Commit Graph

1144 Commits

Author SHA1 Message Date
Philip Reames 9f61fbd75a [LV] Relax assumption that LCSSA implies single entry
This relates to the ongoing effort to support vectorization of multiple exit loops (see D93317).

The previous code assumed that LCSSA phis were always single entry before the vectorizer ran. This was correct, but only because the vectorizer allowed only a single exiting edge. There's nothing in the definition of LCSSA which requires single entry phis.

A common case where this comes up is with a loop with multiple exiting blocks which all reach a common exit block. (e.g. see the test updates)

Differential Revision: https://reviews.llvm.org/D93725
2021-01-12 12:34:52 -08:00
Florian Hahn eb0371e403 [VPlan] Unify value/recipe printing after VPDef transition.
This patch unifies the way recipes and VPValues are printed after the
transition to VPDef.

VPSlotTracker has been updated to iterate over all recipes and all
their defined values to number those. There is no need to number
values in Value2VPValue.

It also updates a few places that only used slot numbers for
VPInstruction. All recipes now can produce numbered VPValues.
2021-01-11 14:42:46 +00:00
Philip Reames 86d6f7e90a Precommit tests requested for D93725 2021-01-10 12:29:34 -08:00
Philip Reames 377dcfd5c1 [Tests] Auto update a vectorizer test to simplify future diff 2021-01-10 12:23:22 -08:00
David Green a36a2864c0 [ARM][LV] Additional loop invariant reduction test. NFC 2021-01-08 15:15:08 +00:00
Cullen Rhodes 1e7efd397a [LV] Legalize scalable VF hints
In the following loop:

  void foo(int *a, int *b, int N) {
    for (int i=0; i<N; ++i)
      a[i + 4] = a[i] + b[i];
  }

The loop dependence constrains the VF to a maximum of (4, fixed), which
would mean using <4 x i32> as the vector type in vectorization.
Extending this to scalable vectorization, a VF of (4, scalable) implies
a vector type of <vscale x 4 x i32>. To determine if this is legal
vscale must be taken into account. For this example, unless
max(vscale)=1, it's unsafe to vectorize.

For SVE, the number of bits in an SVE register is architecturally
defined to be a multiple of 128 bits with a maximum of 2048 bits, thus
the maximum vscale is 16. In the loop above it is therefore unfeasible
to vectorize with SVE. However, in this loop:

  void foo(int *a, int *b, int N) {
    #pragma clang loop vectorize_width(X, scalable)
    for (int i=0; i<N; ++i)
      a[i + 32] = a[i] + b[i];
  }

As long as max(vscale) multiplied by the number of lanes 'X' doesn't
exceed the dependence distance, it is safe to vectorize. For SVE a VF of
(2, scalable) is within this constraint, since a vector of <16 x 2 x 32>
will have no dependencies between lanes. For any number of lanes larger
than this it would be unsafe to vectorize.

This patch extends 'computeFeasibleMaxVF' to legalize scalable VFs
specified as loop hints, implementing the following behaviour:
  * If the backend does not support scalable vectors, ignore the hint.
  * If scalable vectorization is unfeasible given the loop
    dependence, like in the first example above for SVE, then use a
    fixed VF.
  * Accept scalable VFs if it's safe to do so.
  * Otherwise, clamp scalable VFs that exceed the maximum safe VF.

Reviewed By: sdesmalen, fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D91718
2021-01-08 10:49:44 +00:00
David Green 72fb5ba079 [LV] Don't sink into replication regions
The new test case here contains a first order recurrences and an
instruction that is replicated. The first order recurrence forces an
instruction to be sunk _into_, as opposed to after the replication
region. That causes several things to go wrong including registering
vector instructions multiple times and failing to create dominance
relations correctly.

Instead we should be sinking to after the replication region, which is
what this patch makes sure happens.

