We don't need a mask of a rotation result to be a constant splat - any constant scalar/vector can be usefully folded.
Followup to D13851.
llvm-svn: 251197
This patch adds support for lowering to the XOP VPROT / VPROTI vector bit rotation instructions.
This has required changes to the DAGCombiner rotation pattern matching to support vector types - so far I've only changed it to support splat vectors, but generalising this further is feasible in the future.
Differential Revision: http://reviews.llvm.org/D13851
llvm-svn: 251188
Summary:
This ensures that BranchFolding (and similar) won't remove these blocks.
Also allow AsmPrinter::EmitBasicBlockStart to process MBBs which are
address-taken but do not have BBs that are address-taken, since otherwise
its call to getAddrLabelSymbolTableToEmit would fail an assertion on such
blocks. I audited the other callers of getAddrLabelSymbolTableToEmit
(and getAddrLabelSymbol); they all have BBs known to be address-taken
except for the call through getAddrLabelSymbol from
WinException::create32bitRef; that call is actually now unreachable, so
I've removed it and updated the signature of create32bitRef.
This fixes PR25168.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13774
llvm-svn: 251113
When we fold "mul ((add x, c1), c1)" -> "add ((mul x, c2), c1*c2)", we bail if (add x, c1) has multiple
users which would result in an extra add instruction.
In such cases, this patch adds a check to see if we can eliminate a multiply instruction in exchange for the extra add.
I also added the capability of doing the existing optimization with non-splatted vectors (splatted also works).
Differential Revision: http://reviews.llvm.org/D13740
llvm-svn: 251028
This will be used in future commits for AMDGPU to promote
operations on i64 vectors into operations on 32-bit vector
components.
This will be used / tested in future AMDGPU commits.
llvm-svn: 250945
When we have to convert the masked.load, masked.store to scalar code, we generate a chain of conditional basic blocks.
I added optimization for constant mask vector.
Differential Revision: http://reviews.llvm.org/D13855
llvm-svn: 250893
A mem-to-mem instruction (that both loads and stores), which store to an
FI, cannot pass the verifier since it thinks it is loading from the FI.
For the mem-to-mem instruction, do a looser check in visitMachineOperand()
and only check liveness at the reg-slot while analyzing a frame index operand.
Needed to make CodeGen/SystemZ/xor-01.ll pass with -verify-machineinstrs,
which now runs with this flag.
Reviewed by Evan Cheng and Quentin Colombet.
llvm-svn: 250885
Do not tail duplicate blocks where the successor has a phi node,
and the corresponding value in that phi node uses a subregister.
http://reviews.llvm.org/D13922
llvm-svn: 250877
default: llvm_unreachable("This action is not supported yet!");
-- so I'm adding one to the third switch block, too.
This is a follow-up fix for http://reviews.llvm.org/D13862
llvm-svn: 250830
Summary:
TargetLoweringBase::Expand is defined as "Try to expand this to other ops,
otherwise use a libcall." For ISD::UDIV and ISD::SDIV, the choice between
the two possibilities was defined in a rather convoluted way:
- if DIVREM is legal, expand to DIVREM
- if DIVREM has a custom lowering, expand to DIVREM
- if DIVREM libcall is defined and a remainder from the same division is
computed elsewhere, expand to a DIVREM libcall
- else, expand to a DIV libcall
This had the undesirable effect that if both DIV and DIVREM are implemented
as libcalls, then ISD::UDIV and ISD::SDIV are expanded to the heavier DIVREM
libcall, even when the remainder isn't used.
The new code adds a new LegalizeAction, TargetLoweringBase::LibCall, so that
backends can directly control whether they prefer an expansion or a conversion
to a libcall. This makes the generic lowering code even more generic,
allowing its reuse in a wider range of target-specific configurations.
The useful effect is that ARM backend will now generate a call
to __aeabi_{i,u}div rather than __aeabi_{i,u}divmod in cases where
it doesn't need the remainder. There's no functional change outside
the ARM backend.
Reviewers: t.p.northover, rengolin
Subscribers: t.p.northover, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13862
llvm-svn: 250826
Summary:
In addition to moving the code over, this patch amends the DIV,REM -> DIVREM
combining to run on all affected nodes at once: if the nodes are converted
to DIVREM one at a time, then the resulting DIVREM may get legalized by the
backend into something target-specific that we won't be able to recognize
and correlate with the remaining nodes.
The motivation is to "prepare terrain" for D13862: when we set DIV and REM
to be legalized to libcalls, instead of the DIVREM, we otherwise lose the
ability to combine them together. To prevent this, we need to take the
DIV,REM -> DIVREM combining out of the lowering stage.
