createInductionResumeValues creates a phi node placeholder
without filling incoming values. Then it generates the incoming values.
It includes triggering of SCEV expander which may invoke SSAUpdater.
SSAUpdater has an optimization to detect number of predecessors
basing on incoming values if there is phi node.
In case phi node is not filled with incoming values - the number of predecessors
is detected as 0 and this leads to segmentation fault.
In other words SSAUpdater expects that phi is in good shape while
LoopVectorizer breaks this requirement.
The fix is just prepare all incoming values first and then build a phi node.
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D128033
This just adds some very basic vectorizer testing with both fixed and scalable vectorization enabled. For context, I just yesterday fixed a crash in costing of the splat_ptr example - see bbf3fd.
In some cases, a recurrence splice instructions needs to be inserted
between to regions, for example if the regions get re-arranged during
sinking.
Fixes#56146.
This reverts commit 7aa8a67882.
This version includes fixes to address issues uncovered after
the commit landed and discussed at D11448.
Those include:
* Limit select-traversal to selects inside the loop.
* Freeze pointers resulting from looking through selects to avoid
branch-on-poison.
TTI::prefersVectorizedAddressing() try to vectorize the addresses that lead to loads.
For aarch64, only gather/scatter (supported by SVE) can deal with vectors of addresses.
This patch specializes the hook for AArch64, to return true only when we enable SVE.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D124612
This brings us into alignment with AArch64, and in the process fixes a compiler crash bug in uniform store handling in the vectorizer.
Before the recent invalid cost bailout work, this would have also avoided crashes on invalid costs in some cases. I honestly think the vectorizer should gracefully bailout on uniform stores it can't use a scatter for, but it doesn't, so lets take the path of least resistance here. It's also possible that there are other vectorizer bugs AArch64 isn't seeing because of this hook; we don't want to be finding them either.
Differential Revision: https://reviews.llvm.org/D127514
This reverts commit 1fbdbb5595.
All known issues surfaced by this patch should have been fixed now.
The fixes included fixing issues with SCEV expansion in LV and DA's
reliance on LCSSA phis.
All information is already available in VPlan. Note that there are some
test changes, because we now can correctly look through instructions
like truncates to analyze the actual users.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123541
Based on reviewer comments on https://reviews.llvm.org/D126692 I've
added FastMathFlags to the select instruction used when tail-folding
with reductions. These flags can then be used by InstCombine to
decide upon the most optimal floating point identity value for
fadd/fsub. Doing so unlocks further optimisations, such as folding
selects into masked loads.
Differential Revision: https://reviews.llvm.org/D126778
Try to simplify BranchOnCount to `BranchOnCond true` if TC <= UF * VF.
This is an alternative to D121899 which simplifies the VPlan directly
instead of doing so late in code-gen.
The potential benefit of doing this in VPlan is that this may help
cost-modeling in the future. The reason this is done in prepareToExecute
at the moment is that a single plan may be used for multiple VFs/UFs.
There are further simplifications that can be applied as follow ups:
1. Replace inductions with constants
2. Replace vector region with regular block.
Fixes#55354.
Depends on D126679.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126680
The default RegisterClass is not enough to model RISCV Register.
We define risc-v's own register class to model FP Register.
This helps to better estimate the register pressure in the loop-vectorize.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D126854
This patch removes CondBit and Predicate from VPBasicBlock. To do so,
the patch introduces a new branch-on-cond VPInstruction opcode to model
a branch on a condition explicitly.
This addresses a long-standing TODO/FIXME that blocks shouldn't be users
of VPValues. Those extra users can cause issues for VPValue-based
analyses that don't expect blocks. Addressing this fixme should allow us
to re-introduce 266ea446ab.
The generic branch opcode can also be used in follow-up patches.
Depends on D123005.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126618
This patch updates the VPlan native path to use VPRegionBlocks for all
loops in a loop nest. Up to now, only the outermost loop used a region.
This is a step towards unifying both paths and keep things consistent
between them. It also prepares various code-gen parts for modeling the
pre-header in the inner loop vectorizer (D121624).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123005
Now that SimpleLoopUnswitch and other transforms no longer introduce
branch on poison, enable the -branch-on-poison-as-ub option by
default. The practical impact of this is mostly better flag
preservation in SCEV, and some freeze instructions no longer being
necessary.
Differential Revision: https://reviews.llvm.org/D125299
When reassociating GEPs, we can only keep inbounds if both original
GEPs were inbounds, and their offsets have the same sign. For the
sake of simplicity, I only handle the case where both offsets are
non-negative here.
It would probably be fine to just not preserve inbounds at all here,
but as I don't see a compile-time impact for adding the
isKnownNonNegative() calls I went with this more conservative
approach.
Fixes https://github.com/llvm/llvm-project/issues/44206.