Differential Revision: https://reviews.llvm.org/D93629
2021-01-08 09:50:10 +00:00
Gil Rapaport 7ddbe0cb90 [LV] Merge tests into a single file (NFC)
In response to https://reviews.llvm.org/D94088#inline-879268
2021-01-07 09:04:07 +02:00
Peter Waller 3e357ecd44 [llvm][NFC] Disallow all warnings in TypeSize tests
This is a follow-up to a request from a reviewer [0]. The text may change in
the future and these tests should not produce any warning output.

[0] https://reviews.llvm.org/D91806#inline-879243

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D94161
2021-01-06 17:17:07 +00:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Florian Hahn 8a47e6252a
[VPlan] Re-add interleave group members to plan.
Creating in-loop reductions relies on IR references to map
IR values to VPValues after interleave group creation.

Make sure we re-add the updated member to the plan, so the look-ups
still work as expected

This fixes a crash reported after D90562.
2021-01-05 15:06:47 +00:00
Gil Rapaport d9c0b128e3 [SCEV] Simplify trunc to zero based on known bits
Let getTruncateExpr() short-circuit to zero when the value being truncated is
known to have at least as many trailing zeros as the target type.

Differential Revision: https://reviews.llvm.org/D93973
2021-01-03 13:57:12 +02:00
Gil Rapaport d8af310063 [LV] Add missed optimization fold-tail test
The loop vectorizer avoids folding the tail for loop's whose trip-count is
known to SCEV to be divisible by VF. In this case the assumption providing this
information is not taken into account, so the tail is needlessly folded.
2021-01-02 14:00:15 +02:00
Florian Hahn d9f306aa52
[LV] Fix crash when generating remarks with multi-exit loops.
If DoExtraAnalysis is true (e.g. because remarks are enabled), we
continue with the analysis rather than exiting. Update code to
conditionally check if the ExitBB has phis or not a single predecessor.
Otherwise a nullptr is dereferenced with DoExtraAnalysis.
2021-01-01 13:54:41 +00:00
Sanjay Patel 5ced712e98 [LoopVectorizer] add test to show wrong FMF propagation; NFC 2020-12-30 15:13:57 -05:00
Juneyoung Lee 9b29610228 Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.

Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)

The order is swapped, but in terms of correctness it is still fine.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D93923
2020-12-30 22:36:08 +09:00
Roman Lebedev d4c0abb4a3
[SimplifyCFG] Teach FoldCondBranchOnPHI() to preserve DomTree 2020-12-30 00:48:11 +03:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Philip Reames 4b33b23877 Reapply "[LV] Vectorize (some) early and multiple exit loops"" w/fix for builder
This reverts commit 4ffcd4fe9a thus restoring e4df6a40da.

The only change from the original patch is to add "llvm::" before the call to empty(iterator_range).  This is a speculative fix for the ambiguity reported on some builders.
2020-12-28 10:13:28 -08:00
Arthur Eubanks 4ffcd4fe9a Revert "[LV] Vectorize (some) early and multiple exit loops"
This reverts commit e4df6a40da.

Breaks Windows bots, e.g. http://45.33.8.238/win/30472/step_4.txt
and http://lab.llvm.org:8011/#/builders/83/builds/2078/steps/5/logs/stdio
2020-12-28 10:05:41 -08:00
Philip Reames e4df6a40da [LV] Vectorize (some) early and multiple exit loops
This patch is a major step towards supporting multiple exit loops in the vectorizer. This patch on it's own extends the loop forms allowed in two ways:

    single exit loops which are not bottom tested
    multiple exit loops w/ a single exit block reached from all exits and no phis in the exit block (because of LCSSA this implies no values defined in the loop used later)

The restrictions on multiple exit loop structures will be removed in follow up patches; disallowing cases for now makes the code changes smaller and more obvious. As before, we can only handle loops with entirely analyzable exits. Removing that restriction is much harder, and is not part of currently planned efforts.

The basic idea here is that we can force the last iteration to run in the scalar epilogue loop (if we have one). From the definition of SCEV's backedge taken count, we know that no earlier iteration can exit the vector body. As such, we can leave the decision on which exit to be taken to the scalar code and generate a bottom tested vector loop which runs all but the last iteration.

