We have a number of functions that implement constant folding of vectors (unary and binary ops) in near identical manners (and the differences don't appear to be critical).
This patch introduces a common implementation (SelectionDAG::FoldConstantVectorArithmetic) and calls this in both the unary and binary op cases.
After this initial patch I intend to begin enabling vector constant folding for a wider number of opcodes in SelectionDAG::getNode().
Differential Revision: http://reviews.llvm.org/D13665
llvm-svn: 250118
This was a minor bug in r249492. Calling PrepareEHLandingPad on a
non-landingpad was a no-op, but it attempted to get the generic pointer
register class, which apparently doesn't exist for some targets.
llvm-svn: 250068
On targets where f32 is not legal, we have to look through a BITCAST SDNode to
find the register that an argument is stored in when emitting debug info, or we
will not be able to emit a DW_AT_location for it.
Differential Revision: http://reviews.llvm.org/D13005
llvm-svn: 250056
The new implementation works at least as well as the old implementation
did.
Also delete the associated preparation tests. They don't exercise
interesting corner cases of the new implementation. All the codegen
tests of the EH tables have already been ported.
llvm-svn: 249918
Also Fix a buglet where SEH tables had ranges that spanned funclets.
The remaining tests using the old landingpad IR are preparation tests,
and will be deleted along with the old preparation.
llvm-svn: 249917
This wasn't very observable in execution tests, because usually there is
an invoke in the catchpad that unwinds the the catchendpad but never
actually throws.
llvm-svn: 249898
Remove implicit ilist iterator conversions from MachineBasicBlock.cpp.
I've also added an overload of `splice()` that takes a pointer, since
it's a natural API. This is similar to the overloads I added for
`remove()` and `erase()` in r249867.
llvm-svn: 249883
Remove a few more implicit ilist iterator conversions, this time from
Analysis.cpp and BranchFolding.cpp.
I added a few overloads for `remove()` and `erase()`, which quite
naturally take pointers as well as iterators as parameters. This will
reduce the churn at least in the short term, but I don't really have a
problem with these existing for longer.
llvm-svn: 249867
This covers the common case of operations that cannot be sunk.
Operations that cannot be hoisted should already be handled properly via
the safe-to-speculate rules and mechanisms.
llvm-svn: 249865
Summary:
- Recurse from cleanupendpads to their cleanuppads, to make sure the
cleanuppad is visited if it has a cleanupendpad but no cleanupret.
- Check for and avoid double-processing cleanuppads, to allow for them to
have multiple cleanuprets (plus cleanupendpads).
- Update Cxx state numbering to visit toplevel cleanupendpads and to
recurse from cleanupendpads to their preds, to ensure we number any
funclets in inlined cleanups. SEH state numbering already did this.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13374
llvm-svn: 249792
In r224059, we started verifying after addPass, but missed doing so on
insertPass. There isn't a good reason for the discrepancy, and
skipping the verifier in these cases causes bugs.
This also exposes a verifier error that was introduced in r249087, but
the verifier doesn't run until after the register coalescer, when the
issue happens to have been resolved. I've skipped the verifier after
SIFixSGPRLiveRangesID to avoid the failures for now and will follow up
with Matt for a proper fix.
llvm-svn: 249643
The relocation for the filter funclet will be against a symbol table
entry for a function instead of the section, making it easier to
understand what is going on.
llvm-svn: 249621
The __CxxFrameHandler3 tables for 32-bit are supposed to hold stack
offsets relative to EBP, not ESP. I blindly updated the win-catchpad.ll
test case, and immediately noticed that 32-bit catching stopped working.
While I'm at it, move the frame index to frame offset WinEH table logic
out of PEI. PEI shouldn't have to know about WinEHFuncInfo. I realized
we can calculate frame index offsets just fine from the table printer.
llvm-svn: 249618
We remove unreachable blocks because it is pointless to consider them
for coloring. However, we still had stale pointers to these blocks in
some data structures after we removed them from the function.
Instead, remove the unreachable blocks before attempting to do anything
with the function.
