When the SME attributes tell that a function is or may be executed in Streaming
SVE mode, we currently need to be conservative and disable _any_ vectorization
(fixed or scalable) because the code-generator does not yet support generating
streaming-compatible code.
Scalable auto-vec will be gradually enabled in the future when we have
confidence that the loop-vectorizer won't use any SVE or NEON instructions
that are illegal in Streaming SVE mode.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D135950
getPrimitiveSizeInBits returns 0 for pointers, we need to query
the size via DataLayout instead.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D135976
optimizeInductions may leave dead recipes which can prevent sinking.
Sinking on the other hand should not introduce new dead recipes, so
clean up dead recipes before sinking.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133762
The attached test case can cause LLVM crash in buildVPlanWithVPRecipes because
invalid VPlan is generated.
FIRST-ORDER-RECURRENCE-PHI ir<%792> = phi ir<%501>, ir<%806>
CLONE ir<%804> = fdiv ir<1.000000e+00>, vp<%17> // use of %17
CLONE ir<%806> = load ir<%805>
EMIT vp<%17> = first-order splice ir<%792> ir<%806> // def of %17
...
There is a use before def error on %17.
When vectorizer generates a VPlan, it generates a "first-order splice"
instruction for a loop carried variable after its definition. All related PHI
users are changed to use this "first-order splice" result, and are moved after
it. The move is guided by a MapVector SinkAfter. And the content of SinkAfter is
filled by RecurrenceDescriptor::isFixedOrderRecurrence.
Let's look at the first PHI and related instructions
%v792 = phi double [ %v806, %Loop ], [ %d1, %Entry ]
%v802 = fdiv double %v794, %v792
%v804 = fdiv double 1.000000e+00, %v792
%v806 = load double, ptr %v805, align 8
%v806 is a loop carried variable, %v792 is related PHI instruction. Vectorizer
will generated a new "first-order splice" instruction for %v806, and it will be
used by %v802 and %v804. So %v802 and %v804 will be moved after %v806 and its
"first-order splice" instruction. So SinkAfter contains
%v802 -> %v806
%v804 -> %v802
It means %v802 should be moved after %v806 and %v804 will be moved after %v802.
Please pay attention that the order is important.
When isFixedOrderRecurrence processing PHI instruction %v794, related
instructions are
%v793 = phi double [ %v813, %Loop ], [ %d1, %Entry ]
%v794 = phi double [ %v793, %Loop ], [ %d2, %Entry ]
%v802 = fdiv double %v794, %v792
%v813 = load double, ptr %v812, align 8
This time its related loop carried variable is %v813, its user is %v802. So
%v802 should also be moved after %v813. But %v802 is already in SinkAfter,
because %v813 is later than %v806, so the original %v802 entry in SinkAfter is
deleted, a new %v802 entry is added. Now SinkAfter contains
%v804 -> %v802
%v802 -> %v813
With these data, %v802 can still be moved after all its operands, but %v804
can't be moved after %v806 and its "first-order splice" instruction. And causes
use before def error.
So when remove/re-insert an instruction I in SinkAfter, we should also
recursively remove instructions targeting I and re-insert them into SinkAfter.
But for simplicity I just bail out in this case.
Differential Revision: https://reviews.llvm.org/D134083
Currently, AArch64 doesn't support vectorization for non temporal loads because `isLegalNTLoad` is not implemented for the target.
This patch applies similar functionality as `D73158` but for non temporal loads
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D131964
At the moment, LoopAccessAnalysis is a loop analysis for the new pass
manager. The issue with that is that LAI caches SCEV expressions and
modifications in a loop may impact SCEV expressions in other loops, but
we do not have a convenient way to invalidate LAI for other loops
withing a loop pipeline.
To avoid this issue, turn it into a function analysis which returns a
manager object that keeps track of the individual LAI objects per loop.
Fixes#50940.
Fixes#51669.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134606
Move LCSSA fixup from ::expandCodeForImpl to ::expand(). This has
the advantage that we directly preserve LCSSA nodes here instead of
relying on doing so in rememberInstruction. It also ensures that we
don't add the non-LCSSA-safe value to InsertedExpressions.
Alternative to D132704.
Fixes#57000.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134739
Fixes#57572
Generally LICM pass is responsible for sinking out code that calculates
invariant address inside loop as it only needed to be calculated once.
But in rare case it does not happen we will not be vectorizing the
loop.
Differential Revision: https://reviews.llvm.org/D133687
Follow up to D133580; adjust the cost model to prefer uniform store lowering for scalable stores which are unpredicated.
The impact here isn't in the uniform store lowering quality itself. InstCombine happily converts the scatter form into the single store form. The main impact is in letting the rest of the cost model make choices based on the knowledge that the vector will be scalarized on use.
