These calls are neither intercepted by compiler-rt nor is libatomic.a
naturally instrumented.
This patch uses the existing libcall mechanism to detect a call
to atomic_load or atomic_store, and instruments them much like
the preexisting instrumentation for atomics.
Calls to _load are modified to have at least Acquire ordering, and
calls to _store at least Release ordering. Because this needs to be
converted at runtime, msan injects a LUT (implemented as a vector
with extractelement).
Differential Revision: https://reviews.llvm.org/D83337
This patch
- adds `canCreateUndefOrPoison`
- refactors `canCreatePoison` so it can deal with constantexprs
`canCreateUndefOrPoison` will be used at D83926.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D84007
GCC r187297 (2012-05) introduced `__gcov_dump` and `__gcov_reset`.
`__gcov_flush = __gcov_dump + __gcov_reset`
The resolution to https://gcc.gnu.org/PR93623 ("No need to dump gcdas when forking" target GCC 11.0) removed the unuseful and undocumented __gcov_flush.
Close PR38064.
Reviewed By: calixte, serge-sans-paille
Differential Revision: https://reviews.llvm.org/D83149
This is needed because macOS on Apple Silicon has some reserved pages inside the "regular" shadow memory location, and mapping over that location fails.
Differential Revision: https://reviews.llvm.org/D82912
This reverts commit d76e62fdb7.
Reverting since this can lead to linker errors:
```
ld.lld: error: undefined hidden symbol: __start_asan_globals
```
when using --gc-sections. The linker can discard __start_asan_globals
once there are no more `asan_globals` sections left, which can lead to
this error if we have external linkages to them.
This adds option -tsan-compound-read-before-write to emit different
instrumentation for the write if the read before that write is omitted
from instrumentation. The default TSan runtime currently does not
support the different instrumentation, and the option is disabled by
default.
Alternative runtimes, such as the Kernel Concurrency Sanitizer (KCSAN)
can make use of the feature. Indeed, the initial motivation is for use
in KCSAN as it was determined that due to the Linux kernel having a
large number of unaddressed data races, it makes sense to improve
performance and reporting by distinguishing compounded operations. E.g.
the compounded instrumentation is typically emitted for compound
operations such as ++, +=, |=, etc. By emitting different reports, such
data races can easily be noticed, and also automatically bucketed
differently by CI systems.
Reviewed By: dvyukov, glider
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83867
Extend the memop value profile buckets to be more flexible (could accommodate a
mix of individual values and ranges) and to cover more value ranges (from 11 to
22 buckets).
Disabled behind a flag (to be enabled separately) and the existing code to be
removed later.
Implement llvm.experimental.vector.{add,mul,or,and,...}.
An IR test is included but no C test for lack of good way to
get the compiler to emit these.
Differential Revision: https://reviews.llvm.org/D82920
Adds LLVM option to control eager checking under -msan-eager-checks.
This change depends on the noundef keyword to determining cases where it
it sound to check these shadows, and falls back to passing shadows
values by TLS.
Checking at call boundaries enforces undefined behavior rules with
passing uninitialized arguments by value.
Differential Revision: https://reviews.llvm.org/D81699
These need special handling over the simple vector intrinsics as they
behave more like a shuffle operation: taking the top half of the vector
from one input, and the bottom half separately. Previously, these were
being handled as though all bits of all operands were combined.
Differential Revision: https://reviews.llvm.org/D82398
Add an option to always instrument function entry BB (default off)
Add an option to do atomically updates on the first counter in each
instrumented function.
Differential Revision: https://reviews.llvm.org/D82123
Extend the memop value profile buckets to be more flexible (could accommodate a
mix of individual values and ranges) and to cover more value ranges (from 11 to
22 buckets).
Disabled behind a flag (to be enabled separately) and the existing code to be
removed later.
Differential Revision: https://reviews.llvm.org/D81682
Summary: `nomerge` attribute was added at D78659. So, we can remove the EmptyAsm workaround in ASan the MSan and use this attribute.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82322
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
Summary:
Normally, the Origin is passed over TLS, which seems like it introduces unnecessary overhead. It's in the (extremely) cold path though, so the only overhead is in code size.
But with eager-checks, calls to __msan_warning functions are extremely common, so this becomes a useful optimization.
This can save ~5% code size.
Reviewers: eugenis, vitalybuka
Reviewed By: eugenis, vitalybuka
Subscribers: hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81700
Refactor redzone size calculation. This will simplify changing the
redzone size calculation in future.
Note that AddressSanitizer.cpp violates the latest LLVM style guide in
various ways due to capitalized function names. Only code related to the
change here was changed to adhere to the style guide.
No functional change intended.
