- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
llvm-svn: 252839
Summary:
Don't fold
(zext (and (load x), cst)) -> (and (zextload x), (zext cst))
if
(and (load x) cst)
will match as a zextload already and has additional users.
For example, the following IR:
%load = load i32, i32* %ptr, align 8
%load16 = and i32 %load, 65535
%load64 = zext i32 %load16 to i64
store i32 %load16, i32* %dst1, align 4
store i64 %load64, i64* %dst2, align 8
used to produce the following aarch64 code:
ldr w8, [x0]
and w9, w8, #0xffff
and x8, x8, #0xffff
str w9, [x1]
str x8, [x2]
but with this change produces the following aarch64 code:
ldrh w8, [x0]
str w8, [x1]
str x8, [x2]
Reviewers: resistor, mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14340
llvm-svn: 252789
Summary: Other personalities don't use this special frame slot.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14580
llvm-svn: 252778
If we have a chain of BFIs, we may be able to combine several together into one merged BFI. We can do this if the "from" bits from one BFI OR'd with the "from" bits from the other BFI form a contiguous range, and the same with the "to" bits.
llvm-svn: 252740
If possible and profitable, replace lea %reg, 1(%reg) and lea %reg, -1(%reg) with inc %reg and dec %reg respectively.
Patch by: anton.nadolsky@intel.com
Differential Revision: http://reviews.llvm.org/D14059
llvm-svn: 252722
This patch adds a pass for doing PowerPC peephole optimizations at the
MI level while the code is still in SSA form. This allows for easy
modifications to the instructions while depending on a subsequent pass
of DCE. Both passes are very fast due to the characteristics of SSA.
At this time, the only peepholes added are for cleaning up various
redundancies involving the XXPERMDI instruction. However, I would
expect this will be a useful place to add more peepholes for
inefficiencies generated during instruction selection. The pass is
placed after VSX swap optimization, as it is best to let that pass
remove unnecessary swaps before performing any remaining clean-ups.
The utility of these clean-ups are demonstrated by changes to four
existing test cases, all of which now have tighter expected code
generation. I've also added Eric Schweiz's bugpoint-reduced test from
PR25157, for which we now generate tight code. One other test started
failing for me, and I've fixed it
(test/Transforms/PlaceSafepoints/finite-loops.ll) as well; this is not
related to my changes, and I'm not sure why it works before and not
after. The problem is that the CHECK-NOT: of "statepoint" from test1
fails because of the "statepoint" in test2, and so forth. Adding a
CHECK-LABEL in between keeps the different occurrences of that string
properly scoped.
llvm-svn: 252651
This is one of the problems noted in PR25016:
https://llvm.org/bugs/show_bug.cgi?id=25016
and:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/090998.html
The spilling problem is independent and not addressed by this patch.
The MachineCombiner was doing reassociations that don't improve or even worsen the critical path.
This is caused by inclusion of the "slack" factor when calculating the critical path of the original
code sequence. If we don't add that, then we have a more conservative cost comparison of the old code
sequence vs. a new sequence. The more liberal calculation must be preserved, however, for the AArch64
MULADD patterns because benchmark regressions were observed without that.
The two failing test cases now have identical asm that does what we want:
a + b + c + d ---> (a + b) + (c + d)
Differential Revision: http://reviews.llvm.org/D13417
llvm-svn: 252616
Added fixes for stage2 failures: CMOV is not commutable; commuting the operands results in the condition being flipped! d'oh!
Original commit message:
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252606
For big-endian targets, when we merge two halfword loads into a word load, the
order of the halfwords in the loaded value is reversed compared to
little-endian, so the load-store optimiser needs to swap the destination
registers.
This does not affect merging of two word loads, as we use ldp, which treats the
memory as two separate 32-bit words.
llvm-svn: 252597
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
llvm-svn: 252578
AArch64 has the ability to use the top 8-bits of an "address" for extra
information, with the memory subsystem automatically masking them off for loads
and stores. When that's happening, we can sometimes skip masks on memory
operations in the compiler.
