The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
This is almost the same as the abandoned D48529, but it
allows splat vector constants too.
This replaces the x86-specific code that was added with
the alternate patch D48557 with the original generic
combine.
This transform is a less restricted form of an existing
InstCombine and the proposed SDAG equivalent for that
in D128080:
https://alive2.llvm.org/ce/z/OUm6N_
Differential Revision: https://reviews.llvm.org/D128123
This resolves problems reported in commit 1a20252978.
1. Promote to float lowering for nodes XINT_TO_FP
2. Bail out f16 from shuffle combine due to vector type is not legal in the version
GCC and Clang/LLVM will support `_Float16` on X86 in C/C++, following
the latest X86 psABI. (https://gitlab.com/x86-psABIs)
_Float16 arithmetic will be performed using native half-precision. If
native arithmetic instructions are not available, it will be performed
at a higher precision (currently always float) and then truncated down
to _Float16 immediately after each single arithmetic operation.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D107082
Rename hasCMPXCHG16B() to canUseCMPXCHG16B() to make it less like other
feature functions. Add a similar canUseCMPXCHG8B() that aliases
hasCX8() to keep similar naming.
Differential Revision: https://reviews.llvm.org/D121978
Compiler only emits a comment for `Int_MemBarrier`, so it should
be marked as a meta-instruction, which can help improve accuracy
of debug location.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D121879
This fix is similar to 3cf3ffce240e("Fix the TCRETURNmi64 bug differently.")
after allocating register for index+base, we will only have one register left
This bug affects linux kernel compilation for x86 target. Error happens when compiling kmod_si476x_core.
clang complains:
error: ran out of registers during register allocation
The full command is:
clang -Wp,-MMD,drivers/mfd/.si476x-cmd.o.d -nostdinc -isystem /opt/toolchain/main/lib/clang/14.0.0/include -I./arch/x86/include -I./arch/x86/include/generated -I./include -I./arch/x86/include/uapi -I./arch/x86/include/generated/uapi -I./include/uapi -I./include/generated/uapi -include ./include/linux/compiler-version.h -include ./include/linux/kconfig.h -include ./include/linux/compiler_types.h -D__KERNEL__ -Qunused-arguments -fmacro-prefix-map=./= -Wall -Wundef -Werror=strict-prototypes -Wno-trigraphs -fno-strict-aliasing -fno-common -fshort-wchar -fno-PIE -Werror=implicit-function-declaration -Werror=implicit-int -Werror=return-type -Wno-format-security -std=gnu89 -no-integrated-as --prefix=/usr/bin/ -Werror=unknown-warning-option -mno-sse -mno-mmx -mno-sse2 -mno-3dnow -mno-avx -fcf-protection=none -m32 -msoft-float -mregparm=3 -freg-struct-return -fno-pic -mstack-alignment=4 -march=atom -mtune=atom -mtune=generic -Wa,-mtune=generic32 -ffreestanding -Wno-sign-compare -fno-asynchronous-unwind-tables -fno-delete-null-pointer-checks -Wno-frame-address -Wno-address-of-packed-member -O2 -Wframe-larger-than=1024 -fno-stack-protector -Wno-format-invalid-specifier -Wno-gnu -mno-global-merge -Wno-unused-but-set-variable -Wno-unused-const-variable -fomit-frame-pointer -ftrivial-auto-var-init=pattern -fno-stack-clash-protection -falign-functions=32 -Wdeclaration-after-statement -Wvla -Wno-pointer-sign -Wno-array-bounds -fno-strict-overflow -fno-stack-check -Werror=date-time -Werror=incompatible-pointer-types -Wno-initializer-overrides -Wno-format -Wno-sign-compare -Wno-format-zero-length -Wno-pointer-to-enum-cast -Wno-tautological-constant-out-of-range-compare -DKBUILD_MODFILE='"drivers/mfd/si476x-core"' -DKBUILD_BASENAME='"si476x_cmd"' -DKBUILD_MODNAME='"si476x_core"' -D__KBUILD_MODNAME=kmod_si476x_core -c -o drivers/mfd/si476x-cmd.o drivers/mfd/si476x-cmd.c
-------------
LLVM cannot compile the following code for x86 32bit target, the reason is tail call(TCRETURNmi) is using 2 registers for index+base and we want to use more than one registers for passing function args and that is impossible.
This fix is similar to 3cf3ffce240e("Fix the TCRETURNmi64 bug differently.").
We will only use tail call when it is using <=1 registers for passing args.