Reviewed By: andreyknvl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81367
[ v1 was reverted by c6ec352a6b due to
modpost failing; v2 fixes this. More info:
https://github.com/ClangBuiltLinux/linux/issues/1045#issuecomment-640381783 ]
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
* Disable generation of constructors that rely on linker features such
as dead-global elimination.
* Only instrument globals *not* in explicit sections. The kernel uses
sections for special globals, which we should not touch.
* Do not instrument globals that are prefixed with "__" nor that are
aliased by a symbol that is prefixed with "__". For example, modpost
relies on specially named aliases to find globals and checks their
contents. Unfortunately modpost relies on size stored as ELF debug info
and any padding of globals currently causes the debug info to cause size
reported to be *with* redzone which throws modpost off.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
* With 'clang/test/CodeGen/asan-globals.cpp'.
* With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
* allyesconfig, allmodconfig (x86_64)
Reviewed By: glider
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81390
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
Summary:
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
- Disable generation of constructors that rely on linker features such
as dead-global elimination.
- Only emit constructors for globals *not* in explicit sections. The
kernel uses sections for special globals, which we should not touch.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
1. With 'clang/test/CodeGen/asan-globals.cpp'.
2. With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
Reviewers: glider, andreyknvl
Reviewed By: glider
Subscribers: cfe-commits, nickdesaulniers, hiraditya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D80805
Summary:
This matches ELF.
This makes the number of ASan failures under the new pass manager on
Windows go from 18 to 1.
Under the old pass manager, the ASan module pass was one of the very
last things run, so these globals didn't get removed due to GlobalOpt.
But with the NPM the ASan module pass that adds these globals are run
much earlier in the pipeline and GlobalOpt ends up removing them.
Reviewers: vitalybuka, hans
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81175
It should not be necessary to use weak linkage for these. Doing so
implies interposablity and thus PIC generates indirections and
dynamic relocations, which are unnecessary and suboptimal. Aside
from this, ASan instrumentation never introduces GOT indirection
relocations where there were none before--only new absolute relocs
in RELRO sections for metadata, which are less problematic for
special linkage situations that take pains to avoid GOT generation.
Patch By: mcgrathr
Differential Revision: https://reviews.llvm.org/D80605
Follow the model used on Linux, where the clang driver passes the
linker a -u switch to force the profile runtime to be linked in,
rather than having every TU emit a dead function with a reference.
Differential Revision: https://reviews.llvm.org/D79835
Follow the model used on Linux, where the clang driver passes the
linker a -u switch to force the profile runtime to be linked in,
rather than having every TU emit a dead function with a reference.
Patch By: mcgrathr
Differential Revision: https://reviews.llvm.org/D79835
Allow InvokeInst to have the second optional prof branch weight for
its unwind branch. InvokeInst is a terminator with two successors.
It might have its unwind branch taken many times. If so
the BranchProbabilityInfo unwind branch heuristic can be inaccurate.
This patch allows a higher accuracy calculated with both branch
weights set.
Changes:
- A new section about InvokeInst is added to
the BranchWeightMetadata page. It states the old information that
missed in the doc and adds new about the second branch weight.
- Verifier is changed to allow either 1 or 2 branch weights
for InvokeInst.
- A new test is written for BranchProbabilityInfo to demonstrate
the main improvement of the simple fix in calcMetadataWeights().
- Several new testcases are created for Inliner. Those check that
both weights are accounted for invoke instruction weight
calculation.
- PGOUseFunc::setBranchWeights() is fixed to be applicable to
InvokeInst.
Reviewers: davidxl, reames, xur, yamauchi
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80618
Summary:
Follow up D79751 and put the instrumentation / value collection side (in
addition to the optimization side) behind the flag as well.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80646
ProfileSummaryInfo is updated seldom, as result of very specific
triggers. This patch clearly demarcates state updates from read-only uses.
This, arguably, improves readability and maintainability.
Summary: This adds support for memcmp/bcmp to the existing memcpy/memset value profiling.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79751
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
Add -tsan-instrument-read-before-write which allows instrumenting reads
of reads-before-writes.
This is required for KCSAN [1], where under certain configurations plain
writes behave differently (e.g. aligned writes up to word size may be
treated as atomic). In order to avoid missing potential data races due
to plain RMW operations ("x++" etc.), we will require instrumenting
reads of reads-before-writes.
[1] https://github.com/google/ktsan/wiki/KCSAN
Author: melver (Marco Elver)
Reviewed-in: https://reviews.llvm.org/D79983
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
Summary:
This patch makes propagatesPoison be more accurate by returning true on
more bin ops/unary ops/casts/etc.
The changed test in ScalarEvolution/nsw.ll was introduced by
a19edc4d15 .
IIUC, the goal of the tests is to show that iv.inc's SCEV expression still has
no-overflow flags even if the loop isn't in the wanted form.
