Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.
Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.
Reviewers: davidxl, dblaikie, wmi
Reviewed By: dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77930
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Summary:
This patch establishes memory layout and adds instrumentation. It does
not add runtime support and does not enable MSan, which will be done
separately.
Memory layout is based on PPC64, with the exception that XorMask
is not used - low and high memory addresses are chosen in a way that
applying AndMask to low and high memory produces non-overlapping
results.
VarArgHelper is based on AMD64. It might be tempting to share some
code between the two implementations, but we need to keep in mind that
all the ABI similarities are coincidental, and therefore any such
sharing might backfire.
copyRegSaveArea() indiscriminately copies the entire register save area
shadow, however, fragments thereof not filled by the corresponding
visitCallSite() invocation contain irrelevant data. Whether or not this
can lead to practical problems is unclear, hence a simple TODO comment.
Note that the behavior of the related copyOverflowArea() is correct: it
copies only the vararg-related fragment of the overflow area shadow.
VarArgHelper test is based on the AArch64 one.
s390x ABI requires that arguments are zero-extended to 64 bits. This is
particularly important for __msan_maybe_warning_*() and
__msan_maybe_store_origin_*() shadow and origin arguments, since non
zeroed upper parts thereof confuse these functions. Therefore, add ZExt
attribute to the corresponding parameters.
Add ZExt attribute checks to msan-basic.ll. Since with
-msan-instrumentation-with-call-threshold=0 instrumentation looks quite
different, introduce the new CHECK-CALLS check prefix.
Reviewers: eugenis, vitalybuka, uweigand, jonpa
Reviewed By: eugenis
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits, stefansf, Andreas-Krebbel
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76624
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: sdesmalen, rriddle, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77262
Summary:
New SanitizerCoverage feature `inline-bool-flag` which inserts an
atomic store of `1` to a boolean (which is an 8bit integer in
practice) flag on every instrumented edge.
Implementation-wise it's very similar to `inline-8bit-counters`
features. So, much of wiring and test just follows the same pattern.
Reviewers: kcc, vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits, hiraditya, jfb, cfe-commits, #sanitizers
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D77244
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
In some cases, ASan may insert instrumentation before function arguments
have been stored into their allocas. This causes two issues:
1) The argument value must be spilled until it can be stored into the
reserved alloca, wasting a stack slot.
2) Until the store occurs in a later basic block, the debug location
will point to the wrong frame offset, and backtraces will show an
uninitialized value.
The proposed solution is to move instructions which initialize allocas
for arguments up into the entry block, before the position where ASan
starts inserting its instrumentation.
For the motivating test case, before the patch we see:
```
| 0033: movq %rdi, 0x68(%rbx) | | DW_TAG_formal_parameter |
| ... | | DW_AT_name ("a") |
| 00d1: movq 0x68(%rbx), %rsi | | DW_AT_location (RBX+0x90) |
| 00d5: movq %rsi, 0x90(%rbx) | | ^ not correct ... |
```
and after the patch we see:
```
| 002f: movq %rdi, 0x70(%rbx) | | DW_TAG_formal_parameter |
| | | DW_AT_name ("a") |
| | | DW_AT_location (RBX+0x70) |
```
rdar://61122691
Reviewers: aprantl, eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77182
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Summary:
Rename `succ_const_iterator` to `const_succ_iterator` and
`succ_const_range` to `const_succ_range` for consistency with the
predecessor iterators, and the corresponding iterators in
MachineBasicBlock.
Reviewers: nicholas, dblaikie, nlewycky
Subscribers: hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75952
Try again with an up-to-date version of D69471 (99317124 was a stale
revision).
---
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Summary:
When -dfsan-event-callbacks is specified, insert a call to
__dfsan_mem_transfer_callback on every memcpy and memmove.
Reviewers: vitalybuka, kcc, pcc
Reviewed By: kcc
Subscribers: eugenis, hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D75386
Summary:
For now just insert the callback for stores, similar to how MSan tracks
origins. In the future we may want to add callbacks for loads, memcpy,
function calls, CMPs, etc.
Reviewers: pcc, vitalybuka, kcc, eugenis
Reviewed By: vitalybuka, kcc, eugenis
Subscribers: eugenis, hiraditya, #sanitizers, llvm-commits, kcc
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D75312
See discussion on PR44792.
This reverts commit 02ce9d8ef5.
It also reverts the follow-up commits
8f46269f0 "[profile] Don't dump counters when forking and don't reset when calling exec** functions"
62c7d8402 "[profile] gcov_mutex must be static"
Summary:
There is no need to write out gcdas when forking because we can just reset the counters in the parent process.
Let say a counter is N before the fork, then fork and this counter is set to 0 in the child process.
In the parent process, the counter is incremented by P and in the child process it's incremented by C.
When dump is ran at exit, parent process will dump N+P for the given counter and the child process will dump 0+C, so when the gcdas are merged the resulting counter will be N+P+C.
About exec** functions, since the current process is replaced by an another one there is no need to reset the counters but just write out the gcdas since the counters are definitely lost.
To avoid to have lists in a bad state, we just lock them during the fork and the flush (if called explicitely) and lock them when an element is added.
Reviewers: marco-c
Reviewed By: marco-c
Subscribers: hiraditya, cfe-commits, #sanitizers, llvm-commits, sylvestre.ledru
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D74953
D73835 will make IRBuilder no longer trivially copyable. This patch
deletes the copy constructor in advance, to separate out the breakage.