This fixes PR25099.
llvm-svn: 249617
Summary:
This is necessary to keep the cloner from making bogus copies of debug
metadata attached to the IR it is cloning.
Also, avoid running RemapInstruction over all instructions in the common
case that no cloning was performed.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13514
llvm-svn: 249591
There was an off-by-one bug in ip2state tables which manifested when one
call immediately preceded the try-range of the next. The return address
of the previous call would appear to be within the try range of the next
scope, resulting in extra destructors or catches running.
We also computed the wrong offset for catch parameter stack objects. The
offset should be from RSP, not from RBP.
llvm-svn: 249578
I'll be using the function in a similar combine for AArch64. The helper was
also improved to handle undef values.
Part of http://reviews.llvm.org/D13442
llvm-svn: 249572
Summary:
Set the pad MBB as a funclet entry for CoreCLR as well as MSVCCXX, and
update state numbering to put the catchpad block rather than its normal
successor into the unwind map.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13492
llvm-svn: 249569
When outgoing function arguments are passed using push instructions, and EH
is enabled, we may need to indicate to the stack unwinder that the stack
pointer was adjusted before the call.
This should fix the exception handling issues in PR24792.
Differential Revision: http://reviews.llvm.org/D13132
llvm-svn: 249522
This is handy for some AutoFDO stuff, and seems like a minor improvement
to correctness (otherwise a debug info consumer might think the decl
line/file of the def was the same as that of the declaration - though
what a consumer might use that for, I'm not sure - maybe "list <func>"
would've misbehaved with the old behavior?) and at a minor cost (in my
experiment, with fission, without type units, without compression, 0.01%
growth in debug info in the executable/objects, 0.02% growth in the .dwo
files).
llvm-svn: 249487
Our current emission strategy is to emit the funclet prologue in the
CatchPad's normal destination. This is problematic because
intra-funclet control flow to the normal destination is not erroneous
and results in us reevaluating the prologue if said control flow is
taken.
Instead, use the CatchPad's location for the funclet prologue. This
correctly models our desire to have unwind edges evaluate the prologue
but edges to the normal destination result in typical control flow.
Differential Revision: http://reviews.llvm.org/D13424
llvm-svn: 249483
Summary:
Assign one state number per handler/funclet, tracking parent state,
handler type, and catch type token.
State numbers are arranged such that ancestors have lower state numbers
than their descendants.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13450
llvm-svn: 249457
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455
The CATCHRET operand did not match the MachineFunction's CFG. This
mismatch happened because FrameLowering created a new MachineBasicBlock
and updated the CFG but forgot to update the CATCHRET operand.
Let's make sure this doesn't happen again by strengthing the funclet
membership analysis: it can now reason about the membership of all basic
blocks, not just those inside of funclets.
llvm-svn: 249344
Track which basic blocks belong to which funclets. Permit branch
folding to fire but only if it can prove that doing so will not cause
code in one funclet to be reused in another.
llvm-svn: 249257
visitSIGN_EXTEND_INREG calls SelectionDAG::getNode to constant fold scalar constants but handles vector constants itself, despite getNode being capable of dealing with them.
This required a minor change to the getNode implementation to actually deal with cases where the scalars of a BUILD_VECTOR were wider integers than the vector type - which was the only extra ability of the visitSIGN_EXTEND_INREG implementation.
No codegen intended and all existing tests remain the same.
llvm-svn: 249236
We emit denormalized tables, where every range of invokes in the same
state gets a complete list of EH action entries. This is significantly
simpler than trying to infer the correct nested scoping structure from
the MI. Fortunately, for SEH, the nesting structure is really just a
size optimization.
With this, some basic __try / __except examples work.
llvm-svn: 249078
Catchret transfers control from a catch funclet to an earlier funclet.
However, it is not completely clear which funclet the catchret target is
part of. Make this clear by stapling the catchret target's funclet
membership onto the CATCHRET SDAG node.
llvm-svn: 249052
The Win64 unwinder disassembles forwards from each PC to try to
determine if this PC is in an epilogue. If so, it skips calling the EH
personality function for that frame. Typically, this means you cannot
catch an exception in the same frame that you threw it, because 'throw'
calls a noreturn runtime function.