It becomes more accurate with this patch, so think this is okay.
Reviewers: spatel, lebedev.ri, jdoerfert, reames, nikic, sanjoy
Reviewed By: spatel, nikic
Subscribers: regehr, nlopes, efriedma, fhahn, javed.absar, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78615
gcov 4.8 (r189778) moved the exit block from the last to the second.
The .gcda format is compatible with 4.7 but
* decoding libgcov 4.7 produced .gcda with gcov [4.7,8) can mistake the
exit block, emit bogus `%s:'%s' has arcs from exit block\n` warnings,
and print wrong `" returned %s` for branch statistics (-b).
* decoding libgcov 4.8 produced .gcda with gcov 4.7 has similar issues.
Also, rename "return block" to "exit block" because the latter is the
appropriate term.
Defaulting to -Xclang -coverage-version='407*' makes .gcno/.gcda
compatible with gcov [4.7,8)
In addition, delete clang::CodeGenOptionsBase::CoverageExtraChecksum and GCOVOptions::UseCfgChecksum.
We can infer the information from the version.
With this change, .gcda files produced by `clang --coverage a.o` linked executable can be read by gcov 4.7~7.
We don't need other -Xclang -coverage* options.
There may be a mismatching version warning, though.
(Note, GCC r173147 "split checksum into cfg checksum and line checksum"
made gcov 4.7 incompatible with previous versions.)
rL144865 incorrectly wrote function names for GCOV_TAG_FUNCTION
(this might be part of the reasons the header says
"We emit files in a corrupt version of GCOV's "gcda" file format").
rL176173 and rL177475 realized the problem and introduced -coverage-no-function-names-in-data
to work around the issue. (However, the description is wrong.
libgcov never writes function names, even before GCC 4.2).
In reality, the linker command line has to look like:
clang --coverage -Xclang -coverage-version='407*' -Xclang -coverage-cfg-checksum -Xclang -coverage-no-function-names-in-data
Failing to pass -coverage-no-function-names-in-data can make gcov 4.7~7
either produce wrong results (for one gcov-4.9 program, I see "No executable lines")
or segfault (gcov-7).
(gcov-8 uses an incompatible format.)
This patch deletes -coverage-no-function-names-in-data and the related
function names support from libclang_rt.profile
Summary: This was preventing MemorySanitizerLegacyPass from appearing in --print-after-all.
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79661
https://reviews.llvm.org/D63616 added `-fsanitize-coverage-whitelist`
and `-fsanitize-coverage-blacklist` for clang.
However, it was done only for legacy pass manager.
This patch enable it for new pass manager as well.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79653
Summary:
When forking in several threads, the counters were written out in using the same global static variables (see GCDAProfiling.c): that leads to crashes.
So when there is a fork, the counters are resetted in the child process and they will be dumped at exit using the interprocess file locking.
When there is an exec, the counters are written out and in case of failures they're resetted.
Reviewers: jfb, vsk, marco-c, serge-sans-paille
Reviewed By: marco-c, serge-sans-paille
Subscribers: llvm-commits, serge-sans-paille, dmajor, cfe-commits, hiraditya, dexonsmith, #sanitizers, marco-c, sylvestre.ledru
Tags: #sanitizers, #clang, #llvm
Differential Revision: https://reviews.llvm.org/D78477
Summary:
Moving these function initializations into separate functions makes it easier
to read the runOnModule function. There is also precedent in the sanitizer code:
asan has a function ModuleAddressSanitizer::initializeCallbacks(Module &M). I
thought it made sense to break the initializations into two sets. One for the
compiler runtime functions and one for the event callbacks.
Tested with: check-all
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D79307
Summary:
Refactor getInterestingMemoryOperands() so that information about the
pointer operand is returned through an array of structures instead of
passing each piece of information separately by-value.
This is in preparation for returning information about multiple pointer
operands from a single instruction.
A side effect is that, instead of repeatedly generating the same
information through isInterestingMemoryAccess(), it is now simply collected
once and then passed around; that's probably more efficient.
HWAddressSanitizer has a bunch of copypasted code from AddressSanitizer,
so these changes have to be duplicated.
This is patch 3/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments
[glider: renamed llvm::InterestingMemoryOperand::Type to OpType to fix
GCC compilation]
Reviewers: kcc, glider
Reviewed By: glider
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77618
Summary:
In both AddressSanitizer and HWAddressSanitizer, we first collect
instructions whose operands should be instrumented and memory intrinsics,
then instrument them. Both during collection and when inserting
instrumentation, they are handled separately.
Collect them separately and instrument them separately. This is a bit
more straightforward, and prepares for collecting operands instead of
instructions in a future patch.