Currently, the IRBuilder copy constructor is usually used by accident,
not by intention. In rG7c362b25d7a9 I've fixed a number of cases where
functions accepted IRBuilder rather than IRBuilder &, thus performing
an unnecessary copy. In rG5f7b92b1b4d6 I've fixed cases where an
IRBuilder was copied, while an InsertPointGuard should have been used
instead.
The only non-trivial use of the copy constructor is the
getIRBForDbgInsertion() helper, for which I separated construction and
setting of the insertion point in this patch.
Differential Revision: https://reviews.llvm.org/D74693
replaceDbgDeclare is used to update the descriptions of stack variables
when they are moved (e.g. by ASan or SafeStack). A side effect of
replaceDbgDeclare is that it moves dbg.declares around in the
instruction stream (typically by hoisting them into the entry block).
This behavior was introduced in llvm/r227544 to fix an assertion failure
(llvm.org/PR22386), but no longer appears to be necessary.
Hoisting a dbg.declare generally does not create problems. Usually,
dbg.declare either describes an argument or an alloca in the entry
block, and backends have special handling to emit locations for these.
In optimized builds, LowerDbgDeclare places dbg.values in the right
spots regardless of where the dbg.declare is. And no one uses
replaceDbgDeclare to handle things like VLAs.
However, there doesn't seem to be a positive case for moving
dbg.declares around anymore, and this reordering can get in the way of
understanding other bugs. I propose getting rid of it.
Testing: stage2 RelWithDebInfo sanitized build, check-llvm
rdar://59397340
Differential Revision: https://reviews.llvm.org/D74517
Various parts of the LLVM code generator assume that the address
argument of a dbg.declare is not a `ptrtoint`-of-alloca. ASan breaks
this assumption, and this results in local variables sometimes being
unavailable at -O0.
GlobalISel, SelectionDAG, and FastISel all do not appear to expect
dbg.declares to have a `ptrtoint` as an operand. This means that they do
not place entry block allocas in the usual side table reserved for local
variables available in the whole function scope. This isn't always a
problem, as LLVM can try to lower the dbg.declare to a DBG_VALUE, but
those DBG_VALUEs can get dropped for all the usual reasons DBG_VALUEs
get dropped. In the ObjC test case I'm looking at, the cause happens to
be that `replaceDbgDeclare` has hoisted dbg.declares into the entry
block, causing LiveDebugValues to "kill" the DBG_VALUEs because the
lexical dominance check fails.
To address this, I propose:
1) Have ASan (always) pass an alloca to dbg.declares (this patch). This
is a narrow bugfix for -O0 debugging.
2) Make replaceDbgDeclare not move dbg.declares around. This should be a
generic improvement for optimized debug info, as it would prevent the
lexical dominance check in LiveDebugValues from killing as many
variables.
This means reverting llvm/r227544, which fixed an assertion failure
(llvm.org/PR22386) but no longer seems to be necessary. I was able to
complete a stage2 build with the revert in place.
rdar://54688991
Differential Revision: https://reviews.llvm.org/D74369
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
We have to avoid using a GOT relocation to access the bias variable,
setting the hidden visibility achieves that.
Differential Revision: https://reviews.llvm.org/D73529
Summary:
These instructions ignore parts of the input vectors which makes the
default MSan handling too strict and causes false positive reports.
Reviewers: vitalybuka, RKSimon, thakis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73374
Patch by Chris Chrulski
When generating value profiling instrumentation, ensure the call gets the
correct funclet token, otherwise WinEHPrepare will turn the call (and all
subsequent instructions) into unreachable.
Differential Revision: https://reviews.llvm.org/D73221
Patch by Chris Chrulski
This fixes a problem with the current behavior when assertions are enabled.
A loop that exits to a catchswitch instruction is skipped for the counter
promotion, however this check was being done after the PGOCounterPromoter
tried to collect an insertion point for the exit block. A call to
getFirstInsertionPt() on a block that begins with a catchswitch instruction
triggers an assertion. This change performs a check whether the counter
promotion is possible prior to collecting the ExitBlocks and InsertPts.
Differential Revision: https://reviews.llvm.org/D73222
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This is an alternative to the continous mode that was implemented in
D68351. This mode relies on padding and the ability to mmap a file over
the existing mapping which is generally only available on POSIX systems
and isn't suitable for other platforms.
This change instead introduces the ability to relocate counters at
runtime using a level of indirection. On every counter access, we add a
bias to the counter address. This bias is stored in a symbol that's
provided by the profile runtime and is initially set to zero, meaning no
relocation. The runtime can mmap the profile into memory at abitrary
location, and set bias to the offset between the original and the new
counter location, at which point every subsequent counter access will be
to the new location, which allows updating profile directly akin to the
continous mode.
The advantage of this implementation is that doesn't require any special
OS support. The disadvantage is the extra overhead due to additional
instructions required for each counter access (overhead both in terms of
binary size and performance) plus duplication of counters (i.e. one copy
in the binary itself and another copy that's mmapped).
Differential Revision: https://reviews.llvm.org/D69740
As of D70146 lld GCs comdats as a group and no longer considers notes in
comdats to be GC roots, so we need to move the note to a comdat with a GC root
section (.init_array) in order to prevent lld from discarding the note.
