Summary:
MLIR materializes various enumeration-based LLVM IR operands as enumeration
attributes using ODS. This requires bidirectional conversion between different
but very similar enums, currently hardcoded. Extend the ODS modeling of
LLVM-specific enumeration attributes to include the name of the corresponding
enum in the LLVM C++ API as well as the names of specific enumerants. Use this
new information to automatically generate the conversion functions between enum
attributes and LLVM API enums in the two-way conversion between the LLVM
dialect and LLVM IR proper.
Differential Revision: https://reviews.llvm.org/D73468
Summary:
LLVM importer to MLIR was implemented mostly as a prototype. As such, it did
not deal handle errors in a consistent way, reporting them out stderr in some
cases and continuing the execution in the error state until eventually
crashing. This is not desirable for a user-facing tool. Make sure errors are
returned from functions, consistently checked at call sites and propagated
further. Functions returning nullable IR values return nullptr to denote the
error state. Other functions return LogicalResult. LLVM importer in
mlir-translate should no longer crash on unsupported inputs.
The errors are reported without association with the source file (and therefore
cannot be checked using -verify-diagnostics). Attaching them to the actual
input file is left for future work.
Differential Revision: https://reviews.llvm.org/D72839
Summary:
Implement the handling of llvm::ConstantDataSequential and
llvm::ConstantAggregate for (nested) array and vector types when imporitng LLVM
IR to MLIR. In all cases, the result is a DenseElementsAttr that can be used in
either a `llvm.mlir.global` or a `llvm.mlir.constant`. Nested aggregates are
unpacked recursively until an element or a constant data is found. Nested
arrays with innermost scalar type are represented as DenseElementsAttr of
tensor type. Nested arrays with innermost vector type are represented as
DenseElementsAttr with (multidimensional) vector type.
Constant aggregates of struct type are not yet supported as the LLVM dialect
does not have a well-defined way of modeling struct-type constants.
Differential Revision: https://reviews.llvm.org/D72834
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
Summary:
`mlir-translate -import-llvm test.ll` was going into segmentation fault if `test.ll` had `float` or `double` constants.
For example,
```
%3 = fadd double 3.030000e+01, %0
```
Now, it is handled in `Importer::getConstantAsAttr` (similar behaviour as normal integers)
Added tests for FP arithmetic
Reviewers: ftynse, mehdi_amini
Reviewed By: ftynse, mehdi_amini
Subscribers: shauheen, mehdi_amini, rriddle, jpienaar, burmako, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71912
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
This adds an importer from LLVM IR or bitcode to the LLVM dialect. The importer is registered with mlir-translate.
Known issues exposed by this patch but not yet fixed:
* Globals' initializers are attributes, which makes it impossible to represent a ConstantExpr. This will be fixed in a followup.
* icmp returns i32 rather than i1.
* select and a couple of other instructions aren't implemented.
* llvm.cond_br takes its successors in a weird order.
The testing here is known to be non-exhaustive.
I'd appreciate feedback on where this functionality should live. It looks like the translator *from MLIR to LLVM* lives in Target/, but the SPIR-V deserializer lives in Dialect/ which is why I've put this here too.
PiperOrigin-RevId: 278711683