Commit Graph

2292 Commits

Author SHA1 Message Date
Sanjay Patel b21905dfe3 [SLP] remove unnecessary state in matching reductions
This is NFC-intended. I'm still trying to figure out
how the loop where this is used works. It does not
seem like we require this data at all, but it's
hard to confirm given the complicated predicates.
2021-01-14 18:32:37 -05:00
Bjorn Pettersson d58512b2e3 [SLP] Don't vectorize stores of non-packed types (like i1, i2)
In the spirit of commit fc783e91e0 (llvm-svn: 248943) we
shouldn't vectorize stores of non-packed types (i.e. types that
has padding between consecutive variables in a scalar layout,
but being packed in a vector layout).

The problem was detected as a miscompile in a downstream test case.

Reviewed By: anton-afanasyev

Differential Revision: https://reviews.llvm.org/D94446
2021-01-14 11:30:33 +01:00
Sanjay Patel 123674a816 [SLP] simplify type check for reductions
This is NFC-intended. The 'valid' call allows int/FP/pointers
for other parts of SLP. The difference here is that we can't
reduce pointers.
2021-01-13 13:30:46 -05:00
Sanjay Patel 9e7895a868 [SLP] reduce code duplication while processing reductions; NFC 2021-01-12 16:03:57 -05:00
Sanjay Patel 92fb5c49e8 [SLP] rename variable to improve readability; NFC
The OperationData in the 2nd block (visiting the operands)
is completely independent of the 1st block.
2021-01-12 16:03:57 -05:00
Sanjay Patel 554be30a42 [SLP] reduce code duplication in processing reductions; NFC 2021-01-12 16:03:57 -05:00
Sanjay Patel 46507a96fc [SLP] reduce code duplication while matching reductions; NFC 2021-01-12 16:03:57 -05:00
Philip Reames 9f61fbd75a [LV] Relax assumption that LCSSA implies single entry
This relates to the ongoing effort to support vectorization of multiple exit loops (see D93317).

The previous code assumed that LCSSA phis were always single entry before the vectorizer ran. This was correct, but only because the vectorizer allowed only a single exiting edge. There's nothing in the definition of LCSSA which requires single entry phis.

A common case where this comes up is with a loop with multiple exiting blocks which all reach a common exit block. (e.g. see the test updates)

Differential Revision: https://reviews.llvm.org/D93725
2021-01-12 12:34:52 -08:00
Florian Hahn eb0371e403 [VPlan] Unify value/recipe printing after VPDef transition.
This patch unifies the way recipes and VPValues are printed after the
transition to VPDef.

VPSlotTracker has been updated to iterate over all recipes and all
their defined values to number those. There is no need to number
values in Value2VPValue.

It also updates a few places that only used slot numbers for
VPInstruction. All recipes now can produce numbered VPValues.
2021-01-11 14:42:46 +00:00
Florian Hahn a94497a342 [VPlan] Move initial quote emission from ::print to ::dumpBasicBlock.
This means there will be no stray " when printing individual recipes
using print()/dump() in a debugger, for example.
2021-01-11 12:22:15 +00:00
David Sherwood 40abeb11f4 [NFC][InstructionCost] Change LoopVectorizationCostModel::getInstructionCost to return InstructionCost
This patch is part of a series of patches that migrate integer
instruction costs to use InstructionCost. In the function
selectVectorizationFactor I have simply asserted that the cost
is valid and extracted the value as is. In future we expect
to encounter invalid costs, but we should filter out those
vectorization factors that lead to such invalid costs.

See this patch for the introduction of the type: https://reviews.llvm.org/D91174
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html

Differential Revision: https://reviews.llvm.org/D92178
2021-01-11 09:22:37 +00:00
David Sherwood b7ccaca537 [NFC] Remove min/max functions from InstructionCost
Removed the InstructionCost::min/max functions because it's
fine to use std::min/max instead.