Differential Revision: https://reviews.llvm.org/D126687
If only one of the GEPs is inbounds, then after swapping, there is
no guarantee that one of them will be inbounds as well
(see e.g. https://alive2.llvm.org/ce/z/agaCnp).
This is only a partial fix, because even if both are inbounds, the
result is not necessarily inbounds (if the offsets have different
signs).
```
void vector_reverse_i64(int *A, int *B, int n) {
#pragma clang loop vectorize_width(4, scalable)
for (int i = n-1; i >= 0; i--)
A[i] = B[i] + 1;
}
```
When option: scalable-vectorization is on (or set #pragma clang loop vectorize_width(elements, scalable)), Reverse Iterators can't loop vectorization as <vscale x elements x elementType>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D125866
When compiling the attached new test in scalable-reductions-tf.ll we
were hitting this assertion in fixReduction:
Assertion `isa<PHINode>(U) && "Reduction exit must feed Phi's or select"
The loop contains a reduction and an intermediate store of the reduction
value. When vectorising with tail-folding the contains of 'U' in the
assertion above happened to be a scatter_store. It turns out that we
were still creating a widen recipe for the invariant store, despite
knowing that we can actually sink it. The simplest fix is to change
buildVPlanWithVPRecipes so that we look for invariant stores before
attempting to widen it.
Differential Revision: https://reviews.llvm.org/D126295
Previously, `getRegUsageForType` was implemented using
`getTypeLegalizationCost`. `getRegUsageForType` is used by the loop
vectorizer to estimate the register pressure caused by using a vector
type. However, `getTypeLegalizationCost` currently only appears to
understand splitting and not scalarization, so significantly
underestimates the register requirements.
Instead, use `getNumRegisters`, which understands when scalarization
can occur (via computeRegisterProperties).
This was discovered while investigating D118979 (Set maximum VF with
shouldMaximizeVectorBandwidth), where under fixed-length 512-bit SVE the
loop vectorizer previously ends up costing an v128i1 as 2 v64i*
registers where it actually occupies 128 i32 registers.
I'm sending this patch early for comment, I'm still doing some sanity checking
with LNT. I note that getRegisterClassForType appears to return VectorRC even
though the type in question (large vNi1 types) end up occupying scalar
registers. That might be worth fixing too.
Differential Revision: https://reviews.llvm.org/D125918
The latch may not be the exiting block. Use the exiting block instead
when looking up the incoming value of the LCSSA phi node. This fixes a
crash with early-exit loops.
Current codegen only supports scalarization of pointer inductions for
scalable VFs if they are uniform. After 3bebec659 we now may enter the
scalarization code path in VPWidenPointerInductionRecipe::execute for
scalable vectors.
Fall back to widening for scalable vectors if necessary.
This should fix a build failure when bootstrapping LLVM with SVE, e.g.
https://lab.llvm.org/buildbot/#/builders/176/builds/1723
This patch introduces a new VPLiveOut subclass of VPUser to model
exit values explicitly. The initial version handles exit values that
are neither part of induction or reduction chains nor first order
recurrence phis.
Fixes#51366, #54867, #55167, #55459
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123537
At the moment LV runs LoopSimplify and reconstructs LCSSA form after
generating the main vector loop and before generating the epilogue
vector loop.
In practice, this adds a new exit block for the scalar loop because the
middle block now also branches to the original exit block of the scalar
loop. It also requires adding a new LCSSA phi in the newly created exit
block.
This complicates things when modeling exit values in VPlan, because we
would need to update the VPlan for the epilogue loop to update the newly
created LCSSA phi node.
But none of that should be necessary, as all analysis requiring
loop-simplify form is already done at this point and LCSSA form of the
original loop is not broken.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D125810
Update clearReductionWrapFlags to use the VPlan def-use chain from the
reduction phi recipe to drop reduction wrap flags.
This addresses an existing FIXME and fixes a crash when instructions in
the reduction chain are not used and have been removed before VPlan
codegeneration.
Fixes#55540.
The runtime check threshold should also restrict interleave count.
Otherwise, too many runtime checks will be generated for some cases.
Reviewed By: fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D122126
This patch changes the strategy for vectorizing freeze instrucion, from
replicating multiple times to widening according to selected VF.
Fixes#54992
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D125016
isImpliedCondition() currently handles and/or on the LHS, but not
on the RHS, resulting in asymmetric behavior. This patch adds two
new implication rules:
* LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
* LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
Differential Revision: https://reviews.llvm.org/D125551
This patch adds initial support for a pointer diff based runtime check
scheme for vectorization. This scheme requires fewer computations and
checks than the existing full overlap checking, if it is applicable.