This is patch 2/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments
Reviewers: kcc, glider
Reviewed By: glider
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77617
Summary:
A following commit will split the loop over ToInstrument into two.
To avoid having to duplicate the condition for suppressing instrumentation
sites based on ClDebug{Min,Max}, refactor it out into a new function.
While we're at it, we can also avoid the indirection through
NumInstrumented for setting FunctionModified.
This is patch 1/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments
Reviewers: kcc, glider
Reviewed By: glider
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77616
I couldn't make arc land the changes properly, for some reason they all got
squashed. Reverting them now to land cleanly.
Summary: This reverts commit cfb5f89b62.
Reviewers: kcc, thejh
Subscribers:
Summary:
A following commit will split the loop over ToInstrument into two.
To avoid having to duplicate the condition for suppressing instrumentation
sites based on ClDebug{Min,Max}, refactor it out into a new function.
While we're at it, we can also avoid the indirection through
NumInstrumented for setting FunctionModified.
This is patch 1/4 of a patch series:
https://reviews.llvm.org/D77616 [PATCH 1/4] [AddressSanitizer] Refactor ClDebug{Min,Max} handling
https://reviews.llvm.org/D77617 [PATCH 2/4] [AddressSanitizer] Split out memory intrinsic handling
https://reviews.llvm.org/D77618 [PATCH 3/4] [AddressSanitizer] Refactor: Permit >1 interesting operands per instruction
https://reviews.llvm.org/D77619 [PATCH 4/4] [AddressSanitizer] Instrument byval call arguments
Reviewers: kcc, glider
Reviewed By: glider
Subscribers: jfb, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77616
Summary:
Refactored the parameter and return type where they are too generally
typed as Instruction.
Reviewers: dblaikie, wmi, craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79027
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Summary:
This is RFC for fixes in poison-related functions of ValueTracking.
These functions assume that a value can be poison bitwisely, but the semantics
of bitwise poison is not clear at the moment.
Allowing a value to have bitwise poison adds complexity to reasoning about
correctness of optimizations.
This patch makes the analysis functions simply assume that a value is
either fully poison or not, which has been used to understand the correctness
of a few previous optimizations.
The bitwise poison semantics seems to be only used by these functions as well.
In terms of implementation, using value-wise poison concept makes existing
functions do more precise analysis, which is what this patch contains.
Reviewers: spatel, lebedev.ri, jdoerfert, reames, nikic, nlopes, regehr
Reviewed By: nikic
Subscribers: fhahn, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78503
Summary:
This is RFC for fixes in poison-related functions of ValueTracking.
These functions assume that a value can be poison bitwisely, but the semantics
of bitwise poison is not clear at the moment.
Allowing a value to have bitwise poison adds complexity to reasoning about
correctness of optimizations.
This patch makes the analysis functions simply assume that a value is
either fully poison or not, which has been used to understand the correctness
of a few previous optimizations.
The bitwise poison semantics seems to be only used by these functions as well.
In terms of implementation, using value-wise poison concept makes existing
functions do more precise analysis, which is what this patch contains.
Reviewers: spatel, lebedev.ri, jdoerfert, reames, nikic, nlopes, regehr
Reviewed By: nikic
Subscribers: fhahn, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78503
Add support to optionally emit different instrumentation for accesses to
volatile variables. While the default TSAN runtime likely will never
require this feature, other runtimes for different environments that
have subtly different memory models or assumptions may require
distinguishing volatiles.
One such environment are OS kernels, where volatile is still used in
various places for various reasons, and often declare volatile to be
"safe enough" even in multi-threaded contexts. One such example is the
Linux kernel, which implements various synchronization primitives using
volatile (READ_ONCE(), WRITE_ONCE()). Here the Kernel Concurrency
Sanitizer (KCSAN) [1], is a runtime that uses TSAN instrumentation but
otherwise implements a very different approach to race detection from
TSAN.
While in the Linux kernel it is generally discouraged to use volatiles
explicitly, the topic will likely come up again, and we will eventually
need to distinguish volatile accesses [2]. The other use-case is
ignoring data races on specially marked variables in the kernel, for
example bit-flags (here we may hide 'volatile' behind a different name
such as 'no_data_race').
[1] https://github.com/google/ktsan/wiki/KCSAN
[2] https://lkml.kernel.org/r/CANpmjNOfXNE-Zh3MNP=-gmnhvKbsfUfTtWkyg_=VqTxS4nnptQ@mail.gmail.com
Author: melver (Marco Elver)
Reviewed-in: https://reviews.llvm.org/D78554
Summary:
Following up on the comments on D77638.
Not undoing rGd6525eff5ebfa0ef1d6cd75cb9b40b1881e7a707 here at the moment, since I don't know how to test mac builds. Please let me know if I should include that here too.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77889