Function buildCopyToRegs did not handle properly the case when it should
make wider vector result. It happened, for example, in a function that
returns value of type <2 x f32>, which should be widen to <4 x f32> to
fit XMM register. The function eventually calls
MachineIRBuilder.buildUnmerge, which does not expect that only one
destination register is specified.
Now this case is treated specifically in buildCopyToRegs.
Differential Revision: https://reviews.llvm.org/D128546
Given something like this:
```
declare signext i16 @signext_callee()
define i32 @caller() {
%res = call i16 @signext_callee()
...
}
```
CallLowering would miss that signext_callee's return value is sign extended,
because it isn't on the call.
Use hasRetAttr on the CallBase to allow us to catch this.
(This now inserts G_ASSERT_SEXT/G_ASSERT_ZEXT like in the original review.)
Differential Revision: https://reviews.llvm.org/D86228
Add a utility function which returns true if the given value is a constant
false value.
This is necessary to port one of the compare simplifications in
TargetLowering::SimplifySetCC.
Differential Revision: https://reviews.llvm.org/D91754
Interestingly, MathExtras.h doesn't use <cmath> declaration, so move it out of
that header and include it when needed.
No functional change intended, but there's no longer a transitive include
fromMathExtras.h to cmath.
I don't know what was going on originally with these tests. It seems reasonable
to have the immediate be the same byte alignment unit as the IR, in which case
we need to take the log2 in order to set the right number of low bits.
This fixes a miscompile in chromium.
Differential Revision: https://reviews.llvm.org/D134380
I'm not sure why the SEXT_INREG was gated on a bitwidth check of the mask
vs element size.
This fixes a miscompile in chromium's skia library.
Differential Revision: https://reviews.llvm.org/D134236
The following changes are necessasy to get the generated tree
matcher to compile:
- In CodeExpansions::declare(), the assert() prevents connecting
two instructions. E.g. the match code
(match (MUL $t, $s1, $s2),
(SUB $d, $t, $s3)),
results in two declarations of $t, one for the def and one for
the use. Removing the assertion allows this construct.
If $t is later used, it is one of the operands, which should be
perfectly fine.
- The code emitted in GIMatchTreeVRegDefPartitioner::generatePartitionSelectorCode()
is not compilable:
- The value of NewInstrID should be emitted, not the name
- Both calls involving getOperand() end with one parenthesis too many
- Swaps generated condition for the partition code in the latter function
It also changes the rules i2p_to_p2i, fabs_fabs_fold, and fneg_fneg_fold
to use the tree matcher for a linear match. These rules are tested by:
CodeGen/AArch64/GlobalISel/combine-fabs.mir
CodeGen/AArch64/GlobalISel/combine-fneg.mir
CodeGen/AArch64/GlobalISel/combine-ptrtoint.mir
CodeGen/AMDGPU/GlobalISel/combine-add-nullptr.mir
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D133257
Use salvageDebugInfo for instructions erased as trivially dead in
GlobalISel.
It would be helpful to implement support of G_PTR_ADD and G_FRAME_INDEX
in salvageDebugInfo in future in order to preserve more variable
location.
Reviewed by: arsenm
Differential Revision: https://reviews.llvm.org/D133986
This is a partial port of the code used by the SelectionDAGBuilder to
translate selects.
In particular, see matchSelectPattern in ValueTracking.cpp. This is a
GISel-equivalent of the portion which handles fminnum/fmaxnum/fminimum/fmaximum.
I tried to set it up so it'd be easy to add the non-FP cases. Those are simpler.
On the AArch64-end, it seems like the FP cases are more important for perf
right now, so I bit the bullet and went at the more complicated problem. :)
I elected to do this as a post-legalize combine rather than in the
IRTranslator because
Deciding which fmax/fmin to use can depend on legalization rules
Philosophically-speaking (TM), putting it in a combine just feels cleaner
Being able to enable/disable the combine is handy
Another option would be to use the ValueTracking code in the IRTranslator and
match what SelectionDAGBuilder::visitSelect does. I think that may be somewhat
annoying since we'd need to write lowerings back into the selects in the
legalizer. I'm not strongly opposed to the approach.
We'd also want to be careful with vector selects once that's implemented,
which explicitly check if a vector select is legal on the target. That'd
probably need a hook.
From what I can tell, doing this as a combine is probably a cleaner option
long-term.
Differential Revision: https://reviews.llvm.org/D116702
The bit masking lowering only works for vectors of scalars, so for pointer
element types we need to add some casting.
Differential Revision: https://reviews.llvm.org/D133672
Simplify extended add/sub (with carry-in and carry-out) to add/sub with
carry (with carry-out only) if carry-in is known to be zero.
Differential Revision: https://reviews.llvm.org/D133702
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
Propagate (most) PC sections metadata to MachineInstr when GlobalISel is
doing instruction selection.
This change results in support for architectures using GlobalISel (such
as -O0 with AArch64). Not all instructions may be supported yet, and
requires further target-specific handling (such as done for AArch64
pseudo-atomics). Expanding supported instructions is planned on a
case-by-case basis and new use cases for PC sections metadata.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130886
The provided testcase would previously fail with an assertion due to later down below trying to allocate registers for `token` return types and arguments. This is especially problematic as the process would then exit instead of falling back to using FastIsel.