Differential Revision: https://reviews.llvm.org/D72936
Summary: This fixes a crash in internal builds under SamplePGO.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72653
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
Summary:
Support alloca-referencing dbg.value in hwasan instrumentation.
Update AsmPrinter to emit DW_AT_LLVM_tag_offset when location is in
loclist format.
Reviewers: pcc
Subscribers: srhines, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70753
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Summary: Rollback of parts of D71213. After digging more into the code I think we should leave 0 when creating the instructions (CreateMemcpy, CreateMaskedStore, CreateMaskedLoad). It's probably fine for MemorySanitizer because Alignement is resolved but I'm having a hard time convincing myself it has no impact at all (although tests are passing).
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71332
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Summary:
This fixes https://llvm.org/PR26673
"Wrong debugging information with -fsanitize=address"
where asan instrumentation causes the prologue end to be computed
incorrectly: findPrologueEndLoc, looks for the first instruction
with a debug location to determine the prologue end. Since the asan
instrumentation instructions had debug locations, that prologue end was
at some instruction, where the stack frame is still being set up.
There seems to be no good reason for extra debug locations for the
asan instrumentations that set up the frame; they don't have a natural
source location. In the debugger they are simply located at the start
of the function.
For certain other instrumentations like -fsanitize-coverage=trace-pc-guard
the same problem persists - that might be more work to fix, since it
looks like they rely on locations of the tracee functions.
This partly reverts aaf4bb2394
"[asan] Set debug location in ASan function prologue"
whose motivation was to give debug location info to the coverage callback.
Its test only ensures that the call to @__sanitizer_cov_trace_pc_guard is
given the correct source location; as the debug location is still set in
ModuleSanitizerCoverage::InjectCoverageAtBlock, the test does not break.
So -fsanitize-coverage is hopefully unaffected - I don't think it should
rely on the debug locations of asan-generated allocas.
Related revision: 3c6c14d14b
"ASAN: Provide reliable debug info for local variables at -O0."
Below is how the X86 assembly version of the added test case changes.
We get rid of some .loc lines and put prologue_end where the user code starts.
```diff
--- 2.master.s 2019-12-02 12:32:38.982959053 +0100
+++ 2.patch.s 2019-12-02 12:32:41.106246674 +0100
@@ -45,8 +45,6 @@
.cfi_offset %rbx, -24
xorl %eax, %eax
movl %eax, %ecx
- .Ltmp2:
- .loc 1 3 0 prologue_end # 2.c:3:0
cmpl $0, __asan_option_detect_stack_use_after_return
movl %edi, 92(%rbx) # 4-byte Spill
movq %rsi, 80(%rbx) # 8-byte Spill
@@ -57,9 +55,7 @@
callq __asan_stack_malloc_0
movq %rax, 72(%rbx) # 8-byte Spill
.LBB1_2:
- .loc 1 0 0 is_stmt 0 # 2.c:0:0
movq 72(%rbx), %rax # 8-byte Reload
- .loc 1 3 0 # 2.c:3:0
cmpq $0, %rax
movq %rax, %rcx
movq %rax, 64(%rbx) # 8-byte Spill
@@ -72,9 +68,7 @@
movq %rax, %rsp
movq %rax, 56(%rbx) # 8-byte Spill
.LBB1_4:
- .loc 1 0 0 # 2.c:0:0
movq 56(%rbx), %rax # 8-byte Reload
- .loc 1 3 0 # 2.c:3:0
movq %rax, 120(%rbx)
movq %rax, %rcx
addq $32, %rcx
@@ -99,7 +93,6 @@
movb %r8b, 31(%rbx) # 1-byte Spill
je .LBB1_7
# %bb.5:
- .loc 1 0 0 # 2.c:0:0
movq 40(%rbx), %rax # 8-byte Reload
andq $7, %rax
addq $3, %rax
@@ -118,7 +111,8 @@
movl %ecx, (%rax)
movq 80(%rbx), %rdx # 8-byte Reload
movq %rdx, 128(%rbx)
- .loc 1 4 3 is_stmt 1 # 2.c:4:3
+.Ltmp2:
+ .loc 1 4 3 prologue_end # 2.c:4:3
movq %rax, %rdi
callq f
movq 48(%rbx), %rax # 8-byte Reload
```
Reviewers: eugenis, aprantl
Reviewed By: eugenis
Subscribers: ormris, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70894
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
With updates to various LLVM tools that use SpecialCastList.
It was tempting to use RealFileSystem as the default, but that makes it
too easy to accidentally forget passing VFS in clang code.
Summary:
This is a follow-up to 590f279c45, which
moved some of the callers to use VFS.
It turned out more code in Driver calls into real filesystem APIs and
also needs an update.
Reviewers: gribozavr2, kadircet
Reviewed By: kadircet
Subscribers: ormris, mgorny, hiraditya, llvm-commits, jkorous, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D70440
This is a patch to support D66328, which was reverted until this lands.
Enable a compiler-rt test that used to fail previously with D66328.
Differential Revision: https://reviews.llvm.org/D67283
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This was an experiment made possible by a non-standard feature of the
Android dynamic loader.
It required introducing a flag to tell the compiler which ABI was being
targeted.
This flag is no longer needed, since the generated code now works for
both ABI's.
We leave that flag untouched for backwards compatibility. This also
means that if we need to distinguish between targeted ABI's again
we can do that without disturbing any existing workflows.