Previously we avoided this problem with the TrapUnreachable
TargetOption, but that's a much bigger hammer than we need. All we need
is a 1 byte non-epilogue instruction right after the call. Instead,
what we got was an unconditional branch to a shared block containing the
ud2, potentially 7 bytes instead of 1. So, this reverts r206684, which
added TrapUnreachable, and replaces it with something better.
The new code pattern matches for invoke/call followed by unreachable and
inserts an int3 into the DAG. To be 100% watertight, we would need to
insert SEH_Epilogue instructions into all basic blocks ending in a call
with no terminators or successors, but in practice this is unlikely to
come up.
llvm-svn: 248959
HHVM calling convention, hhvmcc, is used by HHVM JIT for
functions in translated cache. We currently support LLVM back end to
generate code for X86-64 and may support other architectures in the
future.
In HHVM calling convention any GP register could be used to pass and
return values, with the exception of R12 which is reserved for
thread-local area and is callee-saved. Other than R12, we always
pass RBX and RBP as args, which are our virtual machine's stack pointer
and frame pointer respectively.
When we enter translation cache via hhvmcc function, we expect
the stack to be aligned at 16 bytes, i.e. skewed by 8 bytes as opposed
to standard ABI alignment. This affects stack object alignment and stack
adjustments for function calls.
One extra calling convention, hhvm_ccc, is used to call C++ helpers from
HHVM's translation cache. It is almost identical to standard C calling
convention with an exception of first argument which is passed in RBP
(before we use RDI, RSI, etc.)
Differential Revision: http://reviews.llvm.org/D12681
llvm-svn: 248832
Summary:
Funclets have been turned into functions by the time they hit the object
file. Make sure that they have decent names for the symbol table and
CFI directives explaining how to reason about their prologues.
Differential Revision: http://reviews.llvm.org/D13261
llvm-svn: 248824
alignment requirements, for example in the case of vectors.
These requirements are exploited by the code generator by using
move instructions that have similar alignment requirements, e.g.,
movaps on x86.
Although the code generator properly aligns the arguments with
respect to the displacement of the stack pointer it computes,
the displacement itself may cause misalignment. For example if
we have
%3 = load <16 x float>, <16 x float>* %1, align 64
call void @bar(<16 x float> %3, i32 0)
the x86 back-end emits:
movaps 32(%ecx), %xmm2
movaps (%ecx), %xmm0
movaps 16(%ecx), %xmm1
movaps 48(%ecx), %xmm3
subl $20, %esp <-- if %esp was 16-byte aligned before this instruction, it no longer will be afterwards
movaps %xmm3, (%esp) <-- movaps requires 16-byte alignment, while %esp is not aligned as such.
movl $0, 16(%esp)
calll __bar
To solve this, we need to make sure that the computed value with which
the stack pointer is changed is a multiple af the maximal alignment seen
during its computation. With this change we get proper alignment:
subl $32, %esp
movaps %xmm3, (%esp)
Differential Revision: http://reviews.llvm.org/D12337
llvm-svn: 248786
When AA is being used, non-aliasing stores are canonicalized to use the same
chain, and DAGCombiner::getStoreMergeAndAliasCandidates can take advantage of
this by looking only as users of a store's chain operand. However, user
iteration is not result-number specific, we need to check that the use is as a
chain operand, and not via some other operand. It is certainly possible to have
another potentially-aliasing store, which shares the first's base pointer, and
uses the first's chain's node via some other operand.
Failure to catch this situation caused, at least in the included test case, an
assert later because the relative sequence-number ordering caused later
replacement to create a cycle in the DAG.
llvm-svn: 248698
Summary:
Factor the code that rewrites invokes to calls and rewrites WinEH
terminators to their "unwind to caller" equivalents into a helper in
Utils/Local, and use it in the three places I'm aware of that need to do
this.
Reviewers: andrew.w.kaylor, majnemer, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13152
llvm-svn: 248677
I realized that the live-out set computed for the return block is
missing the callee saved registers (the non-pristine ones to be exact).
