This patch generalizes the zeroing of vector elements with the BLEND instructions. Currently a zero vector will only blend if the shuffled elements are correctly inline, this patch recognises when a vector input is zero (or zeroable) and modifies a local copy of the shuffle mask to support a blend. As a zeroable vector input may not be all zeroes, the zeroable vector is regenerated if necessary.
Differential Revision: http://reviews.llvm.org/D14050
llvm-svn: 251659
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
When using the MCU psABI, compiler-generated library calls should pass
some parameters in-register. However, since inreg marking for x86 is currently
done by the front end, it will not be applied to backend-generated calls.
This is a workaround for PR3997, which describes a similar issue for -mregparm.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251223
This patch adds support for lowering to the XOP VPROT / VPROTI vector bit rotation instructions.
This has required changes to the DAGCombiner rotation pattern matching to support vector types - so far I've only changed it to support splat vectors, but generalising this further is feasible in the future.
Differential Revision: http://reviews.llvm.org/D13851
llvm-svn: 251188
Summary:
The logic here isn't straightforward because our support for
TargetOptions::GuaranteedTailCallOpt.
Also fix a bug where we were allowing tail calls to cdecl functions from
fastcall and vectorcall functions. We were special casing thiscall and
stdcall callers rather than checking for any convention that requires
clearing stack arguments before returning.
Reviewers: hans
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14024
llvm-svn: 251137
Summary:
This ensures that BranchFolding (and similar) won't remove these blocks.
Also allow AsmPrinter::EmitBasicBlockStart to process MBBs which are
address-taken but do not have BBs that are address-taken, since otherwise
its call to getAddrLabelSymbolTableToEmit would fail an assertion on such
blocks. I audited the other callers of getAddrLabelSymbolTableToEmit
(and getAddrLabelSymbol); they all have BBs known to be address-taken
except for the call through getAddrLabelSymbol from
WinException::create32bitRef; that call is actually now unreachable, so
I've removed it and updated the signature of create32bitRef.
This fixes PR25168.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13774
llvm-svn: 251113
The motivation for this patch starts with PR20134:
https://llvm.org/bugs/show_bug.cgi?id=20134
void foo(int *a, int i) {
a[i] = a[i+1] + a[i+2];
}
It seems better to produce this (14 bytes):
movslq %esi, %rsi
movl 0x4(%rdi,%rsi,4), %eax
addl 0x8(%rdi,%rsi,4), %eax
movl %eax, (%rdi,%rsi,4)
Rather than this (22 bytes):
leal 0x1(%rsi), %eax
cltq
leal 0x2(%rsi), %ecx
movslq %ecx, %rcx
movl (%rdi,%rcx,4), %ecx
addl (%rdi,%rax,4), %ecx
movslq %esi, %rax
movl %ecx, (%rdi,%rax,4)
The most basic problem (the first test case in the patch combines constants) should also be fixed in InstCombine,
but it gets more complicated after that because we need to consider architecture and micro-architecture. For
example, AArch64 may not see any benefit from the more general transform because the ISA solves the sexting in
hardware. Some x86 chips may not want to replace 2 ADD insts with 1 LEA, and there's an attribute for that:
FeatureSlowLEA. But I suspect that doesn't go far enough or maybe it's not getting used when it should; I'm
also not sure if FeatureSlowLEA should also mean "slow complex addressing mode".
I see no perf differences on test-suite with this change running on AMD Jaguar, but I see small code size
improvements when building clang and the LLVM tools with the patched compiler.
A more general solution to the sext(add nsw(x, C)) problem that works for multiple targets is available
in CodeGenPrepare, but it may take quite a bit more work to get that to fire on all of the test cases that
this patch takes care of.
Differential Revision: http://reviews.llvm.org/D13757
llvm-svn: 250560
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
Summary:
x86 codegen is clever about generating good code for relaxed
floating-point operations, but it was being silly when globals and
immediates were involved, forgetting where the global was and
loading/storing from/to the wrong place. The same applied to hard-coded
address immediates.
Don't let it forget about the displacement.
This fixes https://llvm.org/bugs/show_bug.cgi?id=25171
A very similar bug when doing floating-points atomics to the stack is
also fixed by this patch.
This fixes https://llvm.org/bugs/show_bug.cgi?id=25144
Reviewers: pete
Subscribers: llvm-commits, majnemer, rsmith
Differential Revision: http://reviews.llvm.org/D13749
llvm-svn: 250429
AVX-512 bit shuffle fails on 32 bit since we create a vector of 64-bit constants.
I split 8x64-bit const vector to 16x32 on 32-bit mode.
Differential Revision: http://reviews.llvm.org/D13644
llvm-svn: 250390
Function LowerVSETCC (in X86ISelLowering.cpp) worked under the wrong
assumption that for non-AVX512 targets, the source type and destination type
of a type-legalized setcc node were always the same type.
This assumption was unfortunately incorrect; the type legalizer is not always
able to promote the return type of a setcc to the same type as the first
operand of a setcc.
In the case of a vsetcc node, the legalizer firstly checks if the first input
operand has a legal type. If so, then it promotes the return type of the vsetcc
to that same type. Otherwise, the return type is promoted to the 'next legal
type', which, for vectors of MVT::i1 is always a 128-bit integer vector type.