The main idea is to only check if source and sink of a dependency are
far enough apart so the accesses won't overlap in the vector loop. To do
so, it is sufficient to compute the difference and compare it to the
`VF * UF * AccessSize`. It is sufficient to check
`(Sink - Src) <u VF * UF * AccessSize` to rule out a backwards
dependence in the vector loop with the given VF and UF. If Src >=u Sink,
there is not dependence preventing vectorization, hence the overflow
should not matter and using the ULT should be sufficient.
Note that the initial version is restricted in multiple ways:
1. Pointers must only either be read or written, by a single
instruction (this allows re-constructing source/sink for
dependences with the available information)
2. Source and sink pointers must be add-recs, with matching steps
3. The step must be a constant.
3. abs(step) == AccessSize.
Most of those restrictions can be relaxed in the future.
See https://github.com/llvm/llvm-project/issues/53590.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D119078
When the loop vectoriser encounters a known low trip count it tries
to create a single predicated loop in order to get the benefit of
vectorisation and eliminate the scalar tail. However, until now the
vectoriser prevented the use of scalable vectors in this case due
to concerns in the past about stability. I believe that tail-folded
loops using scalable vectors are now sufficiently well tested that
we can enable this. For the same reason I've also enabled it when
optimising for code size too.
Tests added here:
Transforms/LoopVectorize/AArch64/sve-low-trip-count.ll
Transforms/LoopVectorize/AArch64/sve-tail-folding-optsize.ll
Transforms/LoopVectorize/RISCV/low-trip-count.ll
Differential Revision: https://reviews.llvm.org/D121595
Under some circumstances, SCEVExpander will insert new instructions when
expanding a predicate, but the final result of the expansion can be a
false constant.
In those cases, the expanded instructions may later be used by other
expansions, e.g. the trip count. This may trigger an assertion during
SCEVExpander cleanup. To avoid this, always mark the result as used.
Fixes#55100.
In InnerLoopVectorizer::getOrCreateVectorTripCount there is an
assert that the known minimum value for the VF is a power of 2
when tail-folding is enabled. However, for scalable vectors the
value of vscale may not be a power of 2, which means we have
to worry about the possibility of overflow. I have solved this
problem by adding preheader checks that prevent us from entering
the vector body if the canonical IV would overflow, i.e.
if ((IntMax - TripCount) < (VF * UF)) ... skip vector loop ...
Differential Revision: https://reviews.llvm.org/D125235
With opaque pointers, both the stored value and the address can be the
same. Only consider the recipe using the first lane only *if* the
address is not stored.
Fixes#55375.
Adds ability to vectorize loops containing a store to a loop-invariant
address as part of a reduction that isn't converted to SSA form due to
lack of aliasing info. Runtime checks are generated to ensure the store
does not alias any other accesses in the loop.
Ordered fadd reductions are not yet supported.
Differential Revision: https://reviews.llvm.org/D110235
This adds fptosi_sat and fptoui_sat to the list of trivially
vectorizable functions, mainly so that the loop vectorizer can vectorize
the instruction. Marking them as trivially vectorizable also allows them
to be SLP vectorized, and Scalarized.
The signature of a fptosi_sat requires two type overrides
(@llvm.fptosi.sat.v2i32.v2f32), unlike other intrinsics that often only
take a single. This patch alters hasVectorInstrinsicOverloadedScalarOpd
to isVectorIntrinsicWithOverloadTypeAtArg, so that it can mark the first
operand of the intrinsic as a overloaded (but not scalar) operand.
Differential Revision: https://reviews.llvm.org/D124358
'Widen' recipe are only used when actual vector values are generated.
Fix tryToWidenCall to do not create VPWidenCallRecipes for scalar vector
factors.
This was exposed by D123720, because the widened recipes are considered
vector users.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D124718
Based off the script from D103695, we were exaggerating the cost of the OR(AND(X,M),AND(Y,~M)) expansion using instruction count instead of effective throughput
Update a bunch of loop-vectorize regression tests to use the new PM
syntax (opt -passes=loop-vectorize) instead of the deprecated legacy
PM syntax (opt -loop-vectorize).
This patch extends the scope of VPlan to also include the exit (aka
middle) block.
For now, the exit block remains empty, but handling of exit values will
subsequently be moved to VPlan, by adding recipes to model exit values
in the exit block.
As a first step, this will allow fixing #51366.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123457
This patch moves SCEV expansion of steps used by
VPWidenIntOrFpInductionRecipes to the pre-header using
VPExpandSCEVRecipe. This ensures that those steps are expanded while the
CFG is in a valid state. Previously, SCEV expansion may happen during
vector body code-generation, during which the CFG may be invalid,
causing issues with SCEV expansion.
Depends on D122095.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122096
Most of insertelement constant folding is blocked if the vector type
is scalable. I believe we can make an exception for inserting null
into an all zeros vector.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123413
With opaque pointers, the stored value and address can be the same.