Differential Revision: https://reviews.llvm.org/D94301
2021-01-11 09:00:12 +00:00
Sanjay Patel 3f09c77d33 [SLP] fix typo in assert
This snuck into 0aa75fb12f , but I didn't catch it locally.
2021-01-10 13:15:04 -05:00
Sanjay Patel 0aa75fb12f [SLP] put verifyFunction call behind EXPENSIVE_CHECKS
A severe compile-time slowdown from this call is noted in:
https://llvm.org/PR48689
My naive fix was to put it under LLVM_DEBUG ( 267ff79 ),
but that's not limiting in the way we want.
This is a quick fix (or we could just remove the call completely
and rely on some later pass to discover potentially wrong IR?).
A bigger/better fix would be to improve/limit verifyFunction()
as noted in:
https://llvm.org/PR47712

Differential Revision: https://reviews.llvm.org/D94328
2021-01-10 12:32:21 -05:00
Kazu Hirata 6a6e382161 [llvm] Drop unnecessary make_range (NFC) 2021-01-09 09:25:00 -08:00
Florian Hahn 65f578fc0e [VPlan] Keep start value of VPWidenPHIRecipe as VPValue.
Similar to D92129, update VPWidenPHIRecipe  to manage the start value as
VPValue. This allows adjusting the start value as a VPlan transform,
which will be used in a follow-up patch to support reductions during
epilogue vectorization.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D93975
2021-01-09 16:34:15 +00:00
Florian Hahn c493e9216b [VPlan] Move reduction start value creation to widenPHIRecipe.
This was suggested to prepare for D93975.

By moving the start value creation to widenPHInstruction, we set the
stage to manage the start value directly in VPWidenPHIRecipe, which be
used subsequently to set the 'resume' value for reductions during
epilogue vectorization.

It also moves RdxDesc to the recipe, so we do not have to rely on Legal
to look it up later.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D94175
2021-01-08 17:49:43 +00:00
Alexander Belyaev bcbdeafa9c Revert "[SLP]Need shrink the load vector after reordering."
This reverts commit 4284afdf94.

This changes computed values in fused_batchnorm_test_cpu.

Not equal to tolerance rtol=1e-06, atol=0.001
Mismatched value: a is different from b.
not close where = (array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1]), array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1]), array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
       1, 1]), array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
       4, 5]))
not close lhs = [-0.6636615  -0.9804948  -1.148275   -0.68193716 -0.8572368  -0.65046215
 -0.6993756  -1.2244141  -1.0938729  -0.50369143 -0.51830524 -0.738452
 -0.7214286  -0.48115745 -0.9380924  -0.9341769  -0.5916775  -1.2896856
 -0.7264182  -0.9746917  -0.783249   -0.7659018  -0.86214024 -0.47784212]
not close rhs = [ 0.44102234  0.12418899 -0.04359123  0.42274666  0.24744703  0.45422167
  0.40530816 -0.11973029  0.01081094  0.6009924   0.5863786   0.3662318
  0.38325527  0.62352633  0.1665914   0.1705069   0.5130063  -0.18500176
  0.37826565  0.12999213  0.3214348   0.338782    0.24254355  0.62684166]
not close dif = [1.1046839 1.1046838 1.1046838 1.1046839 1.1046839 1.1046839 1.1046838
 1.1046839 1.1046839 1.1046839 1.1046839 1.1046839 1.1046839 1.1046838
 1.1046839 1.1046839 1.1046839 1.1046839 1.1046839 1.1046839 1.1046839
 1.1046839 1.1046838 1.1046838]
not close tol = [0.00100044 0.00100012 0.00100004 0.00100042 0.00100025 0.00100045
 0.00100041 0.00100012 0.00100001 0.0010006  0.00100059 0.00100037
 0.00100038 0.00100062 0.00100017 0.00100017 0.00100051 0.00100019
 0.00100038 0.00100013 0.00100032 0.00100034 0.00100024 0.00100063]
2021-01-08 14:42:26 +01:00
Sanjay Patel 267ff7901c [SLP] limit verifyFunction to debug build (PR48689)
As noted in PR48689, the verifier may have some kind
of exponential behavior that should be addressed
separately. For now, only run it in debug mode to
prevent problems for release+asserts.
That limit is what we had before D80401, and I'm
not sure if there was a reason to change it in that
patch.
2021-01-08 08:10:17 -05:00
Cullen Rhodes 1e7efd397a [LV] Legalize scalable VF hints
In the following loop:

  void foo(int *a, int *b, int N) {
    for (int i=0; i<N; ++i)
      a[i + 4] = a[i] + b[i];
  }

The loop dependence constrains the VF to a maximum of (4, fixed), which
would mean using <4 x i32> as the vector type in vectorization.
Extending this to scalable vectorization, a VF of (4, scalable) implies
a vector type of <vscale x 4 x i32>. To determine if this is legal
vscale must be taken into account. For this example, unless
max(vscale)=1, it's unsafe to vectorize.

