The existing volatile checks only handle aliasing hazards between stores,
but that isn't enough since by that point volatile stores may have already
been added to the current candidate group.
This wraps up from D119053. The 2 headers are moved as described,
fixed file headers and include guards, updated all files where the old
paths were detected (simple grep through the repo), and `clang-format`-ed it all.
Differential Revision: https://reviews.llvm.org/D119876
Layering-wise, it seems RegisterBank stuff fits under CodeGen, like
other target abstraction.
In particular, TargetSubtargetInfo has a getRegBankInfo member, but
using that object requires making sure GlobalISel is linked, which is
not always the case (e.g. llvm-jitlink doesn't).
Differential Revision: https://reviews.llvm.org/D119053
Add a new llvm.fptrunc.round intrinsic to precisely control
the rounding mode when converting from f32 to f16.
Differential Revision: https://reviews.llvm.org/D110579
At -O0 we claim to CSE constants only. I think this should apply to
G_FCONSTANT as well as G_CONSTANT.
Differential Revision: https://reviews.llvm.org/D119344
Some globals lower to literal addresses on AMDGPU.
This may be wrong for non-integral address spaces. I'm wondering if we
should just allow regular G_ADD to use pointer types, and reserve
G_PTR_ADD for non-integral address spaces.
This will do the combine in cases that should fold, but don't
now. e.g. we're relying on the CSEMIRBuilder's incomplete constant
folding. For instance it doesn't handle FP operations or vectors (and
we don't have separate constant folding combines either to catch
them).
When splitting values, CallLowering assumes Lo part goes first. But in big endian ISA such as M68k, Hi part goes first.
This patch fixes this.
Differential Revision: https://reviews.llvm.org/D116877
Similar to the G_*MULO change.
The code for checking if a constant is legal/pre-legalize is shared between
these, and is kind of hairy. So, factor it out into a new function:
`isConstantLegalOrBeforeLegalizer`.
To make the refactoring clean, further refactor `isLegalOrBeforeLegalizer` into
a wrapper for two functions:
- `isPreLegalize`
- `isLegal`
This is a bit easier to read in general.
https://godbolt.org/z/KW7oszP1o
Differential Revision: https://reviews.llvm.org/D118655
Similar to the following combine in `DAGCombiner::visitMULO`:
```
// fold (mulo x, 0) -> 0 + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
```
This fixes some generally poor codegen for `*mulo`:
https://godbolt.org/z/eTxYsvz8f
Differential Revision: https://reviews.llvm.org/D118635
The physical register in the asm has the wrong type for the declared
IR. It seems to work in the DAG by extracting the 4 elements that are
defined in the IR from the register, but that isn't handled here. This
doesn't seem to be a well tested path since other mismatched cases are
crashing the DAG asm handling.
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This change folds (or (shl x, C0), (lshr y, C1)) to funnel shift iff C0
and C1 are constants where C0 + C1 is the bit-width of the shift
instructions.
Differential Revision: https://reviews.llvm.org/D116529
The GlobalISel combiner currently uses sign extension when manipulating
the LHS constant when combining a sequence of the following sequence of
machine instructions into a single constant:
```
%0:_(s32) = G_CONSTANT i32 <CONSTANT>
%1:_(p0) = G_INTTOPTR %0:_(s32)
%2:_(s64) = G_CONSTANT i64 <CONSTANT>
%3:_(p0) = G_PTR_ADD %1:_, %2:_(s64)
```
This causes an issue when the bit width of the first contant and the
target pointer size are different, as G_INTTOPTR has no sign extension
semantics.
This patch fixes this by capture an arbitrary precision in when matching
the constant, allowing the matching function to correctly zero extend
it.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D116941
This was ignoring the requested result register, resulting in a
missing def when this happened in the IRTranslator. Fixes some crashes
and verifier errors at -O0.
Alternatively we could pass DstOps to the constant fold functions.
Use the AttributeSet constructor instead. There's no good reason
why AttrBuilder itself should exact the AttributeSet from the
AttributeList. Moving this out of the AttrBuilder generally results
in cleaner code.
This commit sometimes causes a crash when compiling a vtable thunk. E.g.:
clang '--target=aarch64-grtev4-linux-gnu' -xc++ - -c -o /dev/null <<EOF
struct a {
virtual int f();
};
struct c {
virtual int &g() const;
};
struct d : a, c {
int &g() const;
};
int &d::g() const {}
EOF
Some follow-up commits have been reverted as well:
Revert "IR: Make getRetAlign check callee function attributes"
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."