This only affects the liveness computed for instructions inside the
function epilogue which currently none of the LivePhysRegs users in llvm
cares about, so this is just a drive-by fix without a testcase.
Differential Revision: http://reviews.llvm.org/D13180
llvm-svn: 248636
This is a redo of D7208 ( r227242 - http://llvm.org/viewvc/llvm-project?view=revision&revision=227242 ).
The patch was reverted because an AArch64 target could infinite loop after the change in DAGCombiner
to merge vector stores. That happened because AArch64's allowsMisalignedMemoryAccesses() wasn't telling
the truth. It reported all unaligned memory accesses as fast, but then split some 128-bit unaligned
accesses up in performSTORECombine() because they are slow.
This patch attempts to fix the problem in AArch's allowsMisalignedMemoryAccesses() while preserving
existing (perhaps questionable) lowering behavior.
The x86 test shows that store merging is working as intended for a target with fast 32-byte unaligned
stores.
Differential Revision: http://reviews.llvm.org/D12635
llvm-svn: 248622
The algorithm would not modify the live-in list of blocks below the save
block point which is correct unless it happens to be a restore point at
the same time.
Also fixes the benign issue of live-in registers being added twice in
some cases.
The testcase is based on a test submitted by Kit Barton.
Differential Revision: http://reviews.llvm.org/D13176
llvm-svn: 248620
If a virtual register is copied and another copy was already
seen, replace with the previous copy. This only handles the
simplest cases for now.
This pattern shows up from various operand restrictions
AMDGPU has which require inserting copies depending
on the register class of the operands.
llvm-svn: 248611
Fixes the overflow case of llvm.*absdiff intrinsic also updats the tests and LangRef.rst accordingly.
Differential Revision: http://reviews.llvm.org/D11678
llvm-svn: 248483
Allow a target to do something other than search for copies
that will avoid cross register bank copies.
Implement for SI by only rewriting the most basic copies,
so it should look through anything like a subregister extract.
I'm not entirely satisified with this because it seems like
eliminating a reg_sequence that isn't fully used should work
generically for all targets without them having to override
something. However, it seems to be tricky to have a simple
implementation of this without rewriting to invalid kinds
of subregister copies on some targets.
I'm not sure if there is currently a generic way to easily check
if a subregister index would be valid for the current use.
The current set of TargetRegisterInfo::get*Class functions don't
quite behave like I would expect (e.g. getSubClassWithSubReg
returns the maximal register class rather than the minimal), so
I'm not sure how to make the generic test keep searching if
SrcRC:SrcSubReg is a valid replacement for DefRC:DefSubReg. Making
the default implementation to check for simple copies breaks
a variety of ARM and x86 tests by producing illegal subregister uses.
The ARM tests are not actually changed since it should still be using
the same sharesSameRegisterFile implementation, this just relaxes
them to not check for specific registers.
llvm-svn: 248478
If the stores are storing values from loads which partially
alias the stores, we could end up placing the merged loads
and stores on the same chain which has the potential to break.
Each store may have a different chain dependency on only some
of the original loads. Create a new TokenFactor to capture all
of the required dependencies of the stores rather than assuming
all stores can use the same chain.
The testcase is a situation where this happens, although
it does not have an observable change from this. The DAG nodes
just happened to not be reordered before despite this missing
chain dependency.
This is based on an off-list report for an out of tree target
which regressed due to r246307 and I haven't managed to find a case
where the nodes do end up reordered with an in tree target.
llvm-svn: 248468
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
Fixed the issue that when there is an edge from the jump table to the default statement, we should check it directly instead of checking if the sibling of the jump table header is a successor of the jump table header, which may not be the default statment but a successor of it.
llvm-svn: 248354
We may have subregister defs which are unused but not discovered and
cleaned up prior to liveness analysis. This creates multiple connected
components in the resulting live range which are forbidden in the
MachineVerifier because they would unnecesarily constrain the register
allocator. Rewrite those dead definitions to define a newly created
virtual register.
Differential Revision: http://reviews.llvm.org/D13035
llvm-svn: 248335
This improves ConnectedVNInfoEqClasses::Distribute() to distribute the
segments and value numbers in the subranges instead of conservatively
clearing all subregister info.