However, this requires the host OS and support stack to preserve those bits so
it can't be enabled everywhere. In principle iOS 8.0 and above do take the
required precautions and but we'll put it under a flag for now.
llvm-svn: 252573
Lower LLVM's 'unreachable' terminator to ISD::TRAP, and lower ISD::TRAP to
wasm's 'unreachable' expression.
WebAssembly type-checks expressions, but a noreturn function with a
return type that doesn't match the context will cause a check
failure. So we lower LLVM 'unreachable' to ISD::TRAP and then lower that
to WebAssembly's 'unreachable' expression, which typechecks in any
context and causes a trap if executed.
Differential Revision: http://reviews.llvm.org/D14515
llvm-svn: 252566
This fixes a bug in ARMAsmPrinter::EmitUnwindingInstruction where
llvm_unreachable was reached because t2ADDri wasn't handled.
Test case provided by Tim Northover.
rdar://problem/23270609
http://reviews.llvm.org/D14518
llvm-svn: 252557
The motivation for this patch starts with the epic fail example in PR18007:
https://llvm.org/bugs/show_bug.cgi?id=18007
...unfortunately, this patch makes no difference for that case, but it solves some
simpler cases. We'll get there some day. :)
The current 'or' matching code was using computeKnownBits() via
isBaseWithConstantOffset() -> MaskedValueIsZero(), but that's an unnecessarily limited use.
We can do more by copying the logic in ValueTracking's haveNoCommonBitsSet(), so we can
treat the 'or' as if it was an 'add'.
There's a TODO comment here because we should lift the bit-checking logic into a helper
function, so it's not duplicated in DAGCombiner.
An example of the better LEA matching:
leal (%rdi,%rdi), %eax
andl $1, %esi
orl %esi, %eax
Becomes:
andl $1, %esi
leal (%rsi,%rdi,2), %eax
Differential Revision: http://reviews.llvm.org/D13956
llvm-svn: 252515
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
llvm-svn: 252512
Summary:
This matches the sum-of-absdiff patterns emitted by the vectoriser using log2 shuffles.
Relies on D14207 to be able to match the `extract_subvector(..., 0)`
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14208
llvm-svn: 252465
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
llvm-svn: 252462
We don't currently have any runtime library functions for operations on
f16 values (other than conversions to and from f32 and f64), so we
should always promote it to f32, even if that is not a legal type. In
that case, the f32 values would be softened to f32 library calls.
SoftenFloatRes_FP_EXTEND now needs to check the promoted operand's type,
as it may ne a no-op or require a different library call.
getCopyFromParts and getCopyToParts now need to cope with a
floating-point value stored in a larger integer part, as is the case for
any target that needs to store an f16 value in a 32-bit integer
register.
Differential Revision: http://reviews.llvm.org/D12856
llvm-svn: 252459
Under most circumstances, if SCEV can simplify X-Y to a constant, then it can
also simplify Y-X to a constant. However, there is no guarantee that this is
always true, and concensus is not to consider that a correctness bug in SCEV
(although it is undesirable).
PPCLoopPreIncPrep gathers pointers used to access memory (via loads, stores and
prefetches) into buckets, where in each bucket the relative pointer offsets are
constant. We used to keep each bucket as a multimap, where SCEV's subtraction
operation was used to define the ordering predicate. Instead, use a fixed SCEV
base expression for each bucket, record the constant offsets from that base
expression, and adjust it later, if desirable, once all pointers have been
collected.
Doing it this way should be more compile-time efficient than the previous
scheme (in addition to making the implementation less sensitive to SCEV
simplification quirks).
Fixes PR25170.
llvm-svn: 252417
The TailDuplication machine pass ran across a malformed CFG: a PHI node
referred it's predecessor's predecessor instead of it's predecessor.