This reverts commit 4f414af6a7.
This reverts commit a5507d2e25.
This reverts commit 3d2d208f6a.
This reverts commit 07ddfa95e3.
This wasn't running at -O0, and causing crashes for AMDGPU. AMDGPU
needs this to match the addressing modes of stack access instructions,
which is even more important at -O0 than with optimizations.
It currently costs nothing to run ahead of time, so just always enable
it.
This was inserting the new G_CONSTANT after the use, and the later
block scan would run off the end. Fix calling SkipPHIsAndLabels for no
apparent reason.
Fma combine assumes that MRI.getVRegDef(Reg)->getOperand(0).getReg() = Reg
which is not true when Reg is defined by instruction with multiple defs
e.g. G_UNMERGE_VALUES.
Fix is to keep register and the instruction that defines register in
DefinitionAndSourceRegister and use when needed.
Differential Revision: https://reviews.llvm.org/D117032
Change CombinerHelper::matchBitfieldExtractFromShrAnd to use
getPreferredShiftAmountTy for the shift-amount-like operands of G_UBFX
just like all the other G_[SU]BFX combines do. This better matches the
AMDGPU legality rules for these instructions.
Differential Revision: https://reviews.llvm.org/D116803
1. Fix CombinerHelper::matchBitfieldExtractFromAnd to check legality
with the correct types for the G_UBFX that it builds.
2. Fix AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal to
match the legality rules: result and first operand can be s32 or s64
but the "shift amount" operands are always s32.
3. Add AMDGPU tests where the post-legalizer combiner would create
illegal MIR without the above fixes.
Differential Revision: https://reviews.llvm.org/D116802
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
Artifact combiner is not able to access individual elements after using
LCMTy style merge/unmerge, extract and insert to change vector number of
elements (pad with undef or split to sub-vector instructions).
Use unmerge to individual elements instead and then merge elements into
requested types.
Change argument lowering for vectors and moreElementsVector to use
buildPadVectorWithUndefElements and buildDeleteTrailingVectorElements.
FewerElementsVector had a few helpers that had different behavior,
introduce new helper for most of the opcodes.
FewerElementsVector helper is more flexible since it can create leftover
instruction smaller then requested type (useful in case target wants to
avoid pad with undef and use fewer registers). If target does not want
leftover of different type it should call more elements first.
Some helpers were performing more elements first to have split without
leftover. Opcodes that used this helper use clampMaxNumElementsStrict
(does more elements first) in LegalizerInfo to avoid test changes.
Fixes failures caused by failing to combine artifacts created during
more/fewer elements vector.
Differential Revision: https://reviews.llvm.org/D114198
The existing code assumed fcmp to always be an Instruction, but it can also be a ConstExpr.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D115450
Expanding on D109750.
Since `DBG_VALUE` instructions have final register validity determined in
`LDVImpl::handleDebugValue`, there is no apparent reason to immediately prune
unused register operands as their defs are erased. Consequently, this renders
`MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval` moot; gaining a
substantial performance improvement.
The only necessary changes involve making relevant passes consider invalid
DBG_VALUE vregs uses as valid.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D112852
This change exposes isBuildVectorConstantSplat() to the llvm namespace
and uses it to implement the constant splat versions of
m_SpecificICst().
CombinerHelper::matchOrShiftToFunnelShift() can now work with vector
types and CombinerHelper::matchMulOBy2()'s match for a constant splat is
simplified.
Differential Revision: https://reviews.llvm.org/D114625
This change folds a basic funnel shift idiom:
- (or (shl x, amt), (lshr y, sub(bw, amt))) -> fshl(x, y, amt)
- (or (shl x, sub(bw, amt)), (lshr y, amt)) -> fshr(x, y, amt)
This also helps in folding to rotate shift if x and y are equal since we
already have a funnel shift to rotate combine.
Differential Revision: https://reviews.llvm.org/D114499
If possible fold fneg into instruction above if users cannot fold mods and we
know it will decrease instruction count.
Follows same logic as SDAG combiner in choosing opportunities to combine.
Differential Revision: https://reviews.llvm.org/D112827
This is a first attempt at a constant value consecutive store merging pass,
a counterpart to the DAGCombiner's store merging optimization.
The high level goals of this pass:
* Have a simple and efficient algorithm. As close to linear time as we can get.
Thus, prioritizing scalability of the algorithm over merging every corner case
we can find. The DAGCombiner's store merging code has been the source of
compile time and complexity issues in the past and I wanted to avoid that.