The existing code already had the notion of requiring one iteration in the scalar epilogue, this patch is mainly about generalizing that support slightly, making sure we don't try to use this mechanism when tail folding, and updating the code to reflect the difference between a single exit block and a unique exit block (very mechanical).

Differential Revision: https://reviews.llvm.org/D93317
2020-12-28 09:40:42 -08:00
Juneyoung Lee 9d70dbdc2b [InstCombine] use poison as placeholder for undemanded elems
Currently undef is used as a don’t-care vector when constructing a vector using a series of insertelement.
However, this is problematic because undef isn’t undefined enough.
Especially, a sequence of insertelement can be optimized to shufflevector, but using undef as its placeholder makes shufflevector a poison-blocking instruction because undef cannot be optimized to poison.
This makes a few straightforward optimizations incorrect, such as:

```
;  https://bugs.llvm.org/show_bug.cgi?id=44185

define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %xv = insertelement <4 x float> %q, float %x, i32 2
  %r = shufflevector <4 x float> %y, <4 x float> %xv, <4 x i32> { 0, 6, 2, undef }
  ret <4 x float> %r ; %r[3] is undef
}
=>
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %r = insertelement <4 x float> %y, float %x, i32 1
  ret <4 x float> %r ; %r[3] = %y[3], incorrect if %y[3] = poison
}

Transformation doesn't verify!
ERROR: Target is more poisonous than source
```

I’d like to suggest
1. Using poison as insertelement’s placeholder value (IRBuilder::CreateVectorSplat should be patched too)
2. Updating shufflevector’s semantics to return poison element if mask is undef

Note that poison is currently lowered into UNDEF in SelDag, so codegen part is okay.
m_Undef() matches PoisonValue as well, so existing optimizations will still fire.

The only concern is hidden miscompilations that will go incorrect when poison constant is given.
A conservative way is copying all tests having `insertelement undef` & replacing it with `insertelement poison` & run Alive2 on it, but it will create many tests and people won’t like it. :(

Instead, I’ll simply locally maintain the tests and run Alive2.
If there is any bug found, I’ll report it.

Relevant links: https://bugs.llvm.org/show_bug.cgi?id=43958 , http://lists.llvm.org/pipermail/llvm-dev/2019-November/137242.html

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93586
2020-12-28 08:58:15 +09:00
Florian Hahn 0ea3749b3c
[LV] Set up branch from middle block earlier.
Previously the branch from the middle block to the scalar preheader & exit
was being set-up at the end of skeleton creation in completeLoopSkeleton.
Inserting SCEV or runtime checks may result in LCSSA phis being created,
if they are required. Adjusting branches afterwards may break those
PHIs.

To avoid this, we can instead create the branch from the middle block
to the exit after we created the middle block, so we have the final CFG
before potentially adjusting/creating PHIs.

This fixes a crash for the included test case. For the non-crashing
case, this is almost a NFC with respect to the generated code. The
only change is the order of the predecessors of the involved branch
targets.

Note an assertion was moved from LoopVersioning() to
LoopVersioning::versionLoop. Adjusting the branches means loop-simplify
form may be broken before constructing LoopVersioning. But LV only uses
LoopVersioning to annotate the loop instructions with !noalias metadata,
which does not require loop-simplify form.

This is a fix for an existing issue uncovered by D93317.
2020-12-27 18:21:12 +00:00
Philip Reames f106b281be [tests] precommit a test mentioned in review for D93317 2020-12-22 09:47:19 -08:00
Gil Rapaport a56280094e [LV] Avoid needless fold tail
When the trip-count is provably divisible by the maximal/chosen VF, folding the
loop's tail during vectorization is redundant. This commit extends the existing
test for constant trip-counts to any trip-count known to be divisible by
maximal/selected VF by SCEV.