For SVE, the number of bits in an SVE register is architecturally
defined to be a multiple of 128 bits with a maximum of 2048 bits, thus
the maximum vscale is 16. In the loop above it is therefore unfeasible
to vectorize with SVE. However, in this loop:

  void foo(int *a, int *b, int N) {
    #pragma clang loop vectorize_width(X, scalable)
    for (int i=0; i<N; ++i)
      a[i + 32] = a[i] + b[i];
  }

As long as max(vscale) multiplied by the number of lanes 'X' doesn't
exceed the dependence distance, it is safe to vectorize. For SVE a VF of
(2, scalable) is within this constraint, since a vector of <16 x 2 x 32>
will have no dependencies between lanes. For any number of lanes larger
than this it would be unsafe to vectorize.

This patch extends 'computeFeasibleMaxVF' to legalize scalable VFs
specified as loop hints, implementing the following behaviour:
  * If the backend does not support scalable vectors, ignore the hint.
  * If scalable vectorization is unfeasible given the loop
    dependence, like in the first example above for SVE, then use a
    fixed VF.
  * Accept scalable VFs if it's safe to do so.
  * Otherwise, clamp scalable VFs that exceed the maximum safe VF.

Reviewed By: sdesmalen, fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D91718
2021-01-08 10:49:44 +00:00
David Green 72fb5ba079 [LV] Don't sink into replication regions
The new test case here contains a first order recurrences and an
instruction that is replicated. The first order recurrence forces an
instruction to be sunk _into_, as opposed to after the replication
region. That causes several things to go wrong including registering
vector instructions multiple times and failing to create dominance
relations correctly.

Instead we should be sinking to after the replication region, which is
what this patch makes sure happens.

Differential Revision: https://reviews.llvm.org/D93629
2021-01-08 09:50:10 +00:00
Kazu Hirata 33bf1cad75 [llvm] Use *Set::contains (NFC) 2021-01-07 20:29:34 -08:00
Sanjay Patel 4c7148d75c [SLP] remove opcode identifier for reduction; NFC
Another step towards allowing intrinsics in reduction matching.
2021-01-07 14:07:27 -05:00
Alexey Bataev 4284afdf94 [SLP]Need shrink the load vector after reordering.
After merging the shuffles, we cannot rely on the previous shuffle
anymore and need to shrink the final shuffle, if it is required.

Reported in D92668

Differential Revision: https://reviews.llvm.org/D93967
2021-01-07 04:50:48 -08:00
Oliver Stannard 76f6b125ce Revert "[llvm] Use BasicBlock::phis() (NFC)"
Reverting because this causes crashes on the 2-stage buildbots, for
example http://lab.llvm.org:8011/#/builders/7/builds/1140.

This reverts commit 9b228f107d.
2021-01-07 09:43:33 +00:00
Kazu Hirata cfeecdf7b6 [llvm] Use llvm::all_of (NFC) 2021-01-06 18:27:36 -08:00
Kazu Hirata 9b228f107d [llvm] Use BasicBlock::phis() (NFC) 2021-01-06 18:27:35 -08:00
Sanjay Patel 4c022b5a41 [SLP] use reduction kind's opcode to create new instructions; NFC
Similar to 5a1d31a28 -
This should be no-functional-change because the reduction kind
opcodes are 1-for-1 mappings to the instructions we are matching
as reductions. But we want to remove the need for the
`OperationData` opcode field because that does not work when
we start matching intrinsics (eg, maxnum) as reduction candidates.
2021-01-06 14:37:44 -05:00
Sanjay Patel 5d24089a70 [SLP] reduce code for propagating flags on reductions; NFC
If we add/change to match intrinsics, this might get more
wordy, but there's no need to list each kind currently.
2021-01-06 14:37:44 -05:00
Florian Hahn 816dba48af
[VPlan] Keep start value in VPWidenIntOrFpInductionRecipe (NFC).
This patch updates VPWidenIntOrFpInductionRecipe to hold the start value
for the induction variable. This makes the start value explicit and
allows for adjusting the start value for a VPlan.

The flexibility will be used in further patches.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D92129
2021-01-06 11:47:33 +00:00
Florian Hahn 0ce5f402e0
[VPlan] Add getLiveInIRValue accessor to VPValue.
This patch adds a new getLiveInIRValue accessor to VPValue, which
returns the underlying value, if the VPValue is defined outside of
VPlan. This is required to handle scalars in VPTransformState, which
requires dealing with scalars defined outside of VPlan.