This patch fixes that by simply explicitly failing translation if either of these intrinsics are encountered.
Fixes https://github.com/llvm/llvm-project/issues/57349
Differential Revision: https://reviews.llvm.org/D132974
widenScalarDst updates the insert point to after MI, so
widenScalarSrc must be called before widenScalarDst. Otherwise
The updated Src values will appear after MI and break SSA. e.g.:
%14:_(s64), %15:_(s1) = G_UADDE %9:_, %11:_, %13:_
becomes
%14:_(s64), %16:_(s32) = G_UADDE %9:_, %11:_, %17:_
%15:_(s1) = G_TRUNC %16:_(s32)
%17:_(s32) = G_ZEXT %13:_(s1)
Differential Revision: https://reviews.llvm.org/D132547
Change-Id: Ie3458747a6879433f4d5ab9939d2bd102dd0f2db
This patch replaces calls to greatestCommonDivisor with std::gcd where
two arguments are of the same type. This means that
std::common_type_t of the argument type is the same as the argument
type.
We could drop calls to std::abs in some cases, but that's left for
another patch.
This patch replaces calls to greatestCommonDivisor with std::gcd where
both arguments are known to be of unsigned. This means that
std::common_type_t of the two argument types should just be the wider
one of the two.
This patch replaces getLCMSize with std::lcm, a C++17 feature.
Note that all the arguments are of unsigned with no implicit type
conversion as they are passed to getLCMSize.
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
There are two different senses in which a block can be "address-taken".
There can be a BlockAddress involved, which means we need to map the
IR-level value to some specific block of machine code. Or there can be
constructs inside a function which involve using the address of a basic
block to implement certain kinds of control flow.
Mixing these together causes a problem: if target-specific passes are
marking random blocks "address-taken", if we have a BlockAddress, we
can't actually tell which MachineBasicBlock corresponds to the
BlockAddress.
So split this into two separate bits: one for BlockAddress, and one for
the machine-specific bits.
Discovered while trying to sort out related stuff on D102817.
Differential Revision: https://reviews.llvm.org/D124697
The register operand of DBG_VALUE is not selected to a proper register
bank in both AArch64 and X86. This would cause getRegClass crash after
global ISel. After discussion, we think the MIR should assume all
vritual register should be set proper register class after global ISel,
so this patch is to fix the gap of DBG_VALUE for AArch64 and X86.
Differential Revision: https://reviews.llvm.org/D129037
The LegalizerHelper misses the code to lower G_MUL to a library call,
which this change adds.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D130987
Salvage debug info of instruction that is about to be deleted as dead in
Combiner pass. Currently supported instructions are COPY and G_TRUNC.
It allows to salvage debug info of some dead arguments of functions, by putting
DWARF expression corresponding to the instruction being deleted into related
DBG_VALUE instruction.
Here is an example of missing variables location https://godbolt.org/z/K48osb9dK.
We see that arguments x, y of function foo are not available in debugger, and
corresponding DBG_VALUE instructions have undefined register operand instead of
variables locaton after Aarch64PreLegalizerCombiner pass. The reason is that
registers where variables are located are removed as dead (with instruction
G_TRUNC). We can use salvageDebugInfo analogue for gMIR to preserve debug
locations of dead variables.
Statistics of llvm object files built with vs without this commit on -O2
optimization level (CMAKE_BUILD_TYPE=RelWithDebInfo, -fglobal-isel) on Aarch64 (macOS):
Number of variables with 100% of parent scope covered by DW_AT_location has been increased by 7,9%.
Number of variables with 0% coverage of parent scope has been decreased by 1,2%.
Number of variables processed by location statistics has been increased by 2,9%.
Average PC ranges coverage has been increased by 1,8 percentage points.
Coverage can be improved by supporting more instructions, or by calling
salvageDebugInfo for instructions that are deleted during Combiner rules exection.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D129909
Currently, the LLVM IR -> MIR translator fails to translate dbg.values
whose first argument is a null pointer. However, in other portions of
the code, such pointers are always lowered to the constant zero, for
example see IRTranslator::Translate(Constant, Register).
This patch addresses the limitation by following the same approach of
lowering null pointers to zero.
A prior test was checking that null pointers were always lowered to
$noreg; this test is changed to check for zero, and the previous
behavior is now checked by introducing a dbg.value whose first argument
is the address of a global variable.
Differential Revision: https://reviews.llvm.org/D130721
The getOperand method already returns a Constant when it is called on
a ConstantExpression, as such the cast is not needed. To prevent a type
mismatch between the different return statements of the lambda, the
lambda return type is explicitly provided.
Differential Revision: https://reviews.llvm.org/D130719
Currently, the IR to MIR translator can only handle two kinds of constant
inputs to dbg.values intrinsics: constant integers and constant floats. In
particular, it cannot handle pointers created from IntToPtr ConstantExpression
objects.
This patch addresses the limitation above by replacing the IntToPtr with
its input integer prior to converting the dbg.value input.
Patch by Felipe Piovezan!
Differential Revision: https://reviews.llvm.org/D130642
This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.