Example (-mattr=+avx):
%0 = trunc <8 x i32> %a to <8 x i23>
%1 = icmp eq <8 x i23> %0, zeroinitializer
The initial selection dag for the code above is:
v8i1 = setcc t5, t7, seteq:ch
t5: v8i23 = truncate t2
t2: v8i32,ch = CopyFromReg t0, Register:v8i32 %vreg1
t7: v8i32 = build_vector of all zeroes.
The type legalizer would firstly check if 't5' has a legal type. If so, then it
would reuse that same type to promote the return type of the setcc node.
Unfortunately 't5' is of illegal type v8i23, and therefore it cannot be used to
promote the return type of the setcc node. Consequently, the setcc return type
is promoted to v8i16. Later on, 't5' is promoted to v8i32 thus leading to the
following dag node:
v8i16 = setcc t32, t25, seteq:ch
where t32 and t25 are now values of type v8i32.
Before this patch, function LowerVSETCC would have wrongly expanded the setcc
to a single X86ISD::PCMPEQ. Surprisingly, ISel was still able to match an
instruction. In our case, ISel would have matched a VPCMPEQWrr:
t37: v8i16 = X86ISD::VPCMPEQWrr t36, t25
However, t36 and t25 are both VR256, while the result type is instead of class
VR128. This inconsistency ended up causing the insertion of COPY instructions
like this:
%vreg7<def> = COPY %vreg3; VR128:%vreg7 VR256:%vreg3
Which is an invalid full copy (not a sub register copy).
Eventually, the backend would have hit an UNREACHABLE "Cannot emit physreg copy
instruction" in the attempt to expand the malformed pseudo COPY instructions.
This patch fixes the problem adding the missing logic in LowerVSETCC to handle
the corner case of a setcc with 128-bit return type and 256-bit operand type.
This problem was originally reported by Dimitry as PR25080. It has been latent
for a very long time. I have added the minimal reproducible from that bugzilla
as test setcc-lowering.ll.
Differential Revision: http://reviews.llvm.org/D13660
llvm-svn: 250085
This patch fixes a problem in function 'combineX86ShuffleChain' that causes a
chain of shuffles to be wrongly folded away when the combined shuffle mask has
only one element.
We may end up with a combined shuffle mask of one element as a result of
multiple calls to function 'canWidenShuffleElements()'.
Function canWidenShuffleElements attempts to simplify a shuffle mask by widening
the size of the elements being shuffled.
For every pair of shuffle indices, function canWidenShuffleElements checks if
indices refer to adjacent elements. If all pairs refer to "adjacent" elements
then the shuffle mask is safely widened. As a consequence of widening, we end up
with a new shuffle mask which is half the size of the original shuffle mask.
The byte shuffle (pshufb) from test pr24562.ll has a mask of all SM_SentinelZero
indices. Function canWidenShuffleElements would combine each pair of
SM_SentinelZero indices into a single SM_SentinelZero index. So, in a
logarithmic number of steps (4 in this case), the pshufb mask is simplified to
a mask with only one index which is equal to SM_SentinelZero.
Before this patch, function combineX86ShuffleChain wrongly assumed that a mask
of size one is always equivalent to an identity mask. So, the entire shuffle
chain was just folded away as the combined shuffle mask was treated as a no-op
mask.
With this patch we know check if the only element of a combined shuffle mask is
SM_SentinelZero. In case, we propagate a zero vector.
Differential Revision: http://reviews.llvm.org/D13364
llvm-svn: 250027
The XOP vector integer comparisons can deal with all signed/unsigned comparison cases directly and can be easily commuted as well (D7646).
llvm-svn: 249976
When running combine on an extract_vector_elt, it wants to look through
a bitcast to check if the argument to the bitcast was itself an
extract_vector_elt with particular operands.
However, it called getOperand() on the argument to the bitcast *before*
checking that the opcode was EXTRACT_VECTOR_ELT, assert-failing if there
were zero operands for the actual opcode.
Fix, and add trivial test.
llvm-svn: 249891
This instructions doesn't have intrincis.
Added tests for lowering and encoding.
Differential Revision: http://reviews.llvm.org/D12317
llvm-svn: 249688
This fixes two separate bugs:
1) The mask for the high lane was not set correctly. That fixes PR24532.
2) The transformation should bail out if it believes it involves more than
2 lanes, as it does not currently do anything sensible in this case.
Differential Revision: http://reviews.llvm.org/D13505
llvm-svn: 249669
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455
The custom lowering in LowerExtendedLoad is doing the equivalent shuffle, so make use of existing lowering code to reduce duplication.
llvm-svn: 249243
The custom code produces incorrect results if later reassociated.
Since r221657, on x86, vNi32 uitofp is lowered using an optimized
sequence:
movdqa LCPI0_0(%rip), %xmm1 ## xmm1 = [65535, ...]
pand %xmm0, %xmm1
por LCPI0_1(%rip), %xmm1 ## [0x4b000000, ...]
psrld $16, %xmm0
por LCPI0_2(%rip), %xmm0 ## [0x53000000, ...]
addps LCPI0_3(%rip), %xmm0 ## [float -5.497642e+11, ...]
addps %xmm1, %xmm0
Since r240361, the machine combiner opportunistically reassociates
2-instruction sequences (with -ffast-math). In the new code sequence,
the ADDPS' are eligible. In isolation, for simple examples (without
reassociable users), this makes no performance difference (the goal
being to enable reassociation of longer chains).
In the trivial example (just one uitofp), the reassociation doesn't
happen, because (I think) it would require the emission of a separate
movaps for a constantpool load (instead of folding it into addps).