We can simply check VPValue::Def to determine if the value is defined
inside a VPlan.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D92281
2021-01-06 11:20:42 +00:00
Florian Hahn f73c09caa2
[VPlan] Use public VPValue constructor in VPPRedInstPHIRecipe (NFC).
VPPredInstPHIRecipe does not need access to VPValue via friendship. It
can just use the public constructor,

Discussed as part of D92281.
2021-01-06 10:47:09 +00:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Sanjay Patel 6a03f8ab62 [SLP] reduce code for finding reduction costs; NFC
We can get both (vector/scalar) costs in a single switch
instead of sequentially.
2021-01-05 17:35:54 -05:00
Sanjay Patel 5a1d31a284 [SLP] use reduction kind's opcode for cost model queries; NFC
This should be no-functional-change because the reduction kind
opcodes are 1-for-1 mappings to the instructions we are matching
as reductions. But we want to remove the need for the
`OperationData` opcode field because that does not work when
we start matching intrinsics (eg, maxnum) as reduction candidates.
2021-01-05 15:12:40 -05:00
Sanjay Patel d4a999b453 [SLP] reduce code duplication; NFC 2021-01-05 15:12:40 -05:00
Sanjay Patel 3b8b2c7da2 [SLP] delete unused pairwise reduction option
SLP tries to model 2 forms of vector reductions: pairwise and splitting.
From the cost model code comments, those are defined using an example as:

  /// Pairwise:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v1), (v2+v3), undef, undef)
  /// Split:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v2), (v1+v3), undef, undef)

I don't know the full history of this functionality, but it was partly
added back in D29402. There are apparently no users at this point (no
regression tests change). X86 might have managed to work-around the need
for this through cost model and codegen improvements.

Removing this code makes it easier to continue the work that was started
in D87416 / D88193. The alternative -- if there is some target that is
silently using this option -- is to move this logic into LoopUtils. We
have related/duplicate functionality there via llvm::createTargetReduction().

Differential Revision: https://reviews.llvm.org/D93860
2021-01-05 13:23:07 -05:00
Florian Hahn 8a47e6252a
[VPlan] Re-add interleave group members to plan.
Creating in-loop reductions relies on IR references to map
IR values to VPValues after interleave group creation.

Make sure we re-add the updated member to the plan, so the look-ups
still work as expected

This fixes a crash reported after D90562.
2021-01-05 15:06:47 +00:00
Florian Hahn 38c6933dcc
[LV] Simplify lambda in all_of to directly return hasVF() result. (NFC)
The if in the lambda is not necessary. We can directly return the result
of hasVF.
2021-01-05 10:34:06 +00:00
Sanjay Patel 36263a7ccc [LoopUtils] remove redundant opcode parameter; NFC
While here, rename the inaccurate getRecurrenceBinOp()
because that was also used to get CmpInst opcodes.

The recurrence/reduction kind should always refer to the
expected opcode for a reduction. SLP appears to be the
only direct caller of createSimpleTargetReduction(), and
that calling code ideally should not be carrying around
both an opcode and a reduction kind.

This should allow us to generalize reduction matching to
use intrinsics instead of only binops.
2021-01-04 17:05:28 -05:00
Florian Hahn c50f9b2351
[LV] Clean up trailing whitespace (NFC).
Clean up some stray whitespace that sneaked in recently.
2021-01-02 16:43:13 +00:00
Sanjay Patel c74e8539ff [Analysis] flatten enums for recurrence types
This is almost all mechanical search-and-replace and
no-functional-change-intended (NFC). Having a single
enum makes it easier to match/reason about the
reduction cases.

The goal is to remove `Opcode` from reduction matching
code in the vectorizers because that makes it harder to
adapt the code to handle intrinsics.