Previously the code in VPWidenMemoryInstructionRecipe::onlyFirstLaneDemanded
incorrectly considers stores with matching store and pointer operands as
only demanding the first lane, causing a crash.
After D121624 models the pre-header in VPlan, VPExpandSCEVRecipes can be
placed there. This ensures SCEV expansion happens before modifying the
CFG during VPlan execution, when CFG is incomplete.
Depends on D121624.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122095
This patch extends the scope of VPlan to also model the pre-header.
The pre-header can be used to place recipes that should be code-gen'd
outside the loop, like SCEV expansion.
Depends on D121623.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121624
D67148 has removed TTI::getNumberOfRegisters(bool Vector) and
started to call TTI::getNumberOfRegisters(unsigned ClassID) from
the LoopVectorize. This has resulted in an unrestricted vectorization
on AMDGPU blowing up register pressure.
Differential Revision: https://reviews.llvm.org/D122850
This fixes the code to actually use the location of the instruction, if
available. Previously, SetInsertPoint would overwrite the insert point
set from the instruction.
When creating induction resume values, SCEV queries may rely on
LoopInfo. Make sure vector.body gets added to the loop of the pre-header
during skeleton construction.
%vector.body will be moved to the vector preheader during VPlan
execution.
Fixes#54745.
During skeleton construction for the epilogue vector loop, generic
helpers use getOrCreateTripCount, which will re-expand the trip count
computation. Instead, re-use the TripCount created during main loop
vectorization.
When MaximizeVectorBandwidth is enabled, we can end up (via calls to
collectUniformsAndScalars/setCostBasedWideningDecision through
calculateRegisterUsage) making widening decisions before we have decided
whether to fold the tail by masking. These decisions will be wrong if we
later decided to fold the tail, for example when the trip count is very
low. It will use incorrect costs for loads that should get masked, using
standard memory operation costs instead.
This still at the moment uses the EmulatedMaskMemRefHack costs (a bit
unfortunately), but the old costs without this change were 1, leading to
too optimistic vectorization.
This slightly changes the way that the MaximizeVectorBandwidth option
works to make it easier to test, always honouring the option if it is
set.
Differential Revision: https://reviews.llvm.org/D120215
In some case, like in the added test case, we can reach
selectInterleaveCount with loops that actually have a cost of 0.
Unfortunately a loop cost of 0 is also used to communicate that the cost
has not been computed yet. To resolve the crash, bail out if the cost
remains zero after computing it.
This seems like the best option, as there are multiple code paths that
return a cost of 0 to force a computation in selectInterleaveCount.
Computing the cost at multiple places up front there would unnecessarily
complicate the logic.
Fixes#54413.
This patch moves pointer induction handling from VPWidenPHIRecipe to its
own recipe. In the process, it adds all information required to generate
code for pointer inductions without relying on Legal to access the list
of induction phis.
Alternatively VPWidenPHIRecipe could also take an optional pointer to InductionDescriptor.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121615
This patch tries to sink instructions when they are only used in a successor block.
This is a further enhancement patch based on Anna's commit:
D109700, which allows sinking an instruction having multiple uses in a single user.
In this patch, sink instructions with multiple users in a single successor block will be supported.
It could fix a known issue from rust:
https://github.com/rust-lang/rust/issues/51346#issuecomment-394443610
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D121585
This uses the existing VPlan helpers to check whether there are scalar
uses of a phi recipe. It remove one of the few remaining dependencies on
the cost model from VPlan code generation.
Depends on D121612.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121613
This patch ensures scalars (except for uniforms) are no
longer collected (prior to LVP planning phase) for
scalable vectorization.
This is to avoid the chances of generating scalarized
instructions later (during LVP execute phase) as they
are not supported for scalable vectorization.
Relevant test has also been added.
Differential Revision: https://reviews.llvm.org/D121452
This patch is a follow-up to D115953. It updates optimizeInductions
to also introduce new VPScalarIVStepsRecipes if an IV has both vector
and scalar uses.
It updates all uses that only need scalar values to use the newly
created recipe for the scalar steps.
This completes untangling of VPWidenIntOrFpInductionRecipe
code-generation. Now the recipe *only* creates the widened vector
values, as it says on the tin.
The code to genereate IR has been moved directly to
VPWidenIntOrFpInductionRecipe::execute.
Note that the recipe has been updated to hold a reference to
ScalarEvolution, which is needed to expand the step, until we can place
the corresponding SCEV expansion in the pre-header.
Depends on D120827.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D120828
This is a revert of cfcc42bdc. The analysis is wrong as shown by
the minimal tests for instcombine:
https://alive2.llvm.org/ce/z/y9Dp8A
There may be a way to salvage some of the other tests,
but that can be done as follow-ups. This avoids a miscompile
and fixes#54311.
Single value phis won't be modeled in VPlan. If the phi only gets used
outside the loop, the current code misses the fact that the incoming
value is not dead. Update the code to also look through such phis to
check for outside users.