However, when we have multiple uitofp sequences, and the constantpool
loads are CSE'd earlier, the machine combiner can do the reassociation.
When the ADDPS' are reassociated, the resulting sequence isn't correct
anymore, as we'd be adding large (2**39) constants with comparatively
smaller values (~2**23). Given that two of the three inputs are powers
of 2 larger than 2**16, and that ulp(2**39) == 2**(39-24) == 2**15,
the reassociated chain will produce 0 for any input in [0, 2**14[.
In my testing, it also produces wrong results for 99.5% of [0, 2**32[.
Avoid this by disabling the new lowering when -ffast-math. It does
mean that we'll get slower code than without it, but at least we
won't get egregiously incorrect code.
One might argue that, considering -ffast-math is all but meaningless,
uitofp producing wrong results isn't a compiler bug. But it really is.
Fixes PR24512.
...though this is really more of a workaround.
Ideally, we'd have some sort of Machine FMF, but that's a problem
that's not worth tackling until we do more with machine IR.
llvm-svn: 248965
The Win64 unwinder disassembles forwards from each PC to try to
determine if this PC is in an epilogue. If so, it skips calling the EH
personality function for that frame. Typically, this means you cannot
catch an exception in the same frame that you threw it, because 'throw'
calls a noreturn runtime function.
Previously we avoided this problem with the TrapUnreachable
TargetOption, but that's a much bigger hammer than we need. All we need
is a 1 byte non-epilogue instruction right after the call. Instead,
what we got was an unconditional branch to a shared block containing the
ud2, potentially 7 bytes instead of 1. So, this reverts r206684, which
added TrapUnreachable, and replaces it with something better.
The new code pattern matches for invoke/call followed by unreachable and
inserts an int3 into the DAG. To be 100% watertight, we would need to
insert SEH_Epilogue instructions into all basic blocks ending in a call
with no terminators or successors, but in practice this is unlikely to
come up.
llvm-svn: 248959
The XOP shifts just have logical/arithmetic versions and the left/right shifts are controlled by whether the value is positive/negative. Because of this I've added new X86ISD nodes instead of trying to force them to use the existing shift nodes.
Additionally Excavator cores (bdver4) support XOP and AVX2 - meaning that it should use the AVX2 shifts when it can and fall back to XOP in other cases.
Differential Revision: http://reviews.llvm.org/D8690
llvm-svn: 248878
HHVM calling convention, hhvmcc, is used by HHVM JIT for
functions in translated cache. We currently support LLVM back end to
generate code for X86-64 and may support other architectures in the
future.
In HHVM calling convention any GP register could be used to pass and
return values, with the exception of R12 which is reserved for
thread-local area and is callee-saved. Other than R12, we always
pass RBX and RBP as args, which are our virtual machine's stack pointer
and frame pointer respectively.
When we enter translation cache via hhvmcc function, we expect
the stack to be aligned at 16 bytes, i.e. skewed by 8 bytes as opposed
to standard ABI alignment. This affects stack object alignment and stack
adjustments for function calls.
One extra calling convention, hhvm_ccc, is used to call C++ helpers from
HHVM's translation cache. It is almost identical to standard C calling
convention with an exception of first argument which is passed in RBP
(before we use RDI, RSI, etc.)
Differential Revision: http://reviews.llvm.org/D12681
llvm-svn: 248832
alignment requirements, for example in the case of vectors.
These requirements are exploited by the code generator by using
move instructions that have similar alignment requirements, e.g.,
movaps on x86.
Although the code generator properly aligns the arguments with
respect to the displacement of the stack pointer it computes,
the displacement itself may cause misalignment. For example if
we have
%3 = load <16 x float>, <16 x float>* %1, align 64
call void @bar(<16 x float> %3, i32 0)
the x86 back-end emits:
movaps 32(%ecx), %xmm2
movaps (%ecx), %xmm0
movaps 16(%ecx), %xmm1
movaps 48(%ecx), %xmm3
subl $20, %esp <-- if %esp was 16-byte aligned before this instruction, it no longer will be afterwards
movaps %xmm3, (%esp) <-- movaps requires 16-byte alignment, while %esp is not aligned as such.
movl $0, 16(%esp)
calll __bar
To solve this, we need to make sure that the computed value with which
the stack pointer is changed is a multiple af the maximal alignment seen
during its computation. With this change we get proper alignment:
subl $32, %esp
movaps %xmm3, (%esp)
Differential Revision: http://reviews.llvm.org/D12337
llvm-svn: 248786
Fix for D12561 - we weren't correctly ensuring that the base element for extension was moved to start on a boundary suitable for UNPCKL/H
llvm-svn: 248536
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
The BEXTR comments didn't make sense before, we may want to extend the
FP logic transform to work on vectors, and this way is more beautiful.
llvm-svn: 248404
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
This patch generalizes the lowering of shuffles as zero extensions to allow extensions that don't start from the first element. It now recognises extensions starting anywhere in the lower 128-bits or at the start of any higher 128-bit lane.
The motivation was to reduce the number of high cost pshufb calls, but it also improves the SSE2 case as well.