```
struct BIG_PARM {
int ver;
};
static struct {
int (*foo) (struct BIG_PARM* a, void *b);
int (*bar) (struct BIG_PARM* a);
int (*zoo0) (void);
int (*zoo1) (void);
int (*zoo2) (void);
int (*zoo3) (void);
int (*zoo4) (void);
} vtable[] = {
[0] = {
.foo = (int (*)(struct BIG_PARM* a, void *b))0xdeadbeef,
},
};
int something(struct BIG_PARM *a, void* b) {
return vtable[a->ver].foo(a,b);
}
```
```
$ clang -std=gnu89 -m32 -mregparm=3 -mtune=generic -fno-strict-overflow -O2 -c t0.c -o t0.c.o
error: ran out of registers during register allocation
1 error generated.
```
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D118312
Changed registers to R10 and R11 because PLT resolution clobbers them. Also changed the implementation to use R11 instead of RCX, which saves a push/pop.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D115002
The changes in D80163 defered the assignment of MachineMemOperand (MMO)
until the X86ExpandPseudo pass. This will result in crash due to prolog
insert point been sunk across the pseudo instruction VASTART_SAVE_XMM_REGS.
Moving the assignment to the creation of the node can avoid the problem.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D112859
For x86 Darwin, we have a stack checking feature which re-uses some of this
machinery around stack probing on Windows. Renaming this to be more appropriate
for a generic feature.
Differential Revision: https://reviews.llvm.org/D109993
integer 0/1 for the operand of bundle "clang.arc.attachedcall"
https://reviews.llvm.org/D102996 changes the operand of bundle
"clang.arc.attachedcall". This patch makes changes to llvm that are
needed to handle the new IR.
This should make it easier to understand what the IR is doing and also
simplify some of the passes as they no longer have to translate the
integer values to the runtime functions.
Differential Revision: https://reviews.llvm.org/D103000
The implementation uses the int_asan_check_memaccess intrinsic to instrument the code. The intrinsic is replaced by a call to a function which performs the access check. The generated function names encode the input register name as a number using Reg - X86::NoRegister formula.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D107850
The implementation uses the int_asan_check_memaccess intrinsic to instrument the code. The intrinsic is replaced by a call to a function which performs the access check. The generated function names encode the input register name as a number using Reg - X86::NoRegister formula.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D107850
This patch adds support for lowering function calls with the
`clang.arc.attachedcall` bundle. The goal is to expand such calls to the
following sequence of instructions:
callq @fn
movq %rax, %rdi
callq _objc_retainAutoreleasedReturnValue / _objc_unsafeClaimAutoreleasedReturnValue
This sequence of instructions triggers Objective-C runtime optimizations,
hence we want to ensure no instructions get moved in between them.
This patch achieves that by adding a new CALL_RVMARKER ISD node,
which gets turned into the CALL64_RVMARKER pseudo, which eventually gets
expanded into the sequence mentioned above.
The ObjC runtime function to call is determined by the
argument in the bundle, which is passed through as a
target constant to the pseudo.
@ahatanak is working on using this attribute in the front- & middle-end.
Together with the front- & middle-end changes, this should address
PR31925 for X86.
This is the X86 version of 46bc40e502,
which added similar support for AArch64.
Reviewed By: ab
Differential Revision: https://reviews.llvm.org/D94597
That review is extracted from D69372.
It fixes https://bugs.llvm.org/show_bug.cgi?id=42219 bug.
For the noimplicitfloat mode, the compiler mustn't generate
floating-point code if it was not asked directly to do so.
This rule does not work with variable function arguments currently.
Though compiler correctly guards block of code, which copies xmm vararg
parameters with a check for %al, it does not protect spills for xmm registers.
Thus, such spills are generated in non-protected areas and could break code,
which does not expect floating-point data. The problem happens in -O0
optimization mode. With this optimization level there is used
FastRegisterAllocator, which spills virtual registers at basic block boundaries.
Register Allocator does not protect spills with additional control-flow modifications.
Thus to resolve that problem, it is suggested to not copy incoming physical
registers into virtual registers. Instead, store incoming physical xmm registers
into the memory from scratch.
Differential Revision: https://reviews.llvm.org/D80163
The X86-64 ABI defines va_list as
typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;
} va_list[1];
This means the size, alignment, and reg_save_area offset will depend on
whether we are in LP64 or in ILP32 mode, so this commit adds the checks.
Additionally, the VAARG_64 pseudo-instruction assumed 64-bit pointers, so
this commit adds a VAARG_X32 pseudo-instruction that behaves just like
VAARG_64, except for assuming 32-bit pointers.