We leave a comment in the source code and mention in the help text to
explain this for any confused person reading the code in the future.
Patch by Matthew Malcomson
Differential Revision: https://reviews.llvm.org/D69574
The address sanitizer ignore memory accesses from different address
spaces, however when instrumenting globals the check for different
address spaces is missing. This result in assertion failure. The fault
was found in an out of tree target.
The patch skip all globals of non default address space.
Reviewed By: leonardchan, vitalybuka
Differential Revision: https://reviews.llvm.org/D68790
Summary:
MSan instrumentation adds stores and loads even to pure
readonly/writeonly functions. It is removing some of those attributes
from instrumented functions and call targets, but apparently not enough.
Remove writeonly, argmemonly and speculatable in addition to readonly /
readnone.
Reviewers: pcc, vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69541
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
> llvm-svn: 374481
Signed-off-by: Vitaly Buka <vitalybuka@google.com>
llvm-svn: 374527
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
llvm-svn: 374481
David added the JamCRC implementation in r246590. More recently, Eugene
added a CRC-32 implementation in r357901, which falls back to zlib's
crc32 function if present.
These checksums are essentially the same, so having multiple
implementations seems unnecessary. This replaces the CRC-32
implementation with the simpler one from JamCRC, and implements the
JamCRC interface in terms of CRC-32 since this means it can use zlib's
implementation when available, saving a few bytes and potentially making
it faster.
JamCRC took an ArrayRef<char> argument, and CRC-32 took a StringRef.
This patch changes it to ArrayRef<uint8_t> which I think is the best
choice, and simplifies a few of the callers nicely.
Differential revision: https://reviews.llvm.org/D68570
llvm-svn: 374148
Summary: This PR creates a utility class called ValueProfileCollector that tells PGOInstrumentationGen and PGOInstrumentationUse what to value-profile and where to attach the profile metadata. It then refactors logic scattered in PGOInstrumentation.cpp into two plugins that plug into the ValueProfileCollector.
Authored By: Wael Yehia <wyehia@ca.ibm.com>
Reviewer: davidxl, tejohnson, xur
Reviewed By: davidxl, tejohnson, xur
Subscribers: llvm-commits
Tag: #llvm
Differential Revision: https://reviews.llvm.org/D67920
Patch By Wael Yehia <wyehia@ca.ibm.com>
llvm-svn: 373601
I submitted that patch after I got the LGTM, but the comments didn't
appear until after I submitted the change. This adds `const` to the
constructor argument and makes it a pointer.
llvm-svn: 373391
PR42924 points out that copying the GlobalsMetadata type during
construction of AddressSanitizer can result in exteremely lengthened
build times for translation units that have many globals. This can be addressed
by just making the GlobalsMD member in AddressSanitizer a reference to
avoid the copy. The GlobalsMetadata type is already passed to the
constructor as a reference anyway.
Differential Revision: https://reviews.llvm.org/D68287
llvm-svn: 373389
With this patch, compiler generated profile variables will have its own COMDAT
name for ELF format, which syncs the behavior with COFF. Tested with clang
PGO bootstrap. This shows a modest reduction in object sizes in ELF format.
Differential Revision: https://reviews.llvm.org/D68041
llvm-svn: 373241
We can't use short granules with stack instrumentation when targeting older
API levels because the rest of the system won't understand the short granule
tags stored in shadow memory.
Moreover, we need to be able to let old binaries (which won't understand
short granule tags) run on a new system that supports short granule
tags. Such binaries will call the __hwasan_tag_mismatch function when their
outlined checks fail. We can compensate for the binary's lack of support
for short granules by implementing the short granule part of the check in
the __hwasan_tag_mismatch function. Unfortunately we can't do anything about
inline checks, but I don't believe that we can generate these by default on
aarch64, nor did we do so when the ABI was fixed.
A new function, __hwasan_tag_mismatch_v2, is introduced that lets code
targeting the new runtime avoid redoing the short granule check. Because tag
mismatches are rare this isn't important from a performance perspective; the
main benefit is that it introduces a symbol dependency that prevents binaries
targeting the new runtime from running on older (i.e. incompatible) runtimes.
Differential Revision: https://reviews.llvm.org/D68059
llvm-svn: 373035
The static analyzer is warning about a potential null dereferences, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 372960
The static analyzer is warning about a potential null dereference, but we should be able to use cast<MemIntrinsic> directly and if not assert will fire for us.
llvm-svn: 372959
The static analyzer is warning about potential null dereference, but we can use cast<ConstantInt> directly and if not assert will fire for us.
llvm-svn: 372429
Summary:
The PGO counter reading will add cold and inlinehint (hot) attributes
to functions that are very cold or hot. This was using hardcoded
thresholds, instead of the profile summary cutoffs which are used in
other hot/cold detection and are more dynamic and adaptable. Switch
to using the summary-based cold/hot detection.
The hardcoded limits were causing some code that had a medium level of
hotness (per the summary) to be incorrectly marked with a cold
attribute, blocking inlining.
Reviewers: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67673
llvm-svn: 372189
For COFF, a comdat group is really a symbol marked
IMAGE_COMDAT_SELECT_ANY and zero or more other symbols marked
IMAGE_COMDAT_SELECT_ASSOCIATIVE. Typically the associative symbols in
the group are not external and are not referenced by other TUs, they are
things like debug info, C++ dynamic initializers, or other section
registration schemes. The Visual C++ linker reports a duplicate symbol
error for symbols marked IMAGE_COMDAT_SELECT_ASSOCIATIVE even if they
would be discarded after handling the leader symbol.