Differential Revision: https://reviews.llvm.org/D134460
The dependent code has been changed quite a lot since 151c144 which
b73d2c8 effectively reverts. Now we run into a case where lowering
didn't expect/support the behavior pre 151c144 any longer.
Update the code dealing with scalable pointer inductions to also check
for uniformity in combination with isScalarAfterVectorization. This
should ensure scalable pointer inductions are handled properly during
epilogue vectorization.
Fixes#57912.
This extends the previously added uniform store case to handle stores of loop varying values to a loop invariant address. Note that the placement of this code only allows unpredicated stores; this is important for correctness. (That is "IsPredicated" is always false at this point in the function.)
This patch does not include scalable types. The diff felt "large enough" as it were; I'll handle that in a separate patch. (It requires some changes to cost modeling.)
Differential Revision: https://reviews.llvm.org/D133580
This mainly just adds costs for the targets where we have actual funnelshift/rotate instructions (VBMI2/XOP etc.) - the cases where we expand still need addressing, although for many the default shift+or expansion, especially for uniform cases, isn't that bad.
This was achieved with the 'cost-tables vs llvm-mca' script D103695
This stops Negator from transforming:
`C1 - shl X, C2 --> mul X, (1<<C2) + C1`
...in the general case. There does not seem to be any analysis
benefit to using mul in IR, and there's definitely downside in
codegen (particularly when the multiply has to be expanded).
If `C1` is 0, then there's a stronger argument that the single
mul is a better canonicalization than negate-of-shl, but we may
want to remove that too.
This was noted as a potential conflict for D133667.
Differential Revision: https://reviews.llvm.org/D134310
Epilogue vectorization uses isScalarAfterVectorization to check if
widened versions for inductions need to be generated and bails out in
those cases.
At the moment, there are scenarios where isScalarAfterVectorization
returns true but VPWidenPointerInduction::onlyScalarsGenerated would
return false, causing widening.
This can lead to widened phis with incorrect start values being created
in the epilogue vector body.
This patch addresses the issue by storing the cost-model decision in
VPWidenPointerInductionRecipe and restoring the behavior before 151c144.
This effectively reverts 151c144, but the long-term fix is to properly
support widened inductions during epilogue vectorization
Fixes#57712.
This is the first patch in a series intended for removing flag
-enable-new-pm=0 from lit tests. This is part of a bigger
effort of completely removing legacy code related to legacy
pass manager in favor of currently default new pass manager.
In this patch flag has been removed only from tests where no significant
change has been required because checks has been duplicated for
both PMs.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D134150
This was originally part of D133788. There are no visible
regressions. All of the diffs show a large unsigned constant
becoming a small negative constant. This should be better
for analysis (and slightly less compile-time) and codegen.
Vector shift by const uniform is the cheapest shift instruction we have, non-const uniform have a marginally higher cost - some targets 'splat' the amount internally to use the shift-per-element instruction, others see a higher cost for the explicit zeroing of the upper bits for the (64-bit) shift amount.
This was achieved with an updated version of the 'cost-tables vs llvm-mca' script D103695 (I'll update the patch soon for reference)
This patch adds cost model for vector insert/extract element instructions. In RVV, we could use vector scalar move instruction to insert or extract the first element, and use vslide to move it. But for mask vector or i64 vector in i32 target, we need special instructions to make it.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D133007
This extends the safe-divisor widening scheme recently added for scalable vectors to handle fixed vectors as well.
Differential Revision: https://reviews.llvm.org/D132591
VPReplicateRecipe::isUniform actually means uniform-per-parts, hence a
scalar instruction is generated per-part.
This is a potential alternative D132892. For now the current patch only
catches cases where the address is trivially invariant (defined outside
VPlan), while D132892 catches any address that is considered invariant
by SCEV AFAICT.
It should be possible to hoist fully invariant recipes feeding loads out
of the vector loop region as well, but in practice LICM should do that
already.
This version of the patch artificially limits this to loads to make it
easier to compare, but this restriction should be easily liftable.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D133019
Users of LCSSA may not expect non-phi uses when checking the uses
outside a loop, which may cause crashes. This is due to the fact that we
do not update uses in unreachable blocks.
To ensure all reachable uses outside the loop are phis, update uses in
unreachable blocks to use poison in dead code.
Fixes#57508.
This patch moves the cost-based decision whether to use an intrinsic or
library call to the point where the recipe is created. This untangles
code-gen from the cost model and also avoids doing some extra work as
the information is already computed at construction.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D132585
It looks like the vector loops in the modified test cases
unintentionally never get executed. Update the exit condition to ensure
it does to avoid them getting optimized away in upcoming changes.