* Don't introduce any new data structures for ordering memory operations. In MIR,
we don't have the concept of chains like we do in the DAG, and the instruction
order is stricter than enforcing ordering with graph edges. Although I
considered adding something similar, I couldn't justify the overhead.
The pass is current split into 3 main parts. The main store merging code focuses
on identifying candidate stores and managing the candidate group that's under
consideration for merging. Analyzing addressing of stores is a potentially
complex part and for now there's just a basic implementation to identify easy
cases. Finally, the other main bit of complexity is the alias analysis, which
tries to follow the same logic as the DAG's AA.
Currently this implementation only supports merging of constant stores. Stores
of arbitrary variables are technically possible with a very small change, but
the DAG chooses not to do this. Doing so here makes most code worse since
there's extra overhead in merging values into wider registers.
On AArch64 -Os, this optimization results in very minor savings on CTMark.
Differential Revision: https://reviews.llvm.org/D109131
The existing code didn't add all necessary successors, which resulted in
disjoint basic blocks. These would end up not being legalized which, in the
best case, caused a fallback only in assert builds.
Here's an example:
https://godbolt.org/z/ndx15Enfj
We also end up getting weird codegen here as well.
Refactoring the code here allows us to correctly attach all successors. With
this patch, the above example gives correct codegen at -O0 with and without
asserts.
Also autogen the testcase to show that we add all the successors now.
Differential Revision: https://reviews.llvm.org/D113437
Register operands with superclasses can possibly have multiple regBanks
if they have different register types. The regBank ambiguity resolved
during regbankselect should be used to constrain the operand regclass
instead of obtaining one from the MCInstrDesc.
This is a prerequisite patch for D109300 that introduces allocatable AV_*
Superclasses for AMDGPU by combining both VGPRs and AGPRs and we want to
restrain the regclass to either A or V based on the incoming regbank.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D112323
Save the instruction list of a block before selecting banks.
This allows to cope with moved instructions, even if they are reordered
or splitted into multiple basic blocks.
Differential Revision: https://reviews.llvm.org/D111223
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
This was using MachineFunction::createExternalSymbolName() before, which seems
reasonable, but in fact this is freed before the asm emitter which tries to access
the function name string. Switching it to use the string returned by the attribute
seems to fix the problem.
In order to not generate an unnecessary G_CTLZ, I extended the constant folder
in the CSEMIRBuilder to handle G_CTLZ. I also added some extra handing of
vector constants too. It seems we don't have any support for doing constant
folding of vector constants, so the tests show some other useless G_SUB
instructions too.
Differential Revision: https://reviews.llvm.org/D111036
As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.
If these blocks are unreachable, then we can discard all of the instructions.
However, keep the block around because it may have an address taken or the
block may have a stale reference from a PHI somewhere. Instead of finding
those PHIs and fixing them up, just leave the block empty.
Differential Revision: https://reviews.llvm.org/D111201
This is a port of the feature that allows the StackProtector pass to omit
checking code for stack canary checks, and rely on SelectionDAG to do it at a
later stage. The reasoning behind this seems to be to prevent the IR checking
instructions from hindering tail-call optimizations during codegen.
Here we allow GlobalISel to also use that scheme. Doing so requires that we
do some analysis using some factored-out code to determine where to generate
code for the epilogs.
Not every case is handled in this patch since we don't have support for all
targets that exercise different stack protector schemes.
Differential Revision: https://reviews.llvm.org/D98200
This reverts commit d95cd81141.
The selector sometimes leaves unreachable blocks unselected because it uses a
postorder traversal for the block ordering.
With the trap intrinsics now being emitted, these blocks are no longer empty and
the unselected G_INTRINSIC instructions survive past selection. To fix this,
keep track of which blocks are selected and later delete any blocks that weren't
selected.
The delayed stack protector feature which is currently used for SDAG (and thus
allows for more commonly generating tail calls) depends on being able to extract
the tail call into a separate return block. To do this it also has to extract
the vreg->physreg copies that set up the call's arguments, since if it doesn't
then the call inst ends up using undefined physregs in it's new spliced block.
SelectionDAG implementations can do this because they delay emitting register
copies until *after* the stack arguments are set up. GISel however just
processes and emits the arguments in IR order, so stack arguments always end up
last, and thus this breaks the code that looks for any register arg copies that
precede the call instruction.