Fixes coverage-inline.cpp in check-profile after r372020.
llvm-svn: 372182
This fixes relocations against __profd_ symbols in discarded sections,
which is PR41380.
In general, instrumentation happens very early, and optimization and
inlining happens afterwards. The counters for a function are calculated
early, and after inlining, counters for an inlined function may be
widely referenced by other functions.
For C++ inline functions of all kinds (linkonce_odr &
available_externally mainly), instr profiling wants to deduplicate these
__profc_ and __profd_ globals. Otherwise the binary would be quite
large.
I made __profd_ and __profc_ comdat in r355044, but I chose to make
__profd_ internal. At the time, I was only dealing with coverage, and in
that case, none of the instrumentation needs to reference __profd_.
However, if you use PGO, then instrumentation passes add calls to
__llvm_profile_instrument_range which reference __profd_ globals. The
solution is to make these globals externally visible by using
linkonce_odr linkage for data as was done for counters.
This is safe because PGO adds a CFG hash to the names of the data and
counter globals, so if different TUs have different globals, they will
get different data and counter arrays.
Reviewers: xur, hans
Differential Revision: https://reviews.llvm.org/D67579
llvm-svn: 372020
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
Avoid visiting an instruction more than once by using a map.
This is similar to https://reviews.llvm.org/rL361416.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67198
llvm-svn: 371086
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
By default ASan calls a versioned function
`__asan_version_mismatch_check_vXXX` from the ASan module constructor to
check that the compiler ABI version and runtime ABI version are
compatible. This ensures that we get a predictable linker error instead
of hard-to-debug runtime errors.
Sometimes, however, we want to skip this safety guard. This new command
line option allows us to do just that.
rdar://47891956
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D66826
llvm-svn: 370258
Try harder to emulate "old runtime" in the test.
To get the old behavior with the new runtime library, we need both
disable personality function wrapping and enable landing pad
instrumentation.
llvm-svn: 369977
One problem with untagging memory in landing pads is that it only works
correctly if the function that catches the exception is instrumented.
If the function is uninstrumented, we have no opportunity to untag the
memory.
To address this, replace landing pad instrumentation with personality function
wrapping. Each function with an instrumented stack has its personality function
replaced with a wrapper provided by the runtime. Functions that did not have
a personality function to begin with also get wrappers if they may be unwound
past. As the unwinder calls personality functions during stack unwinding,
the original personality function is called and the function's stack frame is
untagged by the wrapper if the personality function instructs the unwinder
to keep unwinding. If unwinding stops at a landing pad, the function is
still responsible for untagging its stack frame if it resumes unwinding.
The old landing pad mechanism is preserved for compatibility with old runtimes.
Differential Revision: https://reviews.llvm.org/D66377
llvm-svn: 369721
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
llvm-svn: 368102
Summary:
This change gives Emscripten the ability to use more than one constructor
priorities that runs before ASan. By convention, constructor priorites 0-100
are reserved for use by the system. ASan on Emscripten now uses priority 50,
leaving plenty of room for use by Emscripten before and after ASan.
This change is done in response to:
https://github.com/emscripten-core/emscripten/pull/9076#discussion_r310323723
Reviewers: kripken, tlively, aheejin
Reviewed By: tlively
Subscribers: cfe-commits, dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D65684
llvm-svn: 368101
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.
I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.
Reviewers: jdoerfert, spatel, RKSimon, craig.topper
Reviewed By: jdoerfert
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65528
llvm-svn: 367548
Summary:
Sometimes we need to swap true-val and false-val of a `SelectInst`.
Having a function for that is nicer than hand-writing it each time.
Reviewers: spatel, RKSimon, craig.topper, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65520
llvm-svn: 367547
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
llvm-svn: 366544
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
Note: I don't actually plan to implement all of the cases at the moment, I'm just documenting them for completeness. There's a couple of cases left which are practically useful for me in debugging loop transforms, and I'll probably stop there for the moment.
llvm-svn: 365550
These are sources of poison which don't come from flags, but are clearly documented in the LangRef. Left off support for scalable vectors for the moment, but should be easy to add if anyone is interested.
llvm-svn: 365543
Implements a transform pass which instruments IR such that poison semantics are made explicit. That is, it provides a (possibly partial) executable semantics for every instruction w.r.t. poison as specified in the LLVM LangRef. There are obvious parallels to the sanitizer tools, but this pass is focused purely on the semantics of LLVM IR, not any particular source language.
The target audience for this tool is developers working on or targetting LLVM from a frontend. The idea is to be able to take arbitrary IR (with the assumption of known inputs), and evaluate it concretely after having made poison semantics explicit to detect cases where either a) the original code executes UB, or b) a transform pass introduces UB which didn't exist in the original program.
At the moment, this is mostly the framework and still needs to be fleshed out. By reusing existing code we have decent coverage, but there's a lot of cases not yet handled. What's here is good enough to handle interesting cases though; for instance, one of the recent LFTR bugs involved UB being triggered by integer induction variables with nsw/nuw flags would be reported by the current code.