This occurred because we split the edge in X86ISelLowering when we
processed the CATCHRET but forgot to do something about the PHI nodes.
This fixes PR25444.
llvm-svn: 252413
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
We used to try to constant-fold them to i32 immediates.
Given that fast-isel doesn't otherwise support vNi1, when selecting
the result users, we'd fallback to SDAG anyway.
However, if the users were in another block, we'd insert broken
cross-class copies (GPR32 to FPR64).
Give up, let SDAG agree with itself on a vNi1 legalization strategy.
llvm-svn: 252364
When matching non-LSB-extracting truncating broadcasts, we now insert
the necessary SRL. If the scalar resulted from a load, the SRL will be
folded into it, creating a narrower, offset, load.
However, i16 loads aren't Desirable, so we get i16->i32 zextloads.
We already catch i16 aextloads; catch these as well.
llvm-svn: 252363
Now that we recognize this, we can support it instead of bailing out.
That is, we can fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc (srl Y, 16)))))
llvm-svn: 252362
We used to incorrectly assume that the offset we're extracting from
was a multiple of the element size. So, we'd fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc Y))))
whereas we should have extracted the higher bits from X.
Instead, bail out if the assumption doesn't hold.
llvm-svn: 252361
All 3 operands of FMA3 instructions are commutable now.
Patch by Slava Klochkov
Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).
Differential Revision: http://reviews.llvm.org/D13269
llvm-svn: 252335
Modelling of the expression stack is evolving. This patch takes another
step by making pushes explicit.
Differential Revision: http://reviews.llvm.org/D14338
llvm-svn: 252334
Mark kernels that use certain features that require user
SGPRs to support with kernel attributes. We need to know
before instruction selection begins because it impacts
the kernel calling convention lowering.
For now this only detects the workitem intrinsics.
llvm-svn: 252323
For some reason VS_32 ends up factoring into the pressure heuristics
even though we should never see a virtual register with this class.
When SGPRs are reserved for register spilling, this for some reason
triggers reg-crit scheduling.
Setting isAllocatable = 0 may help with this since that seems to remove
it from the default implementation's generated table.
llvm-svn: 252321
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
The benefit from converting narrow loads into a wider load (r251438) could be
micro-architecturally dependent, as it assumes that a single load with two bitfield
extracts is cheaper than two narrow loads. Currently, this conversion is
enabled only in cortex-a57 on which performance benefits were verified.
llvm-svn: 252316
We now create the .eh_frame section early, just like every other special
section.
This means that the special flags are visible in code that explicitly
asks for ".eh_frame".
llvm-svn: 252313
Summary:
Without these patterns we would generate a complete LL/SC sequence.
This would be problematic for memory regions marked as WRITE-only or
READ-only, as the instructions LL/SC would read/write to the protected
memory regions correspondingly.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14397
llvm-svn: 252293
Windows EH funclets need to always return to a single parent funclet. However, it is possible for earlier optimizations to combine funclets (probably based on one funclet having an unreachable terminator) in such a way that this condition is violated.
These changes add code to the WinEHPrepare pass to detect situations where a funclet has multiple parents and clone such funclets, fixing up the unwind and catch return edges so that each copy of the funclet returns to the correct parent funclet.
Differential Revision: http://reviews.llvm.org/D13274?id=39098
llvm-svn: 252249
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
llvm-svn: 252210
This fixes the issue of wrong CFA calculation in the following case:
0x08048400 <+0>: push %ebx
0x08048401 <+1>: sub $0x8,%esp
0x08048404 <+4>: **call 0x8048409 <test+9>**
0x08048409 <+9>: **pop %eax**
0x0804840a <+10>: add $0x1bf7,%eax
0x08048410 <+16>: mov %eax,%ebx
0x08048412 <+18>: call 0x80483f0 <bar>
0x08048417 <+23>: add $0x8,%esp
0x0804841a <+26>: pop %ebx
0x0804841b <+27>: ret
The highlighted instructions are a product of movpc instruction. The call
instruction changes the stack pointer, and pop instruction restores its
value. However, the rule for computing CFA is not updated and is wrong on
the pop instruction. So, e.g. backtrace in gdb does not work when on the pop
instruction. This adds cfi instructions for both call and pop instructions.
cfi_adjust_cfa_offset** instruction is used with the appropriate offset for
setting the rules to calculate CFA correctly.