Differential Revision: http://reviews.llvm.org/D12561
llvm-svn: 248250
Now that we have fast vector CTPOP implementations we can use this to speed up vector CTTZ using the pattern (cttz(x) = ctpop((x & -x) - 1))
Additionally, for AVX512CD that provides lzcnt instructions we can use the pattern (cttz_undef(x) = (width - 1) - ctlz(x & -x))
Differential Revision: http://reviews.llvm.org/D12663
llvm-svn: 248091
This makes catchret look more like a branch, and less like a weird use
of BlockAddress. It also lets us get away from
llvm.x86.seh.restoreframe, which relies on the old parentfpoffset label
arithmetic.
llvm-svn: 247936
AVX-512 does not provide an instruction that shuffles mask register. So I do the following way:
mask-2-simd , shuffle simd , simd-2-mask
Differential Revision: http://reviews.llvm.org/D12727
llvm-svn: 247876
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
KNL does not have VXORPS, VORPS for 512-bit values.
I use integer VPXOR, VPOR that actually do the same.
X86ISD::FXOR/FOR are generated as a result of FSUB combining.
Differential Revision: http://reviews.llvm.org/D12753
llvm-svn: 247523
We used to have this magic "hasLoadLinkedStoreConditional()" callback,
which really meant two things:
- expand cmpxchg (to ll/sc).
- expand atomic loads using ll/sc (rather than cmpxchg).
Remove it, and, instead, introduce explicit callbacks:
- bool shouldExpandAtomicCmpXchgInIR(inst)
- AtomicExpansionKind shouldExpandAtomicLoadInIR(inst)
Differential Revision: http://reviews.llvm.org/D12557
llvm-svn: 247429
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
The 32-bit tables don't actually contain PC range data, so emitting them
is incredibly simple.
The 64-bit tables, on the other hand, use the same table for state
numbering as well as label ranges. This makes things more difficult, so
it will be implemented later.
llvm-svn: 247192
Summary: This patch modifies X86TargetLowering::LowerVASTART so that
struct va_list is initialized with 32 bit pointers in x32. It also
includes tests that call @llvm.va_start() for x32.
Patch by João Porto
Subscribers: llvm-commits, hjl.tools
Differential Revision: http://reviews.llvm.org/D12346
llvm-svn: 247069
This is a continuation of the fix from:
http://reviews.llvm.org/D10662
and discussion in:
http://reviews.llvm.org/D12154
Here, we distinguish slow unaligned SSE (128-bit) accesses from slow unaligned
scalar (64-bit and under) accesses. Other lowering (eg, getOptimalMemOpType)
assumes that unaligned scalar accesses are always ok, so this changes
allowsMisalignedMemoryAccesses() to match that behavior.
Differential Revision: http://reviews.llvm.org/D12543
llvm-svn: 246658
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
Summary:
This change makes the variable argument intrinsics, `llvm.va_start` and
`llvm.va_copy`, and the `va_arg` instruction behave as they do on Windows
inside a `CallingConv::X86_64_Win64` function. It's needed for a Clang patch
I have to add support for GCC's `__builtin_ms_va_list` constructs.
Reviewers: nadav, asl, eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1622
llvm-svn: 245990
This fixes two issues in x86 fptoui lowering.
1) Makes conversions from f80 go through the right path on AVX-512.
2) Implements an inline sequence for fptoui i64 instead of a library
call. This improves performance by 6X on SSE3+ and 3X otherwise.
Incidentally, it also removes the use of ftol2 for fptoui, which was
wrong to begin with, as ftol2 converts to a signed i64, producing
wrong results for values >= 2^63.
Patch by: mitch.l.bodart@intel.com
Differential Revision: http://reviews.llvm.org/D11316
llvm-svn: 245924
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
llvm-svn: 245729
Fixes PR23464: one way to use the broadcast intrinsics is:
_mm256_broadcastw_epi16(_mm_cvtsi32_si128(*(int*)src));
We don't currently fold this, but now that we use native IR for
the intrinsics (r245605), we can look through one bitcast to find
the broadcast scalar.
Differential Revision: http://reviews.llvm.org/D10557
llvm-svn: 245613
We don't do a great job with >= 0 comparisons against zero when the
result is used as an i8.
Given something like:
void f(long long LL, bool *B) {
*B = LL >= 0;
}
We used to generate:
shrq $63, %rdi
xorb $1, %dil
movb %dil, (%rsi)
Now we generate:
testq %rdi, %rdi
setns (%rsi)
Differential Revision: http://reviews.llvm.org/D12136
llvm-svn: 245498
This patch updates the X86 lowering so that the Exception Pointer and Selector
are 64-bit wide only if Subtarget.isTarget64BitLP64.
Patch by João Porto
Reviewers: dschuff, rnk
Differential Revision: http://reviews.llvm.org/D12111
llvm-svn: 245454
There are some cases where the mul sequence is smaller, but for the most part,
using a div is preferable. This does not apply to vectors, since x86 doesn't
have vector idiv, and a vector mul/shifts sequence ought to be smaller than a
scalarized division.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245431
This consolidates use of isUnalignedMem32Slow() in one place.
There is a slight change in logic although I'm not sure that it would ever
come up in the real world: we were assuming that an alignment of the type
size is always fast; now, we actually check the data layout to confirm that.
llvm-svn: 245382
This patch fixes the x86 implementation of allowsMisalignedMemoryAccess() to correctly
return the 'Fast' output parameter for 32-byte accesses. To test that, an existing load
merging optimization is changed to use the TLI hook. This exposes a shortcoming in the
current logic and results in the regression test update. Changing other direct users of
the isUnalignedMem32Slow() x86 CPU attribute would be a follow-on patch.