(See comment in PoisonChecking.cpp for full explanation and context)
Differential Revision: https://reviews.llvm.org/D64215
llvm-svn: 365536
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
llvm-svn: 365259
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
llvm-svn: 365008
This shaves an instruction (and a GOT entry in PIC code) off prologues of
functions with stack variables.
Differential Revision: https://reviews.llvm.org/D63472
llvm-svn: 364608
Summary:
This diff enables address sanitizer on Emscripten.
On Emscripten, real memory starts at the value passed to --global-base.
All memory before this is used as shadow memory, and thus the shadow mapping
function is simply dividing by 8.
Reviewers: tlively, aheejin, sbc100
Reviewed By: sbc100
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63742
llvm-svn: 364468
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
llvm-svn: 364105
Currently, many profiling tests on Solaris FAIL like
Command Output (stderr):
--
Undefined first referenced
symbol in file
__llvm_profile_register_names_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
__llvm_profile_register_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
Solaris 11.4 ld supports the non-standard GNU ld extension of adding
__start_SECNAME and __stop_SECNAME labels to sections whose names are valid
as C identifiers. Given that we already use Solaris 11.4-only features
like ld -z gnu-version-script-compat and fully working .preinit_array
support in compiler-rt, we don't need to worry about older versions of
Solaris ld.
The patch documents that support (although the comment in
lib/Transforms/Instrumentation/InstrProfiling.cpp
(needsRuntimeRegistrationOfSectionRange) is quite cryptic what it's
actually about), and adapts the affected testcase not to expect the
alternativeq __llvm_profile_register_functions and __llvm_profile_init.
It fixes all affected tests.
Tested on amd64-pc-solaris2.11.
Differential Revision: https://reviews.llvm.org/D41111
llvm-svn: 363984
This saves roughly 32 bytes of instructions per function with stack objects
and causes us to preserve enough information that we can recover the original
tags of all stack variables.
Now that stack tags are deterministic, we no longer need to pass
-hwasan-generate-tags-with-calls during check-hwasan. This also means that
the new stack tag generation mechanism is exercised by check-hwasan.
Differential Revision: https://reviews.llvm.org/D63360
llvm-svn: 363636
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.
In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.
Differential Revision: https://reviews.llvm.org/D63119
llvm-svn: 363635
As shown in PR41279, some basic blocks (such as catchswitch) cannot be
instrumented. This patch filters out these BBs in PGO instrumentation.
It also sets the profile count to the fail-to-instrument edge, so that we
can propagate the counts in the CFG.
Differential Revision: https://reviews.llvm.org/D62700
llvm-svn: 362995
Fix PR41279 where critical edges to EHPad are not split.
The fix is to not instrument those critical edges. We used to be able to know
the size of counters right after MST is computed. With this, we have to
pre-collect the instrument BBs to know the size, and then instrument them.
Differential Revision: https://reviews.llvm.org/D62439
llvm-svn: 361882
Summary: Avoid visiting an instruction more than once by using a map.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62262
llvm-svn: 361416
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
Summary:
Adds a call to __hwasan_handle_vfork(SP) at each landingpad entry.
Reusing __hwasan_handle_vfork instead of introducing a new runtime call
in order to be ABI-compatible with old runtime library.
Reviewers: pcc
Subscribers: kubamracek, hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61968
llvm-svn: 360959
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
Fixes the main issue in PR41693
When both modes are used, two functions are created:
`sancov.module_ctor`, `sancov.module_ctor.$LastUnique`, where
$LastUnique is the current LastUnique counter that may be different in
another module.
`sancov.module_ctor.$LastUnique` belongs to the comdat group of the same
name (due to the non-null third field of the ctor in llvm.global_ctors).
COMDAT group section [ 9] `.group' [sancov.module_ctor] contains 6 sections:
[Index] Name
[ 10] .text.sancov.module_ctor
[ 11] .rela.text.sancov.module_ctor
[ 12] .text.sancov.module_ctor.6
[ 13] .rela.text.sancov.module_ctor.6
[ 23] .init_array.2
[ 24] .rela.init_array.2
# 2 problems:
# 1) If sancov.module_ctor in this module is discarded, this group
# has a relocation to a discarded section. ld.bfd and gold will
# error. (Another issue: it is silently accepted by lld)
# 2) The comdat group has an unstable name that may be different in
# another translation unit. Even if the linker allows the dangling relocation
# (with --noinhibit-exec), there will be many undesired .init_array entries
COMDAT group section [ 25] `.group' [sancov.module_ctor.6] contains 2 sections:
[Index] Name
[ 26] .init_array.2
[ 27] .rela.init_array.2
By using different module ctor names, the associated comdat group names
will also be different and thus stable across modules.
Reviewed By: morehouse, phosek
Differential Revision: https://reviews.llvm.org/D61510
llvm-svn: 360107
Summary: Fix a transformation bug where two scopes share a common instrution to hoist.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61405
llvm-svn: 359736
Summary:
When a variable goes into scope several times within a single function
or when two variables from different scopes share a stack slot it may
be incorrect to poison such scoped locals at the beginning of the
function.
In the former case it may lead to false negatives (see
https://github.com/google/sanitizers/issues/590), in the latter - to
incorrect reports (because only one origin remains on the stack).
If Clang emits lifetime intrinsics for such scoped variables we insert
code poisoning them after each call to llvm.lifetime.start().
If for a certain intrinsic we fail to find a corresponding alloca, we
fall back to poisoning allocas for the whole function, as it's now
impossible to tell which alloca was missed.