Differential Revision: https://reviews.llvm.org/D93615
2020-12-22 10:25:20 +02:00
Arthur Eubanks 1a883484af [test] Fix reg-usage.ll under NPM
The -O2 isn't used in the test.
2020-12-20 15:41:29 -08:00
Roman Lebedev c043f5055e
[SimplifyCFG] Teach FoldBranchToCommonDest() to preserve DomTree, part 1
... for conditional branch case
2020-12-20 00:18:36 +03:00
Roman Lebedev b43b77ff9b
[NFCI][SimlifyCFG] simplifyOnce(): also perform DomTree validation
And that exposes that a number of tests don't *actually* manage to
maintain DomTree validity, which is inline with my observations.

Once again, SimlifyCFG pass currently does not require/preserve DomTree
by default, so this is effectively NFC.
2020-12-20 00:18:32 +03:00
Florian Hahn a74941da71
Revert "[BasicAA] Handle two unknown sizes for GEPs"
Temporarily revert commit 8b1c4e310c.

After 8b1c4e310c the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.

I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
2020-12-18 17:59:12 +00:00
Roman Lebedev 164e0847a5
[SimplifyCFG] DeleteDeadBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-18 00:37:21 +03:00
Cullen Rhodes 1fd3a04775 [LV] Disable epilogue vectorization for scalable VFs
Epilogue vectorization doesn't support scalable vectorization factors
yet, disable it for now.

Reviewed By: sdesmalen, bmahjour

Differential Revision: https://reviews.llvm.org/D93063
2020-12-17 12:14:03 +00:00
Roman Lebedev 5cce4aff18
[SimplifyCFG] TryToSimplifyUncondBranchFromEmptyBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
Roman Lebedev 49dac4aca0
[SimplifyCFG] MergeBlockIntoPredecessor() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
Roman Lebedev aa2009fe78
[NFCI][SimplifyCFG] Mark all the SimplifyCFG tests that already don't invalidate DomTree as such
First step after e113317958,
in these tests, DomTree is valid afterwards, so mark them as such,
so that they don't regress.

In further steps, SimplifyCFG transforms shall taught to preserve DomTree,
in as small steps as possible.
2020-12-17 01:03:49 +03:00
Philip Reames a048e2fa1d [tests] fix an accidental target dependence added in 99ac8868 2020-12-15 11:07:30 -08:00
Philip Reames 99ac8868cf [tests][LV] precommit tests for D93317 2020-12-15 10:53:34 -08:00
Florian Hahn 0e0295fd61
[LV] Pass explicit vector width to not require a X86 target. 2020-12-15 12:52:22 +00:00
Florian Hahn 8a7e770638
[LV] Add reduction test, which exposed a crash in a pending patch. 2020-12-15 09:42:00 +00:00
David Green ab97c9bdb7 [LV] Fix scalar cost for tail predicated loops
When it comes to the scalar cost of any predicated block, the loop
vectorizer by default regards this predication as a sign that it is
looking at an if-conversion and divides the scalar cost of the block by
2, assuming it would only be executed half the time. This however makes
no sense if the predication has been introduced to tail predicate the
loop.

Original patch by Anna Welker

Differential Revision: https://reviews.llvm.org/D86452
2020-12-12 14:21:40 +00:00
David Green f6e885ad2a [ARM] Test for showing scalar vector costs. NFC 2020-12-12 11:43:14 +00:00
Florian Hahn 0519722930
[LV] Precommit test for PR48429. 2020-12-11 19:56:48 +00:00
Nikita Popov 8b1c4e310c [BasicAA] Handle two unknown sizes for GEPs
If we have two unknown sizes and one GEP operand and one non-GEP
operand, then we currently simply return MayAlias. The comment says
we can't do anything useful ... but we can! We can still check that
the underlying objects are different (and do so for the GEP-GEP case).

To reduce the compile-time impact, this a) checks this early, before
doing the relatively expensive GEP decomposition that will not be
used and b) doesn't do the check if the other operand is a phi or
select. In that case, the phi/select will already recurse, so this
would just do two slightly different recursive walks that arrive at
the same roots.