Without the fix in allowsMisalignedMemoryAccesses(), we will infinite loop when targeting
SandyBridge because LowerINSERT_SUBVECTOR() creates 32-byte loads from two 16-byte loads
while PerformLOADCombine() splits them back into 16-byte loads.
Differential Revision: http://reviews.llvm.org/D10662
llvm-svn: 245075
Follow up to D10947 - D9746 added general SMAX/SMIN/UMAX/UMIN pattern matching to SelectionDAGBuilder::visitSelect.
This patch removes the X86 implementation and improves the AVX1/AVX2 support to correctly lower 256-bit integer vectors.
Differential Revision: http://reviews.llvm.org/D12006
llvm-svn: 244949
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
The same value is used multiple times through the function. Hoist the condition
into a variable. This should fix a silly static analysis warning where the
conditions flip around. No functional change intended.
llvm-svn: 244713
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
This change improves EmitLoweredSelect() so that multiple contiguous CMOV pseudo
instructions with the same (or exactly opposite) conditions get lowered using a single
new basic-block. This eliminates unnecessary extra basic-blocks (and CFG merge points)
when contiguous CMOVs are being lowered.
Patch by: kevin.b.smith@intel.com
Differential Revision: http://reviews.llvm.org/D11428
llvm-svn: 244202
Summary: PR24191 finds that the expected memory-register operations aren't generated when relaxed { load ; modify ; store } is used. This is similar to PR17281 which was addressed in D4796, but only for memory-immediate operations (and for memory orderings up to acquire and release). This patch also handles some floating-point operations.
Reviewers: reames, kcc, dvyukov, nadav, morisset, chandlerc, t.p.northover, pete
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11382
llvm-svn: 244128
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
This patch improves the 32-bit target i64 constant matching to detect the shuffle vector splats that are introduced by i64 vector shift vectorization (D8416).
Differential Revision: http://reviews.llvm.org/D11327
llvm-svn: 243577
This patch vectorizes the v2i64/v4i64 ASHR shift operations - the last remaining integer vector shifts that are still being transferred to/from the scalar unit to be completed.
Differential Revision: http://reviews.llvm.org/D11439
llvm-svn: 243569
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
llvm-svn: 243498
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
VPAND is a lot faster than VPSHUFB and VPBLENDVB - this patch ensures we attempt to lower to a basic bitmask before lowering to the slower byte shuffle/blend instructions.
Split off from D11518.
Differential Revision: http://reviews.llvm.org/D11541
llvm-svn: 243395
This is a follow-up to the FIXME that was added with D7474 ( http://reviews.llvm.org/rL229531 ).
I thought this load folding bug had been made hard-to-hit, but it turns out to be very easy
when targeting 32-bit x86 and causes a miscompile/crash in Wine:
https://bugs.winehq.org/show_bug.cgi?id=38826https://llvm.org/bugs/show_bug.cgi?id=22371#c25
The quick fix is to simply remove the scalar FP logical instructions from the load folding table
in X86InstrInfo, but that causes us to miss load folds that should be possible when lowering fabs,
fneg, fcopysign. So the majority of this patch is altering those lowerings to use *vector* FP
logical instructions (because that's all x86 gives us anyway). That lets us do the load folding
legally.
Differential Revision: http://reviews.llvm.org/D11477
llvm-svn: 243361
This reverts commit r243146.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243282
We had a few places where we did
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
but those could instead do
for (auto *EltTy : STy->elements()) {
llvm-svn: 243136
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.
It breaks clang too badly, I need to prepare a proper patch for clang
first.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
The DAG Node "SCALAR_TO_VECTOR" may be created if the type of the scalar element is legal.
Added a check for the scalar type before creating this node.
Added a test that fails with assertion on the current version.
Differential Revision: http://reviews.llvm.org/D11413
llvm-svn: 242994
This commit broke the build. Numerous build bots broken, and it was
blocking my progress so reverting.
It should be trivial to reproduce -- enable the BPF backend and it
should fail when running llvm-tblgen.
llvm-svn: 242992
SKX supports conversion for all FP types. Integer types include doublewords and quardwords.
I added "Legal" status for these nodes and a bunch of tests.
I added "NoVLX" for AVX DAG selection to force VLX instructions selection when VLX is supported.
Differential Revision: http://reviews.llvm.org/D11255
llvm-svn: 242637
In this patch I have only encoding. Intrinsics and DAG lowering will be in the next patch.
I temporary removed the old intrinsics test (just to split this patch).
Half types are not covered here.
Differential Revision: http://reviews.llvm.org/D11134
llvm-svn: 242023
While the v4i32 shl operation is already vectorized using a cvttps2dq/pmulld pattern, the lshr/ashr opeations are still scalarized.
This patch adds vectorization support for non-uniform v4i32 shift operations - it splats constant shift amounts to allow them to use the immediate sse shift instructions, or extracts/zero-extends non-constant shift amounts. The individual results are then blended together.