Patch by Violeta Vukobrat.
Differential Revision: http://reviews.llvm.org/D14021
llvm-svn: 252176
The operand layout is slightly different for the atomic
opcodes from the usual MUBUF loads and stores.
This should only fix it on SI/CI. VI is still broken
because it still emits the addr64 replacement.
llvm-svn: 252140
Summary:
The CLR's personality routine passes the pointer to the establisher frame
in RCX, not RDX.
Reviewers: pgavlin, majnemer, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14343
llvm-svn: 252135
Win64 has some strict requirements for the epilogue. As a result, we disable
shrink-wrapping for Win64 unless the block that gets the epilogue is already an
exit block.
Fixes PR24193.
llvm-svn: 252088
This patch improves the memory folding of the inserted float element for the (V)INSERTPS instruction.
The existing implementation occurs in the DAGCombiner and relies on the narrowing of a whole vector load into a scalar load (and then converted into a vector) to (hopefully) allow folding to occur later on. Not only has this proven problematic for debug builds, it also prevents other memory folds (notably stack reloads) from happening.
This patch removes the old implementation and moves the folding code to the X86 foldMemoryOperand handler. A new private 'special case' function - foldMemoryOperandCustom - has been added to deal with memory folding of instructions that can't just use the lookup tables - (V)INSERTPS is the first of several that could be done.
It also tweaks the memory operand folding code with an additional pointer offset that allows existing memory addresses to be modified, in this case to convert the vector address to the explicit address of the scalar element that will be inserted.
Unlike the previous implementation we now set the insertion source index to zero, although this is ignored for the (V)INSERTPSrm version, anything that relied on shuffle decodes (such as unfolding of insertps loads) was incorrectly calculating the source address - I've added a test for this at insertps-unfold-load-bug.ll
Differential Revision: http://reviews.llvm.org/D13988
llvm-svn: 252074
Patch by Slava Klochkov
The key difference between FMA* and FMA*_Int opcodes is that FMA*_Int opcodes are handled more conservatively. It is illegal to commute the 1st operand of FMA*_Int instructions as the upper bits of scalar FMA intrinsic result must be taken from the 1st operand, but such commute transformation would change those upper bits and invalidate the intrinsic's result.
Reviewers: Quentin Colombet, Elena Demikhovsky
Differential Revision: http://reviews.llvm.org/D13710
llvm-svn: 252060
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252057
The x86 "sitofp i64 to double" dag combine, in 32-bit mode, lowers sitofp
directly to X86ISD::FILD (or FILD_FLAG). This should not be done in soft-float mode.
llvm-svn: 252042
There is no point in having invoke safepoints handled differently than the
call safepoints. All relevant decisions could be made by looking at whether
or not gc.result and gc.relocate lay in a same basic block. This change will
allow to lower call safepoints with relocates and results in a different
basic blocks. See test case for example.
Differential Revision: http://reviews.llvm.org/D14158
llvm-svn: 252028
Summary:
Add support for wasm's select operator, and lower LLVM's select DAG node
to it.
Reviewers: sunfish
Subscribers: dschuff, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D14295
llvm-svn: 252002
XOP has the VPCMOV instruction that performs the common vector bit select operation OR( AND( SRC1, SRC3 ), AND( SRC2, ~SRC3 ) )
This patch adds tablegen pattern matching for this instruction.
Differential Revision: http://reviews.llvm.org/D8841
llvm-svn: 251975
When push instructions are being used to pass function arguments on
the stack, and either EH or debugging are enabled, we need to generate
.cfi_adjust_cfa_offset directives appropriately. For (synch) EH, it is
enough for the CFA offset to be correct at every call site, while
for debugging we want to be correct after every push.