Fixes#54266
The analysis passes output function name encapsulated in `'` braces,
but LV uses `"`. Harmonizing this may help in creating an update script
for the LV costmodel test checks.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D121105
This ensures the right order in the sink-after map is maintained. If we
re-sink an instruction, it must be sunk after all earlier instructions
have been sunk.
Fixes https://github.com/llvm/llvm-project/issues/54223
Previous and OhterPrev may not be in the same block. Use DT::dominates
instead of local comesBefore. DT::dominates is already used earlier to
check the order of Previous and SinkCandidate.
Fixes https://github.com/llvm/llvm-project/issues/54195
This patch extends first-order recurrence handling to support cases
where we already sunk an instruction for a different recurrence, but
LastPrev comes before Previous.
To handle those cases correctly, we need to find the earliest entry for
the sink-after chain, because this is references the Previous from the
original recurrence. This is needed to ensure we use the correct
instruction as sink point.
Depends on D118558.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118642
Instead of relying on underlying instructions, this patch updates
VPScalarIVStepsRecipe to only store the required type information.
This removes access to unrelated information, as well as avoiding issues
with the same underlying instruction being shared by multiple recipes.
This change should only change the debug output and not cause any
codegen changes, hence NFCI.
The removed line matches the previous line, modulo the check prefix.
There is no way to disable sinking instructions as required due to
first-order recurrence and removing the line should be safe.
Treat the icmp and sub symmetrically, and require that one of them
has one use, not the icmp in particular. This could be further
relaxed in the abs (but not nabs) case to not check one-use at
all.
The test used to run whole O3 pipeline. Modify it to contain LLVM IR right
before LV and limit passes to "-loop-vectorizer -simplifycfg".
For the RUN line with forced VF force interleave factor as well to simplify
CHECKs as interleaving isn't related to the purpose of the test.
I also tried to add "noalias" to pointer arguments in
@test_gather_not_profitable_pr48429 but LAI seems unable to use them.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D119786
This reverts the revert commit ff93260bf6.
The underlying issue causing the PPC bot failures has been fixed in
cbaac14734 and a corresponding test case has been added in
ad2cad1c52.
Original message:
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
Exit values of vector inductions are generated completely independent of
the induction recipes. Consider them for removal, if they are not used
in loop.
This fixes a crash exposed by 49b23f451c.
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This patch adds a new transform to remove dead recipes. For now, it only
removes dead recipes in the header, to keep the number tests that require
updating manageable. Future patches will extend this to remove dead
recipes across the whole plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D118051
Now that integer min/max intrinsics have good support in both
InstCombine and other passes, start canonicalizing SPF min/max
to intrinsic min/max.
Once this sticks, we can stop matching SPF min/max in various
places, and can remove hacks we have for preventing infinite loops
and breaking of SPF canonicalization.
Differential Revision: https://reviews.llvm.org/D98152
Adds new optimization remarks when loop vectorization fails due to
the compiler being unable to find bound of an array access inside
a loop
Differential Revision: https://reviews.llvm.org/D115873
Extends getReductionOpChain to look through Phis which may be part of
the reduction chain. adjustRecipesForReductions will now also create a
CondOp for VPReductionRecipe if the block is predicated and not only if
foldTailByMasking is true.
Changes were required in tryToBlend to ensure that we don't attempt
to convert the reduction Phi into a select by returning a VPBlendRecipe.
The VPReductionRecipe will create a select between the Phi and the reduction.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D117580
The noalias metadata checks re not really relevant for the test and
slight changes to metadata numbering can have large knock-on effects
causing large noise in test diff.
This reverts commit 77a0da926c as we've
received multiple reports of this significantly impacting performance,
in ways that don't seem to just be target specific cost models going
wrong. I would offer some reproducers, but the test changes here seem to
be full of them!
Reverting for now and hopefully we can remove the "hack" more carefully
as we go.
The vectorizer will choose at times to "vectorize" loops with a scalar
factor (VF=1) with interleaving (IC > 1). This can occasionally produce
better code than the unroller (notable for reductions where it can
produce independent reduction chains that are combined after the loop).
At times this is not very beneficial though, for example when runtime
checks are needed or when the scalar code requires predication.
This addresses the second point, preventing the vectorizer from
interleaving when the scalar loop will require predication. This
prevents it from making a bit of a mess, that is worse than the original
and better left for the unroller to unroll if beneficial. It helps
reverse some of the regressions from D118090.
Differential Revision: https://reviews.llvm.org/D118566
D43208 extracted `useEmulatedMaskMemRefHack()` from legality into cost model.
What it essentially does is prevents scalarized vectorization of masked memory operations:
```
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
```
While i don't really understand about what specifically `is completely broken`
was talking about, i believe that at least on X86 with AVX2-or-later,
this is no longer true. (or at least, i would like to know what is still broken).