The new instrumentation may slow down hot loops containing local
variables with lifetime intrinsics, so we allow disabling it with
-mllvm -msan-handle-lifetime-intrinsics=false.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60617
llvm-svn: 359536
I added a diagnostic along the lines of `-Wpessimizing-move` to detect `return x = y` suppressing copy elision, but I don't know if the diagnostic is really worth it. Anyway, here are the places where my diagnostic reported that copy elision would have been possible if not for the assignment.
P1155R1 in the post-San-Diego WG21 (C++ committee) mailing discusses whether WG21 should fix this pitfall by just changing the core language to permit copy elision in cases like these.
(Kona update: The bulk of P1155 is proceeding to CWG review, but specifically *not* the parts that explored the notion of permitting copy-elision in these specific cases.)
Reviewed By: dblaikie
Author: Arthur O'Dwyer
Differential Revision: https://reviews.llvm.org/D54885
llvm-svn: 359236
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
If there are any intrinsics that cannot be traced back to an alloca, we
might have missed the start of a variable's scope, leading to false
error reports if the variable is poisoned at function entry. Instead, if
there are some intrinsics that can't be traced, fail safe and don't
poison the variables in that function.
Differential revision: https://reviews.llvm.org/D60686
llvm-svn: 358478
Summary:
Factor out findAllocaForValue() from ASan so that we can use it in
MSan to handle lifetime intrinsics.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60615
llvm-svn: 358380
We currently assume profile hash conflicts will be caught by an upfront
check and we assert for the cases that escape the check. The assumption
is not always true as there are chances of conflict. This patch prints
a warning and skips annotating the function for the escaped cases,.
Differential Revision: https://reviews.llvm.org/D60154
llvm-svn: 358225
It's been on in Android for a while without causing problems, so it's time
to make it the default and remove the flag.
Differential Revision: https://reviews.llvm.org/D60355
llvm-svn: 357960
Create method `optForNone()` testing for the function level equivalent of
`-O0` and refactor appropriately.
Differential revision: https://reviews.llvm.org/D59852
llvm-svn: 357638
This is in preparation to a driver patch to add gcc 8's -fsanitize=pointer-compare and -fsanitize=pointer-subtract.
Disabled by default as this is still an experimental feature.
Reviewed By: morehouse, vitalybuka
Differential Revision: https://reviews.llvm.org/D59220
llvm-svn: 357157
This patch adds a new option to SplitAllCriticalEdges and uses it to avoid splitting critical edges when the destination basic block ends with unreachable. Otherwise if we split the critical edge, sanitizer coverage will instrument the new block that gets inserted for the split. But since this block itself shouldn't be reachable this is pointless. These basic blocks will stick around and generate assembly, but they don't end in sane control flow and might get placed at the end of the function. This makes it look like one function has code that flows into the next function.
This showed up while compiling the linux kernel with clang. The kernel has a tool called objtool that detected the code that appeared to flow from one function to the next. https://github.com/ClangBuiltLinux/linux/issues/351#issuecomment-461698884
Differential Revision: https://reviews.llvm.org/D57982
llvm-svn: 355947
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
Summary:
They simply shuffle bits. MSan needs to do the same with shadow bits,
after making sure that the shuffle mask is fully initialized.
Reviewers: pcc, vitalybuka
Subscribers: hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58858
llvm-svn: 355348
Summary:
These sorts of blocks often contain calls to noreturn functions, like
longjmp, throw, or trap. If they don't end the program, they are
"interesting" from the perspective of sanitizer coverage, so we should
instrument them. This was discussed in https://reviews.llvm.org/D57982.
Reviewers: kcc, vitalybuka
Subscribers: llvm-commits, craig.topper, efriedma, morehouse, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58740
llvm-svn: 355152
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
Part 2 of CSPGO changes (mostly related to ProfileSummary).
Note that I use a default parameter in setProfileSummary() and getSummary().
This is to break the dependency in clang. I will make the parameter explicit
after changing clang in a separated patch.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 355131
Summary:
I hadn't realized that instrumentation runs before inlining, so we can't
use the function as the comdat group. Doing so can create relocations
against discarded sections when references to discarded __profc_
variables are inlined into functions outside the function's comdat
group.
In the future, perhaps we should consider standardizing the comdat group
names that ELF and COFF use. It will save object file size, since
__profv_$sym won't appear in the symbol table again.
Reviewers: xur, vsk
Subscribers: eraman, hiraditya, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58737
llvm-svn: 355044
Current PGO profile counts are not context sensitive. The branch probabilities
for the inlined functions are kept the same for all call-sites, and they might
be very different from the actual branch probabilities. These suboptimal
profiles can greatly affect some downstream optimizations, in particular for
the machine basic block placement optimization.
In this patch, we propose to have a post-inline PGO instrumentation/use pass,
which we called Context Sensitive PGO (CSPGO). For the users who want the best
possible performance, they can perform a second round of PGO instrument/use on
the top of the regular PGO. They will have two sets of profile counts. The
first pass profile will be manly for inline, indirect-call promotion, and
CGSCC simplification pass optimizations. The second pass profile is for
post-inline optimizations and code-gen optimizations.
A typical usage:
// Regular PGO instrumentation and generate pass1 profile.
> clang -O2 -fprofile-generate source.c -o gen
> ./gen
> llvm-profdata merge default.*profraw -o pass1.profdata
// CSPGO instrumentation.