Differential Revision: http://reviews.llvm.org/D11063
llvm-svn: 241989
The runtime does not restore CSRs when transferring control back to the
function handling the exception. According to the experts on IRC, LLVM's
register allocator has no way to model register clobbers that only
happen on one edge of the CFG. For now, don't worry about trying to use
the meager three CSRs available on 32-bit X86 and just say that such
invokes preserve nothing.
llvm-svn: 241865
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241806
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241790
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241777
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
The incoming EBP value points to the end of a local stack allocation, so
we can use that to restore ESI, the base pointer. Once we do that, we
can use local stack allocations. If we know we need stack realignment,
spill the original frame pointer in the prologue and reload it after
restoring ESI.
llvm-svn: 241648
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
This type of prologue isn't supported yet. Implementing it should be a
matter of copying the adjusted incoming EBP into ESI (the base pointer)
instead of EBP. The original EBP can be saved and restored from other
memory afterwards.
llvm-svn: 241597
The vperm2f128/vperm2i128 shuffle mask decoding was not attempting to deal with shuffles that give zero lanes. This patch fixes this so that the assembly printer can provide shuffle comments.
As this decoder is also used in X86ISelLowering for shuffle combining, I've added an early-out to match existing behaviour. The hope is that we can add zero support in the future, this would allow other ops' decodes (e.g. insertps) to be combined as well.
Differential Revision: http://reviews.llvm.org/D10593
llvm-svn: 241516
This patch adds vectorization support for uniform constant i64 arithmetic shift right operators.
Differential Revision: http://reviews.llvm.org/D9645
llvm-svn: 241514
This patch adds support for v8i16 and v16i8 shuffle lowering using the immediate versions of the SSE4A EXTRQ and INSERTQ instructions. Although rather limited (they can only act on the lower 64-bits of the source vectors, leave the upper 64-bits of the result vector undefined and don't have VEX encoded variants), the instructions are still useful for the zero extension of any lane (EXTRQ) or inserting a lane into another vector (INSERTQ). Testing demonstrated that it wasn't typically worth it to use these instructions for v2i64 or v4i32 vector shuffles although they are capable of it.
As well as adding specific pattern matching for the shuffles, the patch uses EXTRQ for zero extension cases where SSE41 isn't available and its more efficient than the SSE2 'unpack' default approach. It also adds shuffle decode support for the EXTRQ / INSERTQ cases when the instructions are handling full byte-sized extractions / insertions.
From this foundation, future patches will be able to make use of the instructions for situations that use their ability to extract/insert at the bit level.
Differential Revision: http://reviews.llvm.org/D10146
llvm-svn: 241508
With the completion of D9746 there is now a common implementation of integer signed/unsigned min/max nodes, removing the need for the equivalent X86 specific implementations.
This patch removes the old X86ISD nodes, legalizes the relevant SSE2/SSE41/AVX2/AVX512 instructions for the ISD versions and converts the small amount of existing X86 code.
Differential Revision: http://reviews.llvm.org/D10947
llvm-svn: 241506
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
Followup to D10433 and D10589 that fixes i8/i16 uint2fp vector conversions by zero extending to i32 and using the sint2fp path (unless the target does actually support uint2fp).
llvm-svn: 241394
Add support for v2i8/v2i16 to v2f64 by using a sign extension to v2i32 before conversion to v2f64.
Differential Revision: http://reviews.llvm.org/D10589
llvm-svn: 241325
This patch adds support for sign extension for sub 128-bit vectors, such as to v2i32. It concatenates with UNDEF subvectors up to 128-bits, performs the sign extension (i.e. as v4i32) and then extracts the target subvector.
Patch 1/2 of D10589 - the second patch covers the conversion of v2i8/v2i16 to v2f64.
llvm-svn: 241323
The EH code might have been deleted as unreachable and the personality
pruned while the filter is still present. Currently I'm hitting this at
-O0 due to the clang bug PR24009.
llvm-svn: 241170
The incoming EBP value established by the runtime is actually a pointer
to the end of the EH registration object, and not the true parent
function frame pointer. Clang doesn't need llvm.x86.seh.exceptioninfo
anymore because we know that the exception info pointer is at a fixed
offset from this incoming EBP.
The llvm.x86.seh.recoverfp intrinsic takes an EBP value provided by the
EH runtime and returns a pointer that is usable with llvm.framerecover.
The llvm.x86.seh.restoreframe intrinsic is inserted by the 32-bit
specific preparation pass in blocks targetted by the EH runtime. It
re-establishes any physical registers used by the parent function to
address the stack, such as the frame, base, and stack pointers.
Neither of these intrinsics correctly handle stack realignment prologues
yet, but it's possible to add that later.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D10848
llvm-svn: 241125
This is a new version of http://reviews.llvm.org/D10260.
It turned out that when you specify an integer register in inline asm on
x86 you get the register of the required type size back. That means that
X86TargetLowering::getRegForInlineAsmConstraint() has to accept any of
the integer registers and adapt its size to the given target size which
may be any 8/16/32/64 bit sized type. Surprisingly that means given a
constraint of "{ax}" and a type of MVT::F32 we need to return X86::EAX.
This change makes this face explicit, the previous code seemed like
working by accident because there it never returned an error once a
register was found. On the other hand this rewrite allows to actually
return errors for invalid situations like requesting an integer register
for an i128 type.
Related to rdar://21042280
Differential Revision: http://reviews.llvm.org/D10813
llvm-svn: 241002
We don't always have FMA, for example when using 'clang -mavx512f'
without an explicit CPU.
Also check for an explicit +avx512f instead of CPUs in a couple
related tests.
llvm-svn: 240616
Before this we were producing a TargetExternalSymbol from a MCSymbol.
That meant extracting the symbol name and fetching the symbol again
down the pipeline.