So i would like to follow suit after D111460, and like wise disable that hack for AVX2+.
But since this was added for X86 specifically, let's just instead completely remove this hack.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114779
When the main loop is e.g. VF=vscale x 1 and the epilogue VF cannot
be any smaller, the vectorizer should try to estimate how many lanes are
executed at runtime and allow a suitable fixed-width VF to be chosen. It
can use VScaleForTuning to figure out what a suitable fixed-width VF could
be. For the case where the main loop VF is VF=vscale x 1, and VScaleForTuning=8,
it could still choose an epilogue VF upto VF=4.
This was a bit tricky to test, so this patch also introduces a wrapper
function to get 'VScaleForTuning' by also considering vscale_range.
If min and max are equal, then that will be the vscale we compile for.
It makes little sense to tune for a different width if the code
will not be portable for other widths.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D118709
Adds new optimization remarks when vectorization fails.
More specifically, new remarks are added for following 4 cases:
- Backward dependency
- Backward dependency that prevents Store-to-load forwarding
- Forward dependency that prevents Store-to-load forwarding
- Unknown dependency
It is important to note that only one of the sources
of failures (to vectorize) is reported by the remarks.
This source of failure may not be first in program order.
A regression test has been added to test the following cases:
a) Loop can be vectorized: No optimization remark is emitted
b) Loop can not be vectorized: In this case an optimization
remark will be emitted for one source of failure.
Reviewed By: sdesmalen, david-arm
Differential Revision: https://reviews.llvm.org/D108371
For some reason we limited the epilogue VF to be fixed-width, but there
is not necessarily a reason for doing so. If the main VF=vscale x 16, the
epilogue VF could be either fixed-width, or a scalable VF upto vscale x 8.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D118688
This removes the remaining dependence on LoopVectorizationCostModel from
buildScalarSteps and is required so it can be moved out of ILV.
It also improves allows us to remove a few unneeded instructions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116554
This patch tries to use an existing VPWidenCanonicalIVRecipe
instead of creating another step-vector for canonical
induction recipes in widenIntOrFpInduction.
This has the following benefits:
1. First step to avoid setting both vector and scalar values for the
same induction def.
2. Reducing complexity of widenIntOrFpInduction through making things
more explicit in VPlan
3. Only need to splat the vector IV for block in masks.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116123
This is a bugfix in IVDescriptor.cpp.
The helper function `RecurrenceDescriptor::getExactFPMathInst()`
is supposed to return the 1st FP instruction that does not allow
reordering. However, when constructing the RecurrenceDescriptor,
we trace the use-def chain staring from a PHI node and for each
instruction in the use-def chain, its descriptor overrides the
previous one. Therefore in the final RecurrenceDescriptor we
constructed, we lose previous FP instructions that does not allow
reordering.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D118073
isCandidateForEpilogueVectorization will currently return false for loops
which contain reductions. This patch removes this restriction and makes
the following changes to support epilogue vectorisation with reductions:
- `fixReduction`: If fixReduction is being called during vectorisation of the
epilogue, the phi node it creates will need to additionally carry incoming
values from the middle block of the main loop.
- `createEpilogueVectorizedLoopSkeleton`: The incoming values of the phi
created by fixReduction are updated after the vec.epilog.iter.check block
is added. The phi is also moved to the preheader of the epilogue.
- `processLoop`: The start value of any VPReductionPHIRecipes are updated before
vectorising the epilogue loop. The getResumeInstr function added to the ILV
will return the resume instruction associated with the recurrence descriptor.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D116928
Adds `-prefer-inloop-reductions` to the RUN line of sve-tail-folding.ll & adds
a new test where in-loop reductions cannot be used (`@cond_xor_reduction`). NFC.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D117578
When SVE is enabled for AArch64 targets it makes more sense to use the
get.active.lane.mask intrinsic, because SVE has an exact 1-1 mapping
from the intrinsic to the 'whilelo' instruction for legal vector types.
This instruction neatly takes overflow into account as well. This patch
fixes an issue in VPInstruction::generateInstruction that assumed we are
only dealing with fixed-width vectors.
Differential Revision: https://reviews.llvm.org/D117109
The modified tests didn't have actual users of all inductions, making it
trivial to eliminate them. Add users to make sure the inductions are
actually used in the vectorized version.
Those two TTI hooks are used during vectorization for calculating
register pressure, the default implementation isn't consider for LMUL,
and that's also definitly wrong value for register number (all register class
are 8 registers).
So in this patch we tried to:
1. Calculate right register usage for vector type and scalar type.
2. Return right number of register for general purpose register and
vector register.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D116890
After d4a8fc3a87 LV stopped adding metadata to disable runtime
unrolling to the vectorized epilogue loop. This was missed because
278aa65cc4 removed the relevant test coverage.