Reviewers: RKSimon, eli.friedman, rengolin
Subscribers: john.brawn, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13733
llvm-svn: 250825
Currently, in MachineBlockPlacement pass the loop is rotated to let the best exit to be the last BB in the loop chain, to maximize the fall-through from the loop to outside. With profile data, we can determine the cost in terms of missed fall through opportunities when rotating a loop chain and select the best rotation. Basically, there are three kinds of cost to consider for each rotation:
1. The possibly missed fall through edge (if it exists) from BB out of the loop to the loop header.
2. The possibly missed fall through edges (if they exist) from the loop exits to BB out of the loop.
3. The missed fall through edge (if it exists) from the last BB to the first BB in the loop chain.
Therefore, the cost for a given rotation is the sum of costs listed above. We select the best rotation with the smallest cost. This is only for PGO mode when we have more precise edge frequencies.
Differential revision: http://reviews.llvm.org/D10717
llvm-svn: 250754
This was originally checked in at r250527, but reverted at r250570 because of PR25222.
There were at least 2 problems:
1. The cost check was checking for an instruction with an exact cost of TCC_Expensive;
that should have been >=.
2. The cause of the clang stage 1 failures was illegally sinking 'call' instructions;
we can't sink instructions that may have side effects / are not safe to execute speculatively.
Fixed those conditions in sinkSelectOperand() and added test cases.
Original commit message:
This is a follow-up to the discussion in D12882.
Ideally, we would like SimplifyCFG to be able to form select instructions even when the operands
are expensive (as defined by the TTI cost model) because that may expose further optimizations.
However, we would then like a later pass like CodeGenPrepare to undo that transformation if the
target would likely benefit from not speculatively executing an expensive op (this patch).
Once we have this safety mechanism in place, we can adjust SimplifyCFG to restore its
select-formation behavior that changed with r248439.
Differential Revision: http://reviews.llvm.org/D13297
llvm-svn: 250743
Originally I planned to use the same interface for masked gather/scatter and set isConsecutive to "false" in this case.
Now I'm implementing masked gather/scatter and see that the interface is inconvenient. I want to add interfaces isLegalMaskedGather() / isLegalMaskedScatter() instead of using the "Consecutive" parameter in the existing interfaces.
Differential Revision: http://reviews.llvm.org/D13850
llvm-svn: 250686
This property was already used in the code path when no liveness
intervals are present. Unfortunately the code path that uses liveness
intervals tried to query a cached live interval for an allocatable
physreg, those are usually not computed so a conservative default was
used.
This doesn't affect any of the lit testcases. This is a foreclosure to
upcoming changes which should be NFC but without this patch this tidbit
wouldn't be NFC.
llvm-svn: 250596
This should not change behaviour because as far as I can see all code
reading the pressure changes has no effect if the PressureInc is 0.
Removing these entries however does avoid unnecessary computation, and
results in a more stable debug output. I want the stable debug output to
check that some upcoming changes are indeed NFC and identical even at
the debug output level.
llvm-svn: 250595
Summary:
Some shared code for handling eh.exceptionpointer and eh.exceptioncode
needs to not share the part that truncates to 32 bits, which is intended
just for exception codes.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13747
llvm-svn: 250588
Our previous value of "16 + 8 + MaxCallFrameSize" for ParentFrameOffset
is incorrect when CSRs are involved. We were supposed to have a test
case to catch this, but it wasn't very rigorous.
The main effect here is that calling _CxxThrowException inside a
catchpad doesn't immediately crash on MOVAPS when you have an odd number
of CSRs.
llvm-svn: 250583
Summary:
We now use the block for the catchpad itself, rather than its normal
successor, as the funclet entry.
Putting the normal successor in the map leads downstream funclet
membership computations to erroneous results.
Reviewers: majnemer, rnk
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D13798
llvm-svn: 250552
Summary:
When a cleanup's cleanupendpad or cleanupret targets a catchendpad, stop
trying to propagate the cleanup's parent's color to the catchendpad, since
what's needed is the cleanup's grandparent's color and the catchendpad
will get that color from the catchpad linkage already. We already had
this exclusion for invokes, but were missing it for
cleanupendpad/cleanupret.
Also add a missing line that tags cleanupendpads' states in the
EHPadStateMap, without with lowering invokes that target cleanupendpads
which unwind to other handlers (and so don't have the -1 state) will fail.
This fixes the reduced IR repro in PR25163.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13797
llvm-svn: 250534
Ideally, we would like SimplifyCFG to be able to form select instructions even when the operands
are expensive (as defined by the TTI cost model) because that may expose further optimizations.