This patch adds a DAG.getMCSymbol that lets the MCSymbol pass unchanged on the
DAG.
Doing so removes the need for MO_NOPREFIX and fixes the root cause of pr23900,
allowing r240130 to be committed again.
llvm-svn: 240300
Added explicit sign extension for v4i16/v8i16 to v4i32/v8i32 before conversion to floats. Matches existing support for v4i8/v8i8.
Follow up to D10433
llvm-svn: 239966
There is a one-to-one relationship between X86Subtarget and
X86FrameLowering, but every frame lowering method would previously pull
the subtarget off the MachineFunction and query some subtarget
properties.
Over time, these locals began to grow in complexity and it became
important to keep their names and meaning in sync across all of the
frame lowering methods, leading to duplication. We can eliminate that
duplication by computing them once in the constructor.
llvm-svn: 239948
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.
Differential Revision: http://reviews.llvm.org/D10433
llvm-svn: 239855
When we multiply two 64-bit vectors, we extract lower and upper part and use the PMULUDQ instruction.
When one of the operands is a constant, the upper part may be zero, we know this at compile time.
Example: %a = mul <4 x i64> %b, <4 x i64> < i64 5, i64 5, i64 5, i64 5>.
I'm checking the value of the upper part and prevent redundant "multiply", "shift" and "add" operations.
llvm-svn: 239802
This intrinsic is like framerecover plus a load. It recovers the EH
registration stack allocation from the parent frame and loads the
exception information field out of it, giving back a pointer to an
EXCEPTION_POINTERS struct. It's designed for clang to use in SEH filter
expressions instead of accessing the EXCEPTION_POINTERS parameter that
is available on x64.
This required a minor change to MC to allow defining a label variable to
another absolute framerecover label variable.
llvm-svn: 239567
This patch ensures that SHL/SRL/SRA shifts for i8 and i16 vectors avoid scalarization. It builds on the existing i8 SHL vectorized implementation of moving the shift bits up to the sign bit position and separating the 4, 2 & 1 bit shifts with several improvements:
1 - SSE41 targets can use (v)pblendvb directly with the sign bit instead of performing a comparison to feed into a VSELECT node.
2 - pre-SSE41 targets were masking + comparing with an 0x80 constant - we avoid this by using the fact that a set sign bit means a negative integer which can be compared against zero to then feed into VSELECT, avoiding the need for a constant mask (zero generation is much cheaper).
3 - SRA i8 needs to be unpacked to the upper byte of a i16 so that the i16 psraw instruction can be correctly used for sign extension - we have to do more work than for SHL/SRL but perf tests indicate that this is still beneficial.
The i16 implementation is similar but simpler than for i8 - we have to do 8, 4, 2 & 1 bit shifts but less shift masking is involved. SSE41 use of (v)pblendvb requires that the i16 shift amount is splatted to both bytes however.
Tested on SSE2, SSE41 and AVX machines.
Differential Revision: http://reviews.llvm.org/D9474
llvm-svn: 239509
This gets all the handler info through to the asm printer and we can
look at the .xdata tables now. I've convinced one small catch-all test
case to work, but other than that, it would be a stretch to say this is
functional.
The state numbering algorithm avoids doing any scope reconstruction as
we do for C++ to simplify the implementation.
llvm-svn: 239433
that was resetting it.
Remove the uses of DisableTailCalls in subclasses of TargetLowering and use
the value of function attribute "disable-tail-calls" instead. Also,
unconditionally add pass TailCallElim to the pipeline and check the function
attribute at the start of runOnFunction to disable the pass on a per-function
basis.
This is part of the work to remove TargetMachine::resetTargetOptions, and since
DisableTailCalls was the last non-fast-math option that was being reset in that
function, we should be able to remove the function entirely after the work to
propagate IR-level fast-math flags to DAG nodes is completed.
Out-of-tree users should remove the uses of DisableTailCalls and make changes
to attach attribute "disable-tail-calls"="true" or "false" to the functions in
the IR.
rdar://problem/13752163
Differential Revision: http://reviews.llvm.org/D10099
llvm-svn: 239427
While we have some code to transform specification like {ax} into
{eax}/{rax} if the operand type isn't 16bit, we should reject cases
where there is no sane way to do this, like the i128 type in the
example.
Related to rdar://21042280
Differential Revision: http://reviews.llvm.org/D10260
llvm-svn: 239309
Implemented DAG lowering for all these forms.
Added tests for DAG lowering and encoding.
Differential Revision: http://reviews.llvm.org/D10310
llvm-svn: 239300
The first try (r238051) to land this was reverted due to ExecutionEngine build failure;
that was hopefully addressed by r238788.
The second try (r238842) to land this was reverted due to BUILD_SHARED_LIBS failure;
that was hopefully addressed by r238953.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 239001
AVX-512: Implemented GETEXP instruction for KNL and SKX
Added rounding mode modifier for SQRTPS/PD
Added tests for encoding and intrinsics.
CR:
http://reviews.llvm.org/D9991
llvm-svn: 238923
This patch removes the old X86ISD::FSRL op - which allowed float vectors to use the byte right shift operations (causing a domain switch....).
Since the refactoring of the shuffle lowering code this no longer has any use.
Differential Revision: http://reviews.llvm.org/D10169
llvm-svn: 238906
The first try (r238051) to land this was reverted due to bot failures
that were hopefully addressed by r238788.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238842
This is important because of different addressing modes
depending on the address space for GPU targets.