> clang -O2 -fprofile-use=pass1.profdata -fcs-profile-generate -o gen2
> ./gen2
// Merge two sets of profiles
> llvm-profdata merge default.*profraw pass1.profdata -o profile.profdata
// Use the combined profile. Pass manager will invoke two PGO use passes.
> clang -O2 -fprofile-use=profile.profdata -o use
This change touches many components in the compiler. The reviewed patch
(D54175) will committed in phrases.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 354930
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Summary:
The motivating use case is eliminating duplicate profile data registered
for the same inline function in two object files. Before this change,
users would observe multiple symbol definition errors with VC link, but
links with LLD would succeed.
Users (Mozilla) have reported that PGO works well with clang-cl and LLD,
but when using LLD without this static registration, we would get into a
"relocation against a discarded section" situation. I'm not sure what
happens in that situation, but I suspect that duplicate, unused profile
information was retained. If so, this change will reduce the size of
such binaries with LLD.
Now, Windows uses static registration and is in line with all the other
platforms.
Reviewers: davidxl, wmi, inglorion, void, calixte
Subscribers: mgorny, krytarowski, eraman, fedor.sergeev, hiraditya, #sanitizers, dmajor, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D57929
llvm-svn: 353547
Summary:
Experimentally we found that promotion to scalars carries less benefits
than sinking and hoisting in LICM. When using MemorySSA, we build an
AliasSetTracker on demand in order to reuse the current infrastructure.
We only build it if less than AccessCapForMSSAPromotion exist in the
loop, a cap that is by default set to 250. This value ensures there are
no runtime regressions, and there are small compile time gains for
pathological cases. A much lower value (20) was found to yield a single
regression in the llvm-test-suite and much higher benefits for compile
times. Conservatively we set the current cap to a high value, but we will
explore lowering it when MemorySSA is enabled by default.
Reviewers: sanjoy, chandlerc
Subscribers: nemanjai, jlebar, Prazek, george.burgess.iv, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D56625
llvm-svn: 353339
DomTreeUpdater depends on headers from Analysis, but is in IR. This is a
layering violation since Analysis depends on IR. Relocate this code from IR
to Analysis to fix the layering violation.
llvm-svn: 353265
Summary:
When attaching prof metadata to promoted direct calls in SamplePGO
mode, no need to construct and use a SmallVector to pass a single count
to the ArrayRef parameter, we can simply use a brace-enclosed init list.
This made a small but consistent improvement for a ThinLTO backend
compile I was measuring.
Reviewers: wmi
Subscribers: mehdi_amini, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57706
llvm-svn: 353123
Summary:
If the user declares or defines `__sancov_lowest_stack` with an
unexpected type, then `getOrInsertGlobal` inserts a bitcast and the
following cast fails:
```
Constant *SanCovLowestStackConstant =
M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy);
SanCovLowestStack = cast<GlobalVariable>(SanCovLowestStackConstant);
```
This variable is a SanitizerCoverage implementation detail and the user
should generally never have a need to access it, so we emit an error
now.
rdar://problem/44143130
Reviewers: morehouse
Differential Revision: https://reviews.llvm.org/D57633
llvm-svn: 353100
Summary:
Currently, ASan inserts a call to `__asan_handle_no_return` before every
`noreturn` function call/invoke. This is unnecessary for calls to other
runtime funtions. This patch changes ASan to skip instrumentation for
functions calls marked with `!nosanitize` metadata.
Reviewers: TODO
Differential Revision: https://reviews.llvm.org/D57489
llvm-svn: 352948
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all InvokeInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57171
llvm-svn: 352910
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
Otherwise they are treated as dynamic allocas, which ends up increasing
code size significantly. This reduces size of Chromium base_unittests
by 2MB (6.7%).
Differential Revision: https://reviews.llvm.org/D57205
llvm-svn: 352152
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
This saves a cbz+cold call in the interceptor ABI, as well as a realign
in both ABIs, trading off a dcache entry against some branch predictor
entries and some code size.
Unfortunately the functionality is hidden behind a flag because ifunc is
known to be broken on static binaries on Android.
Differential Revision: https://reviews.llvm.org/D57084
llvm-svn: 351989
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972 | 6.24%
16 | 171765192 | 7.03%
8 | 172917788 | 5.82%
4 | 177054016 | 6.89%
Differential Revision: https://reviews.llvm.org/D56954
llvm-svn: 351920
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary: To avoid adding an extern function to the global ctors list, apply the changes of D56538 also to MSan.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56734
llvm-svn: 351322
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
Summary:
Comdat groups override weak symbol behavior, allowing the linker to keep
the comdats for weak symbols in favor of comdats for strong symbols.
Fixes the issue described in:
https://bugs.chromium.org/p/chromium/issues/detail?id=918662
Reviewers: eugenis, pcc, rnk
Reviewed By: pcc, rnk
Subscribers: smeenai, rnk, bd1976llvm, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56516
llvm-svn: 351247
Summary:
Use appendToUsed instead of include to ensure that
SanitizerCoverage's constructors are not stripped.
Also, use isOSBinFormatCOFF() to determine if target
binary format is COFF.
Reviewers: pcc
Reviewed By: pcc
Subscribers: hiraditya
Differential Revision: https://reviews.llvm.org/D56369
llvm-svn: 351118