No separate test here, just clearing the subrange instead of properly
distributing them would however break my upcoming fix regarding dead super
register definitions.
Differential Revision: http://reviews.llvm.org/D13075
llvm-svn: 248334
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
llvm-svn: 248291
This patch adds support for combining patterns such as (FMUL(FADD(1.0, x), y)) and (FMUL(FSUB(x, 1.0), y)) to their FMA equivalents.
This is useful in particular for linear interpolation cases such as (FADD(FMUL(x, t), FMUL(y, FSUB(1.0, t))))
Differential Revision: http://reviews.llvm.org/D13003
llvm-svn: 248210
Because mod is always exact, this function should have never taken a rounding mode argument. The actual implementation still has issues, which I'll look at resolving in a subsequent patch.
llvm-svn: 248195
If storing multiple FP constants, some subset of the stores
would be replaced with integers due to visit order, so
MergeConsecutiveStores would only partially merge
these.
llvm-svn: 248169
In if-conversion, there is a utility function MergeBlocks() that is used to merge blocks. However, when new edges are built in this function the edge weight is either not provided or not updated properly, leading to a modified CFG with incorrect edge weights. This patch corrects this issue.
Differential Revision: http://reviews.llvm.org/D12513
llvm-svn: 248030
They mostly clutter the output while it is still possible to see which
node has multiple users without them.
Differential Revision: http://reviews.llvm.org/D12569
llvm-svn: 248013
We shifted the MachineBasicBlocks to the end of the MachineFunction in
DFS order. This will not ensure that MachineBasicBlocks which fell
through to one another will remain contiguous. Instead, implement
a stable sort algorithm for iplist.
This partially reverts commit r214150.
llvm-svn: 247978
- Strenghten the logic to be sure we hoist the restore point out of the current
loop. (The fixes a bug with infinite loop, added as part of the patch.)
- Walk over the exit blocks of the current loop to conver to the desired restore
point in one iteration of the update loop.
llvm-svn: 247958
Windows EH funclets need to be contiguous. The FuncletLayout pass will
ensure that the funclets are together and begin with a funclet entry MBB.
Differential Revision: http://reviews.llvm.org/D12943
llvm-svn: 247937
getLandingPadSuccessor assumes that each invoke can have at most one EH
pad successor, but WinEH invokes can have more than one. Two out of
three callers of getLandingPadSuccessor don't use the returned
landingpad, so we can make them use this simple predicate instead.
Eventually we'll have to circle back and fix SplitKit.cpp so that
register allocation works. Baby steps.
llvm-svn: 247904
The MSVC doesn't really support exception specifications so let's just
turn these into cleanuppads. Later, we might use terminatepad to more
efficiently encode the "noexcept"-ness of a function body.
llvm-svn: 247848
Clang now passes the adjectives as an argument to catchpad.
Getting the CatchObj working is simply a matter of threading another
static alloca through codegen, first as an alloca, then as a frame
index, and finally as a frame offset.
llvm-svn: 247844
We are experimenting with a new approach to saving and restoring SSA
values used across funclets: let the register allocator do the dirty
work for us.
However, this means that we need to be able to clone commoned blocks
without relying on demotion.
llvm-svn: 247835
Split the preparation machinery into several functions, we will want to
selectively enable/disable different parts of it for an alternative
mechanism for dealing with cross-funclet uses.
llvm-svn: 247834
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
This is the mirror image of r242395.
When X86FrameLowering::emitEpilogue() looks for where to insert the %esp addition that
deallocates stack space used for local allocations, it assumes that any sequence of pop
instructions from function exit backwards consists purely of restoring callee-save registers.
This may be false, since from some point backward, the pops may be clean-up of stack space
allocated for arguments to a call.
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D12688
llvm-svn: 247784
This may happen when the input program itself contains an infinite loop with no
exit block. In that case, we would fail to find a block post-dominating the loop
such that this block is outside of the loop.
This fixes PR24823.
Working on reducing the test case.
llvm-svn: 247710
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692