operation. Second, it allows transforming this operation to and from LLVM IR. It is checked whether the value is an integer power of 2.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101492
Add a section attribute to LLVM_GlobalOp, during module translation attribute value is propagated to llvm
Reviewed By: sgrechanik, ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D100947
This patch add the UnnamedAddr attribute for the GlobalOp in the LLVM
dialect. The attribute is also handled to and from LLVM IR.
This is meant to be used in a follow up patch to lower OpenACC/OpenMP ops to
call to kmp and tgt runtime calls (D100678).
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D100677
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Move Target/LLVMIR.h to target/LLVMIR/Import.h to better reflect the purpose of
this file. Also move all LLVM IR target tests under the LLVMIR directory.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98178
There is no need for the interface implementations to be exposed, opaque
registration functions are sufficient for all users, similarly to passes.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97852
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
Continue the convergence between LLVM dialect and built-in types by using the
built-in vector type whenever possible, that is for fixed vectors of built-in
integers and built-in floats. LLVM dialect vector type is still in use for
pointers, less frequent floating point types that do not have a built-in
equivalent, and scalable vectors. However, the top-level `LLVMVectorType` class
has been removed in favor of free functions capable of inspecting both built-in
and LLVM dialect vector types: `LLVM::getVectorElementType`,
`LLVM::getNumVectorElements` and `LLVM::getFixedVectorType`. Additional work is
necessary to design an implemented the extensions to built-in types so as to
remove the `LLVMFixedVectorType` entirely.
Note that the default output format for the built-in vectors does not have
whitespace around the `x` separator, e.g., `vector<4xf32>` as opposed to the
LLVM dialect vector type format that does, e.g., `!llvm.vec<4 x fp128>`. This
required changing the FileCheck patterns in several tests.
Reviewed By: mehdi_amini, silvas
Differential Revision: https://reviews.llvm.org/D94405
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
BEGIN_PUBLIC
[mlir] Remove LLVMType, LLVM dialect types now derive Type directly
This class has become a simple `isa` hook with no proper functionality.
Removing will allow us to eventually make the LLVM dialect type infrastructure
open, i.e., support non-LLVM types inside container types, which itself will
make the type conversion more progressive.
Introduce a call `LLVM::isCompatibleType` to be used instead of
`isa<LLVMType>`. For now, this is strictly equivalent.
END_PUBLIC
Depends On D93681
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93713
LLVMType contains multiple instance methods that were introduced initially for
compatibility with LLVM API. These methods boil down to `cast` followed by
type-specific call. Arguably, they are mostly used in an LLVM cast-follows-isa
anti-pattern. This doesn't connect nicely to the rest of the MLIR
infrastructure and actively prevents it from making the LLVM dialect type
system more open, e.g., reusing built-in types when appropriate. Remove such
instance methods and replaces their uses with apporpriate casts and methods on
derived classes. In some cases, the result may look slightly more verbose, but
most cases should actually use a stricter subtype of LLVMType anyway and avoid
the isa/cast.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93680
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
The InlineAsmOp mirrors the underlying LLVM semantics with a notable
exception: the embedded `asm_string` is not allowed to define or reference
any symbol or any global variable: only the operands of the op may be read,
written, or referenced.
Attempting to define or reference any symbol or any global behavior is
considered undefined behavior at this time.
The asm dialect syntax is currently specified with an integer (0 [default] for the "att dialect", 1 for the intel dialect) to circumvent the ODS limitation on string enums.
Translation to LLVM is provided and raises the fact that the asm constraints string must be well-formed with respect to in/out operands. No check is performed on the asm_string.
An InlineAsm instruction in LLVM is a special call operation to a function that is constructed on the fly.
It does not fit the current model of MLIR calls with symbols.
As a consequence, the current implementation constructs the function type in ModuleTranslation.cpp.
This should be refactored in the future.
The mlir-cpu-runner is augmented with the global initialization of the X86 asm parser to allow proper execution in JIT mode. Previously, only the X86 asm printer was initialized.
Differential revision: https://reviews.llvm.org/D92166
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Historically, LLVMDialect has been required in the conversion from LLVM IR in
order to be able to construct types. This is no longer necessary with the new
type model and the dialect can be replaced with a local LLVM context.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85444
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
Linkage support is already present in the LLVM dialect, and is being translated
for globals other than functions. Translation support has been missing for
functions because their conversion goes through a different code path than
other globals.
Differential Revision: https://reviews.llvm.org/D84149
- Provide default value for `ArrayRef<NamedAttribute> attributes` parameter of
the collective params build method.
- Change the `genSeparateArgParamBuilder` function to not generate build methods
that may be ambiguous with the new collective params build method.
- This change should help eliminate passing empty NamedAttribue ArrayRef when the
collective params build method is used
- Extend op-decl.td unit test to make sure the ambiguous build methods are not
generated.
Differential Revision: https://reviews.llvm.org/D83517
`llvm.mlir.constant` was originally introduced as an LLVM dialect counterpart
to `std.constant`. As such, it was supporting "function pointer" constants
derived from the symbol name. This is different from `std.constant` that allows
for creation of a "function" constant since MLIR, unlike LLVM IR, supports
this. Later, `llvm.mlir.addressof` was introduced as an Op that obtains a
constant pointer to a global in the LLVM dialect. It naturally extends to
functions (in LLVM IR, functions are globals) and should be used for defining
"function pointer" values instead.
Fixes PR46344.
Differential Revision: https://reviews.llvm.org/D82667
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: rriddle, efriedma, sdesmalen
Reviewed By: sdesmalen
Subscribers: frgossen, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77258
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318