The code in RecurrenceDescriptor::AddReductionVar() is
the only place that required closer inspection. It uses
a RecurrenceDescriptor and a second InstDesc to sometimes
overwrite part of the struct. It seem like we should be
able to simplify that logic, but it's not clear exactly
which cmp+sel patterns that we are trying to handle/avoid.
2021-01-01 12:20:16 -05:00
Florian Hahn d9f306aa52
[LV] Fix crash when generating remarks with multi-exit loops.
If DoExtraAnalysis is true (e.g. because remarks are enabled), we
continue with the analysis rather than exiting. Update code to
conditionally check if the ExitBB has phis or not a single predecessor.
Otherwise a nullptr is dereferenced with DoExtraAnalysis.
2021-01-01 13:54:41 +00:00
Sanjay Patel 8ca60db40b [LoopUtils] reduce FMF and min/max complexity when forming reductions
I don't know if there's some way this changes what the vectorizers
may produce for reductions, but I have added test coverage with
3567908 and 5ced712 to show that both passes already have bugs in
this area. Hopefully this does not make things worse before we can
really fix it.
2020-12-30 15:22:26 -05:00
Sanjay Patel 21a3a0225d [SLP] replace local reduction enum with RecurrenceKind; NFCI
I'm not sure if the SLP enum was created before the IVDescriptor
RecurrenceDescriptor / RecurrenceKind existed, but the code in
SLP is now redundant with that class, so it just makes things
more complicated to have both. We eventually call LoopUtils
createSimpleTargetReduction() to create reduction ops, so we
might as well standardize on those enum names.

There's still a question of whether we need to use TTI::ReductionFlags
vs. MinMaxRecurrenceKind, but that can be another clean-up step.

Another option would just be to flatten the enums in RecurrenceDescriptor
into a single enum. There isn't much benefit (smaller switches?) to
having a min/max subset.
2020-12-29 14:52:11 -05:00
Philip Reames 4b33b23877 Reapply "[LV] Vectorize (some) early and multiple exit loops"" w/fix for builder
This reverts commit 4ffcd4fe9a thus restoring e4df6a40da.

The only change from the original patch is to add "llvm::" before the call to empty(iterator_range).  This is a speculative fix for the ambiguity reported on some builders.
2020-12-28 10:13:28 -08:00
Arthur Eubanks 4ffcd4fe9a Revert "[LV] Vectorize (some) early and multiple exit loops"
This reverts commit e4df6a40da.

Breaks Windows bots, e.g. http://45.33.8.238/win/30472/step_4.txt
and http://lab.llvm.org:8011/#/builders/83/builds/2078/steps/5/logs/stdio
2020-12-28 10:05:41 -08:00
Philip Reames e4df6a40da [LV] Vectorize (some) early and multiple exit loops
This patch is a major step towards supporting multiple exit loops in the vectorizer. This patch on it's own extends the loop forms allowed in two ways:

    single exit loops which are not bottom tested
    multiple exit loops w/ a single exit block reached from all exits and no phis in the exit block (because of LCSSA this implies no values defined in the loop used later)

The restrictions on multiple exit loop structures will be removed in follow up patches; disallowing cases for now makes the code changes smaller and more obvious. As before, we can only handle loops with entirely analyzable exits. Removing that restriction is much harder, and is not part of currently planned efforts.

The basic idea here is that we can force the last iteration to run in the scalar epilogue loop (if we have one). From the definition of SCEV's backedge taken count, we know that no earlier iteration can exit the vector body. As such, we can leave the decision on which exit to be taken to the scalar code and generate a bottom tested vector loop which runs all but the last iteration.

The existing code already had the notion of requiring one iteration in the scalar epilogue, this patch is mainly about generalizing that support slightly, making sure we don't try to use this mechanism when tail folding, and updating the code to reflect the difference between a single exit block and a unique exit block (very mechanical).

Differential Revision: https://reviews.llvm.org/D93317
2020-12-28 09:40:42 -08:00
Florian Hahn 0ea3749b3c
[LV] Set up branch from middle block earlier.
Previously the branch from the middle block to the scalar preheader & exit
was being set-up at the end of skeleton creation in completeLoopSkeleton.
Inserting SCEV or runtime checks may result in LCSSA phis being created,
if they are required. Adjusting branches afterwards may break those
PHIs.

To avoid this, we can instead create the branch from the middle block
to the exit after we created the middle block, so we have the final CFG
before potentially adjusting/creating PHIs.

This fixes a crash for the included test case. For the non-crashing
case, this is almost a NFC with respect to the generated code. The
only change is the order of the predecessors of the involved branch
targets.

Note an assertion was moved from LoopVersioning() to
LoopVersioning::versionLoop. Adjusting the branches means loop-simplify
form may be broken before constructing LoopVersioning. But LV only uses
LoopVersioning to annotate the loop instructions with !noalias metadata,
which does not require loop-simplify form.

This is a fix for an existing issue uncovered by D93317.
2020-12-27 18:21:12 +00:00
Kazu Hirata 789d250613 [CodeGen, Transforms] Use *Map::lookup (NFC) 2020-12-27 09:57:27 -08:00