This patch fixes that by adding the relevant metadata after
vector loop generation.
This reverts the revert commit 073c27b5e5.
A reduced test case has been added in 5e4966cbae and the code has
been updated to handle the case where getInductionOpcode returns
BinaryOpsEnd. In this case, the original code was always using
Instruction::Add. Do the same in the patch.
Note this commit may slightly change the value naming, because it now
also assigns the 'induction' name in the floating point case.
Causes a crash with the following (creduce'd) test-case:
clang -O3 '--target=aarch64-grtev4-linux-gnu' -xc - -c -o /dev/null <<EOF
int *e;
int f;
int g() {
int h;
int *j = 0;
while (&f - j > 0) {
int k;
k = j;
if (e == j && *e)
k = 5;
h = k;
j++;
}
return h;
}
EOF
This reverts commit 7ce48be0fd.
This patch adds a new BranchOnCount VPInstruction opcode with 2
operands. It first compares its 2 operands (increment of canonical
induction and vector trip count), followed by a branch to either the
exit block or back to the vector header.
It must be the last recipe in the exit block of the topmost vector loop
region.
This extracts parts from D113224 and was discussed in D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116479
This is required to query the legality more precisely in the LoopVectorizer.
This adds another TTI function named 'forceScalarizeMaskedGather/Scatter'
function to work around the hack introduced for MVE, where
isLegalMaskedGather/Scatter would return an answer by second-guessing
where the function was called from, based on the Type passed in (vector
vs scalar). The new interface makes this explicit. It is also used by
X86 to check for vector widths where gather/scatters aren't profitable
(or don't exist) for certain subtargets.
Differential Revision: https://reviews.llvm.org/D115329
Alternative to D116817.
This introduces a new value-based folding interface for Or (FoldOr),
which takes 2 values and returns an existing Value or a constant if the
Or can be simplified. Otherwise nullptr is returned. This replaces the
more restrictive CreateOr which takes 2 constants.
This is the used to implement a folder that uses InstructionSimplify.
The logic to simplify `Or` instructions is moved there. Subsequent
patches are going to transition other CreateXXX to the more general
FoldXXX interface.
Reviewed By: nikic, lebedev.ri
Differential Revision: https://reviews.llvm.org/D116935
The code in VPWidenCanonicalIVRecipe::execute only worked for fixed-width
vectors due to the way we generate the values per lane. This patch changes
the code to use a combination of vector splats and step vectors to get
the same result. This then works for both fixed-width and scalable vectors.
Tests that exercise this code path for scalable vectors have been added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
Differential Revision: https://reviews.llvm.org/D113180
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to
create TruncTripCount if it is actually used.
Sink the TruncTripCount creating into ComputeEndCheck, so it is only
created when there's an actual check.
This patch fixes up an issue with InnerLoopVectorizer::getOrCreateVectorTripCount
whereby we weren't correctly generating the runtime trip count
for scalable vectors when tail-folding.
It also removes some asserts in the tail-folding path for cases when
the VF is not scalable.
In this patch I have only permitted tail-folding to be enabled
explicitly for scalable vectors when the user has specified one
of the following flags:
-prefer-predicate-over-epilogue=predicate-dont-vectorize
-prefer-predicate-over-epilogue=predicate-else-scalar-epilogue
For now it's best not to enable tail-folding with scalable vectors for
low trip counts or when optimising for code size, since there has been
no analysis on whether this is worth it.
Various tests have been added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
Transforms/LoopVectorize/AArch64/sve-tail-folding-forced.ll
The tests cannot be target independent because they require masked
load/store support, i.e. TTI.isLegalMaskedLoad and TTI.isLegalMaskedStore
need to return true.
Differential Revision: https://reviews.llvm.org/D113003
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to check
for overflows if the result of the multiplication is actually used.
Sink the Or for the overflow check into ComputeEndCheck, so it is only
created when there's an actual check.
Unsigned compares of the form <u 0 are always false. Do not create such
a redundant check in generateOverflowCheck.
The patch introduces a new lambda to create the check, so we can
exit early conveniently and skip creating some instructions feeding the
check.
I am planning to sink a few additional instructions as follow-ups, but I
would prefer to do this separately, to keep the changes and diff
smaller.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D116811
By default we return the width of an LMUL=1 register. We can enable
testing with larger LMUL values by returning a larger bit width.
This patch adds a RISCV specific option to provide a LMUL which will be
multiplied by the LMUL=1 bit width.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D116339
Similar to D116732, this adds basic scalar sadd_with_overflow,
uadd_with_overflow, ssub_with_overflow and usub_with_overflow costs for
aarch64, which are usually quite efficiently lowered.
Differential Revision: https://reviews.llvm.org/D116734
Currently generateOverflowCheck always creates code for Step being
negative and positive, followed by a select at the end depending on
Step's sign.