Compile-time is still a bit of a mixed bag: https://llvm-compile-time-tracker.com/compare.php?from=624af932a808b363a888139beca49f57313d9a3b&to=845356e14adbe651a553ed11318ddb5e79a24bcd&stat=instructions
On average this is a small improvement, but sqlite with ThinLTO has
a 0.5% regression (lencod has a 1% improvement).

The BasicAA test case checks this by using two memsets with unknown
size. However, the more interesting case where this is useful is
the LoopVectorize test case, as analysis of accesses in loops tends
to always us unknown sizes.

Differential Revision: https://reviews.llvm.org/D92401
2020-12-11 18:45:53 +01:00
Sander de Smalen d568cff696 [LoopVectorizer][SVE] Vectorize a simple loop with with a scalable VF.
* Steps are scaled by `vscale`, a runtime value.
* Changes to circumvent the cost-model for now (temporary)
  so that the cost-model can be implemented separately.

This can vectorize the following loop [1]:

   void loop(int N, double *a, double *b) {
     #pragma clang loop vectorize_width(4, scalable)
     for (int i = 0; i < N; i++) {
       a[i] = b[i] + 1.0;
     }
   }

[1] This source-level example is based on the pragma proposed
separately in D89031. This patch only implements the LLVM part.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91077
2020-12-09 11:25:21 +00:00
Bardia Mahjour 4c70b6ee45 [LV] Make optimal-epilog-vectorization-profitability.ll more robust
Add a CHECK to properly limit the scope of CHECK-NOTs
2020-12-08 12:35:08 -05:00
Arthur Eubanks dc93a8d1e2 [test] Fix Transforms/LoopVectorize under NPM
The -enable-new-pm=1 translation caused loop-vectorize to run on all
functions, then instcombine, rather than all passes on one function then
the next. This caused the output of -debug-only and -print-after to be
interleaved in an unexpected way.
2020-12-07 21:48:21 -08:00
Bardia Mahjour 4db9b78c81 [LV] Epilogue Vectorization with Optimal Control Flow - Default Enablement
This patch enables epilogue vectorization by default per reviewer requests.

Differential Revision: https://reviews.llvm.org/D89566
2020-12-07 14:29:36 -05:00
Jinsong Ji b49b8f096c [PowerPC][Clang] Remove QPX support
Clean up QPX code in clang missed in https://reviews.llvm.org/D83915

Reviewed By: #powerpc, steven.zhang

Differential Revision: https://reviews.llvm.org/D92329
2020-12-07 10:15:39 -05:00
Alexey Bataev e7fc561843 [TEST]Autogenerate test checks, NFC. 2020-12-04 11:01:58 -08:00
Philip Reames 0129cd5035 Use deref facts derived from minimum object size of allocations
This change should be fairly straight forward. If we've reached a call, check to see if we can tell the result is dereferenceable from information about the minimum object size returned by the call.

To control compile time impact, I'm only adding the call for base facts in the routine. getObjectSize can also do recursive reasoning, and we don't want that general capability here.

As a follow up patch (without separate review), I will plumb through the missing TLI parameter. That will have the effect of extending this to known libcalls - malloc, new, and the like - whereas currently this only covers calls with the explicit allocsize attribute.

Differential Revision: https://reviews.llvm.org/D90341
2020-12-03 15:01:14 -08:00
Philip Reames 0c866a3d6a [LoopVec] Support non-instructions as argument to uniform mem ops
The initial step of the uniform-after-vectorization (lane-0 demanded only) analysis was very awkwardly written. It would revisit use list of each pointer operand of a widened load/store. As a result, it was in the worst case O(N^2) where N was the number of instructions in a loop, and had restricted operand Value types to reduce the size of use lists.

This patch replaces the original algorithm with one which is at most O(2N) in the number of instructions in the loop. (The key observation is that each use of a potentially interesting pointer is visited at most twice, once on first scan, once in the use list of *it's* operand. Only instructions within the loop have their uses scanned.)

In the process, we remove a restriction which required the operand of the uniform mem op to itself be an instruction.  This allows detection of uniform mem ops involving global addresses.

Differential Revision: https://reviews.llvm.org/D92056
2020-12-03 14:51:44 -08:00