This patch adds a thunk argument to the assignValueToReg() and custom assignment
hooks. For outgoing arguments, register assignments use this return param to
return a thunk that does the actual generating of the copies. We collect these
until all the outgoing stack assignments have been done and then execute them,
so that the copies (and perhaps some artifacts like G_SEXTs) are placed after
any stores.
Differential Revision: https://reviews.llvm.org/D110610
Also remove some redundancy because the source and result
types of any multiply are always the same.
Differential Revision: https://reviews.llvm.org/D110926
We were previously just ignoring unreachable, but targets like Darwin want to
keep unreachable instructions as traps.
Differential Revision: https://reviews.llvm.org/D110603
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
Similar to what SDAG does when it sees a smulo/umulo against 2
(see: `DAGCombiner::visitMULO`)
This pattern is fairly common in Swift code AFAICT.
Here's an example extracted from a Swift testcase:
https://godbolt.org/z/6cT8Mesx7
Differential Revision: https://reviews.llvm.org/D110662
To avoid using the AST when emitting diagnostics, split the "dontcall"
attribute into "dontcall-warn" and "dontcall-error", and also add the
frontend attribute value as the LLVM attribute value. This gives us all
the information to report diagnostics we need from within the IR (aside
from access to the original source).
One downside is we directly use LLVM's demangler rather than using the
existing Clang diagnostic pretty printing of symbols.
Previous revisions didn't properly declare the new dependencies.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D110364
To avoid using the AST when emitting diagnostics, split the "dontcall"
attribute into "dontcall-warn" and "dontcall-error", and also add the
frontend attribute value as the LLVM attribute value. This gives us all
the information to report diagnostics we need from within the IR (aside
from access to the original source).
One downside is we directly use LLVM's demangler rather than using the
existing Clang diagnostic pretty printing of symbols.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D110364
When using instructions which have a MetadataAsValue argument
(e.g. some target-specific intrinsics) MD canonicalization strips
internal MDNodes with a single ConstantAsMetadata child. That
prevented IRTranslator from the proper translation of such a calls.
Add generic helper function that matches constant splat. It has option to
match constant splat with undef (some elements can be undef but not all).
Add util function and matcher for G_FCONSTANT splat.
Differential Revision: https://reviews.llvm.org/D104410
For artifacts excluding G_TRUNC/G_SEXT, which have IR counterparts, we don't
seem to have debug users of defs. However, in the legalizer we're always calling
MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() which is expensive.
In some rare cases, this contributes significantly to unreasonably long compile
times when we have lots of artifact combiner activity.
To verify this, I added asserts to that function when it actually replaced a debug
use operand with undef for these artifacts. On CTMark with both -O0 and -Os and
debug info enabled, I didn't see a single case where it triggered.
In my measurements I saw around a 0.5% geomean compile-time improvement on -g -O0
for AArch64 with this change.
Differential Revision: https://reviews.llvm.org/D109750
Add eraseInstr(s) utility functions. Before deleting an instruction
collects its use instructions. After deletion deletes use instructions
that became trivially dead.
This patch clears all dead instructions in existing legalizer mir tests.
Differential Revision: https://reviews.llvm.org/D109154
Rework getConstantstVRegValWithLookThrough in order to make it clear if we
are matching integer/float constant only or any constant(default).
Add helper functions that get DefVReg and APInt/APFloat from constant instr
getIConstantVRegValWithLookThrough: integer constant, only G_CONSTANT
getFConstantVRegValWithLookThrough: float constant, only G_FCONSTANT
getAnyConstantVRegValWithLookThrough: either G_CONSTANT or G_FCONSTANT
Rename getConstantVRegVal and getConstantVRegSExtVal to getIConstantVRegVal
and getIConstantVRegSExtVal. These now only match G_CONSTANT as described
in comment.
Relevant matchers now return both DefVReg and APInt/APFloat.
Replace existing uses of getConstantstVRegValWithLookThrough and
getConstantVRegVal with new helper functions. Any constant match is
only required in:
ConstantFoldBinOp: for constant argument that was bit-cast of float to int
getAArch64VectorSplat: AArch64::G_DUP operands can be any constant
amdgpu select for G_BUILD_VECTOR_TRUNC: operands can be any constant
In other places use integer only constant match.
Differential Revision: https://reviews.llvm.org/D104409
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
The doc comment for isPredecessor says:
Returns true if \p DefMI precedes \p UseMI or they are the same
instruction.
And dominates relies on that behavior for its own:
Returns true if \p DefMI dominates \p UseMI. By definition an
instruction dominates itself.
Make both statements correct by fixing isPredecessor.
Found by inspection.