However, we would then like a later pass like CodeGenPrepare to undo that transformation if the
target would likely benefit from not speculatively executing an expensive op (this patch).
Once we have this safety mechanism in place, we can adjust SimplifyCFG to restore its
select-formation behavior that changed with r248439.
Differential Revision: http://reviews.llvm.org/D13297
llvm-svn: 250527
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
Summary:
Caching SDLoc(N), instead of recreating it in every single
function call, keeps the code denser, and allows to unwrap long lines.
Reviewers: sunfish, atrick, sdmitrouk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13726
llvm-svn: 250305
Summary: The two implementations had more code in common than not.
Reviewers: sunfish, MatzeB, sdmitrouk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13724
llvm-svn: 250302
Summary:
Emit the handler and clause locations immediately after the standard
xdata.
Clauses are emitted in the same order and format used to communiate them
to the CLR Execution Engine.
Add a lit test to verify correct table generation on a small but
interesting example function.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13451
llvm-svn: 250219
Summary:
Add an iterator that can walk across blocks and which visits the state
transitions rather than state ranges, with explicit transitions to -1
indicating the presence of top-level calls that may throw and cause the
current function to unwind to caller. This will simplify code that needs
to identify nested try regions.
Refactor SEH and C++EH table generation to use the new
InvokeStateChangeIterator, and remove the InvokeLabelIterator they were
using.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13623
llvm-svn: 250179
The comment says this was stopped because it was unlikely to be
profitable. This is not true if you want to combine vector loads
with multiple components.
For a simple case that looks like
t0 = load t0 ...
t1 = load t0 ...
t2 = load t0 ...
t3 = load t0 ...
t4 = store t0:1, t0:1
t5 = store t4, t1:0
t6 = store t5, t2:0
t7 = store t6, t3:0
We want to get all of these stores onto a chain
that is a TokenFactor of these N loads. This mostly
solves the AMDGPU merge-stores.ll regressions
with -combiner-alias-analysis for merging vector
stores of vector loads.
llvm-svn: 250138
This basic combine was surprisingly missing.
AMDGPU legalizes many operations in terms of 32-bit vector components,
so not doing this results in many extra copies and subregister extracts
that need to be cleaned up later.
InstCombine already does this for the hasOneUse case. The target hook
is to fix a handful of tests which break (e.g. ARM/vmov.ll) which turn
from a vector materialize repeated immediate instruction to a constant
vector load with more scalar copies from it.
llvm-svn: 250129
When lowering invoke statement, all unwind destinations are directly added as successors of call site block, and the weight of those new edges are not assigned properly. Actually, default weight 16 are used for those edges. This patch calculates the proper edge weights for those edges when collecting all unwind destinations.
Differential revision: http://reviews.llvm.org/D13354
llvm-svn: 250119
We have a number of functions that implement constant folding of vectors (unary and binary ops) in near identical manners (and the differences don't appear to be critical).
This patch introduces a common implementation (SelectionDAG::FoldConstantVectorArithmetic) and calls this in both the unary and binary op cases.
After this initial patch I intend to begin enabling vector constant folding for a wider number of opcodes in SelectionDAG::getNode().
Differential Revision: http://reviews.llvm.org/D13665
llvm-svn: 250118
This was a minor bug in r249492. Calling PrepareEHLandingPad on a
non-landingpad was a no-op, but it attempted to get the generic pointer
register class, which apparently doesn't exist for some targets.
llvm-svn: 250068
On targets where f32 is not legal, we have to look through a BITCAST SDNode to
find the register that an argument is stored in when emitting debug info, or we
will not be able to emit a DW_AT_location for it.
Differential Revision: http://reviews.llvm.org/D13005
llvm-svn: 250056
The new implementation works at least as well as the old implementation
did.
Also delete the associated preparation tests. They don't exercise
interesting corner cases of the new implementation. All the codegen
tests of the EH tables have already been ported.
llvm-svn: 249918
Also Fix a buglet where SEH tables had ranges that spanned funclets.
The remaining tests using the old landingpad IR are preparation tests,
and will be deleted along with the old preparation.
llvm-svn: 249917
This wasn't very observable in execution tests, because usually there is
an invoke in the catchpad that unwinds the the catchendpad but never
actually throws.
llvm-svn: 249898
Remove implicit ilist iterator conversions from MachineBasicBlock.cpp.
I've also added an overload of `splice()` that takes a pointer, since
it's a natural API. This is similar to the overloads I added for
`remove()` and `erase()` in r249867.
llvm-svn: 249883
Remove a few more implicit ilist iterator conversions, this time from
Analysis.cpp and BranchFolding.cpp.