This patch updates the code to only create either the checks for step
being positive or negative, if the sign is known.
Follow-up to D116696.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D116747
This patch updates SCEVExpander::expandUnionPredicate to not create
redundant 'or false, x' instructions. While those are trivially
foldable, they can be easily avoided and hinder code that checks the
size/cost of the generated checks before further folds.
I am planning on look into a few other similar improvements to code
generated by SCEVExpander.
I remember a while ago @lebedev.ri working on doing some trivial folds
like that in IRBuilder itself, but there where concerns that such
changes may subtly break existing code.
Reviewed By: reames, lebedev.ri
Differential Revision: https://reviews.llvm.org/D116696
This was originally added in rG22174f5d5af1eb15b376c6d49e7925cbb7cca6be
although that patch doesn't really mention any reasons for ignoring the
pointer type in this calculation if the memory access isn't consecutive.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D115356
At the moment, the primary induction variable for the vector loop is
created as part of the skeleton creation. This is tied to creating the
vector loop latch outside of VPlan. This prevents from modeling the
*whole* vector loop in VPlan, which in turn is required to model
preheader and exit blocks in VPlan as well.
This patch introduces a new recipe VPCanonicalIVPHIRecipe to represent the
primary IV in VPlan and CanonicalIVIncrement{NUW} opcodes for
VPInstruction to model the increment.
This allows us to partly retire createInductionVariable. At the moment,
a bit of patching up is done after executing all blocks in the plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113223
For loops that contain in-loop reductions but no loads or stores, large
VFs are chosen because LoopVectorizationCostModel::getSmallestAndWidestTypes
has no element types to check through and so returns the default widths
(-1U for the smallest and 8 for the widest). This results in the widest
VF being chosen for the following example,
float s = 0;
for (int i = 0; i < N; ++i)
s += (float) i*i;
which, for more computationally intensive loops, leads to large loop
sizes when the operations end up being scalarized.
In this patch, for the case where ElementTypesInLoop is empty, the widest
type is determined by finding the smallest type used by recurrences in
the loop instead of falling back to a default value of 8 bits. This
results in the cost model choosing a more sensible VF for loops like
the one above.
Differential Revision: https://reviews.llvm.org/D113973
VPWidenCanonicalIVRecipe does not create PHI instructions, so it does
not need to be placed in the phi section of a VPBasicBlock.
Also tidies the code so the WidenCanonicalIV recipe and the
compare/lane-masks are created in the header.
Discussed D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116473
((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
https://alive2.llvm.org/ce/z/DY9DPg
This replaces a shift with an 'and', and in the case
where the add has a constant operand, it eliminates
both shifts.
As noted in the TODO comment, we already have this fold when
the shifts are in the opposite order (and that code handles
bitwise logic ops too).
Fixes#52851
((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
https://alive2.llvm.org/ce/z/DY9DPg
This replaces a shift with an 'and', and in the case
where the add has a constant operand, it eliminates
both shifts.
As noted in the TODO comment, we already have this fold when
the shifts are in the opposite order (and that code handles
bitwise logic ops too).
Fixes#52851
The loop vectorizer can interleave scalar loops even if it doesn't
vectorize them. I don't believe we intended to enable this when
we enabled interleaving for vector instructions.
Disable interleaving for VF=1 like X86 and AMDGPU already do. Test
lifted from AMDGPU.
Differential Revision: https://reviews.llvm.org/D115975
By creating the header and latch blocks up front and adding blocks and
recipes in between those 2 blocks we ensure that the entry and exits of
the plan remain valid throughout construction.
In order to avoid test changes and keep printing of the plans the same,
we use the new header block instead of creating a new block on the first
iteration of the loop traversing the original loop.
We also fold the latch into its predecessor.
This is a follow up to a post-commit suggestion in D114586.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115793
The availability of SVE should be sufficient to enable scalable
auto-vectorization.
This patch adds a new TTI interface to query the target what style of
vectorization it wants when scalable vectors are available. For other
targets than AArch64, this currently defaults to 'FixedWidthOnly'.
Differential Revision: https://reviews.llvm.org/D115651
The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.
I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.
We chose the canonical type as i64 arbitrarily. We might consider changing this to something else in the future if we have cause.
Differential Revision: https://reviews.llvm.org/D115387
Drop changes to consecutive-ptr-uniforms.ll since that test checks boths IR output and debug messages. I'd missed this in the original commit, and Florian pointed it out in post-commit review.
Original commit message:
These are the ones my first round of scripting couldn't handle that required a bit of manual messaging. This should be the last batch in llvm-check.
This reverts commit bbba86764a.
This reverts commit bbfaf0b170.
Post commit review noted a case where my manual update lost intentional check lines. Given I've abandoned the motivating patch, I'm just reverting the autogen prep.