Darwin does not support this well, so don't use pushes whenever it
would be required.
Differential Revision: http://reviews.llvm.org/D13767
llvm-svn: 251904
This was causing a variety of test failures when v2i64
is added as a legal type.
SIFixSGPRCopies should correctly handle the case of vector inputs
to a scalar reg_sequence, so this isn't necessary anymore. This
was hiding some deficiencies in how reg_sequence is handled later,
but this shouldn't be a problem anymore since the register class
copy of a reg_sequence is now done before the reg_sequence.
llvm-svn: 251860
I've found myself pointlessly debugging problems from running
graphics tests with an HSA triple a few times, so stop this from
happening again.
llvm-svn: 251858
In the current BB placement algorithm, a loop chain always contains all loop blocks. This has a drawback that cold blocks in the loop may be inserted on a hot function path, hence increasing branch cost and also reducing icache locality.
Consider a simple example shown below:
A
|
B⇆C
|
D
When B->C is quite cold, the best BB-layout should be A,B,D,C. But the current implementation produces A,C,B,D.
This patch filters those cold blocks off from the loop chain by comparing the ratio:
LoopBBFreq / LoopFreq
to 20%: if it is less than 20%, we don't include this BB to the loop chain. Here LoopFreq is the frequency of the loop when we reduce the loop into a single node. In general we have more cold blocks when the loop has few iterations. And vice versa.
Differential revision: http://reviews.llvm.org/D11662
llvm-svn: 251833
1) PR25154. This is basically a repeat of PR18102, which was fixed in
r200201, and broken again by r234430. The latter changed which of the
store nodes was merged into from the first to the last. Thus, we now
also need to prefer merging a later store at a given address into the
target node, instead of an earlier one.
2) While investigating that, I also realized I'd introduced a bug in
r236850. There, I removed a check for alignment -- not realizing that
nothing except the alignment check was ensuring that none of the stores
were overlapping! This is a really bogus way to ensure there's no
aliased stores.
A better solution to both of these issues is likely to always use the
code added in the 'if (UseAA)' branches which rearrange the chain based
on a more principled analysis. I'll look into whether that can be used
always, but in the interest of getting things back to working, I think a
minimal change makes sense.
llvm-svn: 251816
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. It turns out that the new code path taken due to
legalizing a scalar_to_vector of i64 -> v2i64 exposes a missing check in a
micro optimization to change a load followed by a scalar_to_vector into a
load and splat instruction on PPC.
llvm-svn: 251798
Optimized <8 x i32> to <8 x i16>
<4 x i64> to < 4 x i32>
<16 x i16> to <16 x i8>
All these oprtrations use now AVX512F set (KNL). Before this change it was implemented with AVX2 set.
Differential Revision: http://reviews.llvm.org/D14108
llvm-svn: 251764
Summary:
This reverts commit 79c37e1a4ff1e634da8f95322f080601b4c815fc.
This test passes locally but fails on the community buildbot. So we will let it
XFAIL for now.
Patched by Mandeep Singh Grang (mgrang@codeaurora.org)
Reviewers: kparzysz, weimingz
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14189
llvm-svn: 251664
This patch generalizes the zeroing of vector elements with the BLEND instructions. Currently a zero vector will only blend if the shuffled elements are correctly inline, this patch recognises when a vector input is zero (or zeroable) and modifies a local copy of the shuffle mask to support a blend. As a zeroable vector input may not be all zeroes, the zeroable vector is regenerated if necessary.
Differential Revision: http://reviews.llvm.org/D14050
llvm-svn: 251659
Summary: Refer PR23377. This test was XFAIL'ed for Hexagon as well as ARM. But it has now started passing for ARM.
Reviewers: hans, rengolin, aemerson, kparzysz
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14155
llvm-svn: 251652