This only adds the argument, and does not update
any of the uses to provide the correct address space.
llvm-svn: 238723
best approach of each.
For vNi16, we use SHL + ADD + SRL pattern that seem easily the best.
For vNi32, we use the PUNPCK + PSADBW + PACKUSWB pattern. In some cases
there is a huge improvement with this in IACA's estimated throughput --
over 2x higher throughput!!!! -- but the measurements are too good to be
true. In one narrow case, the SHL + ADD + SHL + ADD + SRL pattern looks
slightly faster, but I'm not sure I believe any of the measurements at
this point. Both are the exact same uops though. Hard to be confident of
anything past that.
If anyone wants to collect very detailed (Agner-level) timings with the
result of this patch, or with the i32 case replaced with SHL + ADD + SHl
+ ADD + SRL, I'd be very interested. Note that you'll need to test it on
both Ivybridge and Haswell, with both SSE3, SSSE3, and AVX selected as
I saw unique behavior in each of these buckets with IACA all of which
should be checked against measured performance.
But this patch is still a useful improvement by dropping duplicate work
and getting the much nicer PSADBW lowering for v2i64.
I'd still like to rephrase this in terms of generic horizontal sum. It's
a bit lame to have a special case of that just for popcount.
llvm-svn: 238652
shorter one. NFC.
In addition to being much shorter to type and requiring fewer arguments,
this change saves over 30 lines from this one file, all wasted on total
boilerplate...
llvm-svn: 238640
shifting vectors of bytes as x86 doesn't have direct support for that.
This removes a bunch of redundant masking in the generated code for SSE2
and SSE3.
In order to avoid the really significant code size growth this would
have triggered, I also factored the completely repeatative logic for
shifting and masking into two lambdas which in turn makes all of this
much easier to read IMO.
llvm-svn: 238637
in-register LUT technique.
Summary:
A description of this technique can be found here:
http://wm.ite.pl/articles/sse-popcount.html
The core of the idea is to use an in-register lookup table and the
PSHUFB instruction to compute the population count for the low and high
nibbles of each byte, and then to use horizontal sums to aggregate these
into vector population counts with wider element types.
On x86 there is an instruction that will directly compute the horizontal
sum for the low 8 and high 8 bytes, giving vNi64 popcount very easily.
Various tricks are used to get vNi32 and vNi16 from the vNi8 that the
LUT computes.
The base implemantion of this, and most of the work, was done by Bruno
in a follow up to D6531. See Bruno's detailed post there for lots of
timing information about these changes.
I have extended Bruno's patch in the following ways:
0) I committed the new tests with baseline sequences so this shows
a diff, and regenerated the tests using the update scripts.
1) Bruno had noticed and mentioned in IRC a redundant mask that
I removed.
2) I introduced a particular optimization for the i32 vector cases where
we use PSHL + PSADBW to compute the the low i32 popcounts, and PSHUFD
+ PSADBW to compute doubled high i32 popcounts. This takes advantage
of the fact that to line up the high i32 popcounts we have to shift
them anyways, and we can shift them by one fewer bit to effectively
divide the count by two. While the PSHUFD based horizontal add is no
faster, it doesn't require registers or load traffic the way a mask
would, and provides more ILP as it happens on different ports with
high throughput.
3) I did some code cleanups throughout to simplify the implementation
logic.
4) I refactored it to continue to use the parallel bitmath lowering when
SSSE3 is not available to preserve the performance of that version on
SSE2 targets where it is still much better than scalarizing as we'll
still do a bitmath implementation of popcount even in scalar code
there.
With #1 and #2 above, I analyzed the result in IACA for sandybridge,
ivybridge, and haswell. In every case I measured, the throughput is the
same or better using the LUT lowering, even v2i64 and v4i64, and even
compared with using the native popcnt instruction! The latency of the
LUT lowering is often higher than the latency of the scalarized popcnt
instruction sequence, but I think those latency measurements are deeply
misleading. Keeping the operation fully in the vector unit and having
many chances for increased throughput seems much more likely to win.
With this, we can lower every integer vector popcount implementation
using the LUT strategy if we have SSSE3 or better (and thus have
PSHUFB). I've updated the operation lowering to reflect this. This also
fixes an issue where we were scalarizing horribly some AVX lowerings.
Finally, there are some remaining cleanups. There is duplication between
the two techniques in how they perform the horizontal sum once the byte
population count is computed. I'm going to factor and merge those two in
a separate follow-up commit.
Differential Revision: http://reviews.llvm.org/D10084
llvm-svn: 238636
a separate routine, generalize it to work for all the integer vector
sizes, and do general code cleanups.
This dramatically improves lowerings of byte and short element vector
popcount, but more importantly it will make the introduction of the
LUT-approach much cleaner.
The biggest cleanup I've done is to just force the legalizer to do the
bitcasting we need. We run these iteratively now and it makes the code
much simpler IMO. Other changes were minor, and mostly naming and
splitting things up in a way that makes it more clear what is going on.
The other significant change is to use a different final horizontal sum
approach. This is the same number of instructions as the old method, but
shifts left instead of right so that we can clear everything but the
final sum with a single shift right. This seems likely better than
a mask which will usually have to read the mask from memory. It is
certaily fewer u-ops. Also, this will be temporary. This and the LUT
approach share the need of horizontal adds to finish the computation,
and we have more clever approaches than this one that I'll switch over
to.
llvm-svn: 238635