Some of these changes were originally done by
Michael Liao <michael.hliao@gmail.com>.
Fixes https://bugs.llvm.org/show_bug.cgi?id=48428.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93160
LLVM has TLS_(base_)addr32 for 32-bit TLS addresses in 32-bit mode, and
TLS_(base_)addr64 for 64-bit TLS addresses in 64-bit mode. x32 mode wants 32-bit
TLS addresses in 64-bit mode, which were not yet handled. This adds
TLS_(base_)addrX32 as copies of TLS_(base_)addr64, except that they use
tls32(base)addr rather than tls64(base)addr, and then restricts
TLS_(base_)addr64 to 64-bit LP64 mode, TLS_(base_)addrX32 to 64-bit ILP32 mode.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92346
We need to use LCMPXCHG16B_SAVE_RBX if RBX/EBX is being used as
the frame pointer. We previously checked for this during type
legalization, but that's too early to know for sure if the base
pointer is needed.
This patch adds a new pseudo instruction to emit from isel that
uses a virtual register for the RBX input. Then we use the custom
inserter hook to emit LCMPXCHG16B if RBX isn't needed as a base
pointer or LCMPXCHG16B_SAVE_RBX if it is.
Fixes PR42064.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D88808
This and its friend X86ISD::LCMPXCHG8_SAVE_RBX_DAG are used if we need to avoid clobbering the frame pointer in EBX/RBX. EBX/RBX are only used a frame pointer in 64-bit mode. In 64-bit mode we don't use CMPXCHG8B since we have a GR64 cmpxchg available. So we don't need special handling for LCMPXCHG8B.
Split from D88808
Differential Revision: https://reviews.llvm.org/D88853
RBX was copied to a virtual register before this instruction
was created. And the EBX input for the final MWAITX is still
in a virtual register. So EBX isn't read by this pseudo.
ebx/rbx only needs to be saved when 64-bit registers are supported
anyway. It should be fine to save/restore the whole rbx register
even in gnux32 where the base is technically just ebx.
This matches what we do for cmpxchg16b where rbx is saved/restored
regardless of gnux32.
MWAITX doesn't touch EFLAGS so no pseudos should def EFLAGS.
The SAVE_EBX/RBX pseudos only needs to def the EBX register that
the expansion overwrites. The EAX and ECX registers are only read.
The pseudo emitted during isel that is used by the custom inserter
shouldn't have any implicit defs or uses since everything is in
vregs.
pointer.
mwaitx uses EBX as one of its argument.
Using this instruction clobbers RBX as it is defined to hold one of the
input. When the backend uses dynamically allocated stack, RBX is used as
a reserved register for the base pointer.
This patch is adapted from @qcolombet patch for cmpxchg at r263325.
This fixes PR43528.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D73475
This adds an isel pattern and special XOR8rr_NOREX instruction
to enable the use of h-registers for __builtin_parity. This avoids
a copy and a shift instruction. The NOREX instruction is in case
register allocation doesn't use the matching l-register for some
reason. If a R8-R15 register gets picked instead, we won't be
able to encode the instruction since an h-register can't be used
with a REX prefix.
Fixes PR46954
> relocImm was a complexPattern that handled both ConstantSDNode
> and X86Wrapper. But it was only applied selectively because using
> it would cause patterns to be not importable into FastISel or
> GlobalISel. So it only got applied to flag setting instructions,
> stores, RMW arithmetic instructions, and rotates.
>
> Most of the test changes are a result of making patterns available
> to GlobalISel or FastISel. The absolute-cmp.ll change is due to
> this fixing a pattern ordering issue to make an absolute symbol
> match to an 8-bit immediate before trying a 32-bit immediate.
>
> I tried to use PatFrags to reduce the repetition, but I was getting
> errors from TableGen.
This caused "Invalid EmitNode" assertions, see the llvm-commits thread for
discussion.
relocImm was a complexPattern that handled both ConstantSDNode
and X86Wrapper. But it was only applied selectively because using
it would cause patterns to be not importable into FastISel or
GlobalISel. So it only got applied to flag setting instructions,
stores, RMW arithmetic instructions, and rotates.
Most of the test changes are a result of making patterns available
to GlobalISel or FastISel. The absolute-cmp.ll change is due to
this fixing a pattern ordering issue to make an absolute symbol
match to an 8-bit immediate before trying a 32-bit immediate.
I tried to use PatFrags to reduce the repetition, but I was getting
errors from TableGen.