I added a few overloads for `remove()` and `erase()`, which quite
naturally take pointers as well as iterators as parameters. This will
reduce the churn at least in the short term, but I don't really have a
problem with these existing for longer.
llvm-svn: 249867
This covers the common case of operations that cannot be sunk.
Operations that cannot be hoisted should already be handled properly via
the safe-to-speculate rules and mechanisms.
llvm-svn: 249865
Summary:
- Recurse from cleanupendpads to their cleanuppads, to make sure the
cleanuppad is visited if it has a cleanupendpad but no cleanupret.
- Check for and avoid double-processing cleanuppads, to allow for them to
have multiple cleanuprets (plus cleanupendpads).
- Update Cxx state numbering to visit toplevel cleanupendpads and to
recurse from cleanupendpads to their preds, to ensure we number any
funclets in inlined cleanups. SEH state numbering already did this.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13374
llvm-svn: 249792
In r224059, we started verifying after addPass, but missed doing so on
insertPass. There isn't a good reason for the discrepancy, and
skipping the verifier in these cases causes bugs.
This also exposes a verifier error that was introduced in r249087, but
the verifier doesn't run until after the register coalescer, when the
issue happens to have been resolved. I've skipped the verifier after
SIFixSGPRLiveRangesID to avoid the failures for now and will follow up
with Matt for a proper fix.
llvm-svn: 249643
The relocation for the filter funclet will be against a symbol table
entry for a function instead of the section, making it easier to
understand what is going on.
llvm-svn: 249621
The __CxxFrameHandler3 tables for 32-bit are supposed to hold stack
offsets relative to EBP, not ESP. I blindly updated the win-catchpad.ll
test case, and immediately noticed that 32-bit catching stopped working.
While I'm at it, move the frame index to frame offset WinEH table logic
out of PEI. PEI shouldn't have to know about WinEHFuncInfo. I realized
we can calculate frame index offsets just fine from the table printer.
llvm-svn: 249618
We remove unreachable blocks because it is pointless to consider them
for coloring. However, we still had stale pointers to these blocks in
some data structures after we removed them from the function.
Instead, remove the unreachable blocks before attempting to do anything
with the function.
This fixes PR25099.
llvm-svn: 249617
Summary:
This is necessary to keep the cloner from making bogus copies of debug
metadata attached to the IR it is cloning.
Also, avoid running RemapInstruction over all instructions in the common
case that no cloning was performed.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13514
llvm-svn: 249591
There was an off-by-one bug in ip2state tables which manifested when one
call immediately preceded the try-range of the next. The return address
of the previous call would appear to be within the try range of the next
scope, resulting in extra destructors or catches running.
We also computed the wrong offset for catch parameter stack objects. The
offset should be from RSP, not from RBP.
llvm-svn: 249578
I'll be using the function in a similar combine for AArch64. The helper was
also improved to handle undef values.
Part of http://reviews.llvm.org/D13442
llvm-svn: 249572
Summary:
Set the pad MBB as a funclet entry for CoreCLR as well as MSVCCXX, and
update state numbering to put the catchpad block rather than its normal
successor into the unwind map.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13492
llvm-svn: 249569
When outgoing function arguments are passed using push instructions, and EH
is enabled, we may need to indicate to the stack unwinder that the stack
pointer was adjusted before the call.
This should fix the exception handling issues in PR24792.
Differential Revision: http://reviews.llvm.org/D13132
llvm-svn: 249522
This is handy for some AutoFDO stuff, and seems like a minor improvement
to correctness (otherwise a debug info consumer might think the decl
line/file of the def was the same as that of the declaration - though
what a consumer might use that for, I'm not sure - maybe "list <func>"
would've misbehaved with the old behavior?) and at a minor cost (in my
experiment, with fission, without type units, without compression, 0.01%
growth in debug info in the executable/objects, 0.02% growth in the .dwo
files).
llvm-svn: 249487
Our current emission strategy is to emit the funclet prologue in the
CatchPad's normal destination. This is problematic because
intra-funclet control flow to the normal destination is not erroneous
and results in us reevaluating the prologue if said control flow is
taken.
Instead, use the CatchPad's location for the funclet prologue. This
correctly models our desire to have unwind edges evaluate the prologue
but edges to the normal destination result in typical control flow.
Differential Revision: http://reviews.llvm.org/D13424
llvm-svn: 249483
Summary:
Assign one state number per handler/funclet, tracking parent state,
handler type, and catch type token.
State numbers are arranged such that ancestors have lower state numbers
than their descendants.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13450
llvm-svn: 249457
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455