Similar to D67327, but this time for the FP16 VLDR and VSTR instructions that
use the AddrMode5FP16 addressing mode. We need to reserve an emergency spill
slot for instructions that will be out of range to use sp directly.
AddrMode5FP16 is 8 bits with a scale of 2.
Differential Revision: https://reviews.llvm.org/D67483
llvm-svn: 372132
Remove setPreservesCFG from ARMConstantIslandPass and add a couple
of -verify-machine-dom-info instances into the existing codegen
tests.
llvm-svn: 372126
MVE loads and stores have a 7 bit immediate range, scaled by the length of the type. This needs to be taught to the stack estimation code to ensure that an emergency spill slot is reserved in case we run out of registers when materialising stack indices.
Also the narrowing loads/stores can be created with frame indices even though they do not accept SP as a register. We need in those cases to make sure we have an emergency register to use as the frame base, as SP can never be used.
Differential Revision: https://reviews.llvm.org/D67327
llvm-svn: 372114
Converting the *LoopStart pseudo instructions into DLS/WLS results in
LR being defined. These instructions were inserted on the assumption
that LR would already contain the loop counter because a mov is
introduced during ISel as the the consumers in the loop can only use
LR. That assumption proved wrong!
So perform a safety check, finding an appropriate place to insert the
DLS/WLS instructions or revert if this isn't possible.
Differential Revision: https://reviews.llvm.org/D67539
llvm-svn: 372111
Most of the test changes are trivial instruction reorderings and differing
register allocations, without any obvious performance impact.
Differential Revision: https://reviews.llvm.org/D66973
llvm-svn: 372106
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
The low-overhead branch extension provides a loop-end 'LE' instruction
that performs no decrement nor compare, it just jumps backwards. This
patch modifies the constant islands pass to try to insert LE
instructions in place of a Thumb2 conditional branch, instead of
shrinking it. This only happens if a cmp can be converted to a cbn/z
and used to exit the loop.
Differential Revision: https://reviews.llvm.org/D67404
llvm-svn: 372085
Set this bit for the MVE reduction instructions to prevent a loop from
becoming tail predicated in their presence.
Differential Revision: https://reviews.llvm.org/D67444
llvm-svn: 372076
Previously we tried to split them into narrower v64i1 or v16i1
pieces that each got promoted to vXi8 and then passed in a zmm
or xmm register. But this crashes when you need to pass more
pieces than available registers reserved for argument passing.
The scalarizing done here generates much longer and slower code,
but is consistent with the behavior of avx2 and earlier targets
for these types.
Fixes PR43323.
llvm-svn: 372069
The BLENDM instructions allow an 2 sources and an independent
destination while masked VBROADCAST has the destination tied
to the source.
llvm-svn: 372068
Add the missing piece of r372029.
Somehow when the patch for review D61961 was committed, only the test case
went in and the code didn't. This of course caused all kinds of build bot
breaks.
This patch just adds the code for that patch.
Author: Lei Huang
Differential revision: https://reviews.llvm.org/D61961
llvm-svn: 372043
The adds some very basic folding of PREDICATE_CASTS, removing cases when they
are chained together. These would already be removed eventually, as these are
lowered to copies. This just allows it to happen earlier, which can help other
simplifications.
Differential Revision: https://reviews.llvm.org/D67591
llvm-svn: 372012
Lower CTTZ on MVE using VBRSR and VCLS which will reverse the bits and
count the leading zeros, equivalent to a count trailing zeros (CTTZ).
llvm-svn: 372000
Since MBB was split *before* MI, the MI(s) will reside in JoinMBB (MBB) at
the point of erasing them, so calling StartMBB->erase() is actually wrong,
although it is "working" by all appearances.
Review: Ulrich Weigand
llvm-svn: 371995
Summary:
This allows enabling useaa on the command-line and will allow enabling the
feature on a per-CPU basis where benchmarking shows improvements.
This is modelled after the ARM/AArch64 target.
Reviewers: RKSimon, andreadb, craig.topper
Subscribers: javed.absar, kristof.beyls, hiraditya, ychen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67266
llvm-svn: 371989
MVE has VPT instructions, which perform the duties of both a VCMP and a VPST in
a single instruction, performing the compare and starting the VPT block in one.
This teaches the MVEVPTBlockPass to fold them, searching back through the
basicblock for a valid VCMP and creating the VPT from its operands.
There are some changes to the VPT instructions to accommodate this, altering
the order of the operands to match the VCMP better, and changing P0 register
defs to be VPR defs, as is used in other places.
Differential Revision: https://reviews.llvm.org/D66577
llvm-svn: 371982
Summary:
Adds the following inline asm constraints for SVE:
- Upl: One of the low eight SVE predicate registers, P0 to P7 inclusive
- Upa: SVE predicate register with full range, P0 to P15
Reviewers: t.p.northover, sdesmalen, rovka, momchil.velikov, cameron.mcinally, greened, rengolin
Reviewed By: rovka
Subscribers: javed.absar, tschuett, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66524
llvm-svn: 371967
After our previous machinecombiner exercises (rL371321, rL371818, rL371833), we
were still missing a few FP16 FMA patterns.
Differential Revision: https://reviews.llvm.org/D67576
llvm-svn: 371960
SystemZExpandPseudo:s only job was to expand LOCRMux instructions into jump
sequences. This needs to be done if expandLOCRPseudo() or expandSELRPseudo()
fails to find a legal opcode (all registers "high" or "low"). This task has
now been moved to SystemZPostRewrite while removing the SystemZExpandPseudo
pass.
It is in fact preferred to expand these pseudos directly after register
allocation in SystemZPostRewrite since the hinted register combinations are
then not subject to later optimizations.
Review: Ulrich Weigand
https://reviews.llvm.org/D67432
llvm-svn: 371959
Masked loads and store fit naturally with MVE, the instructions being easily
predicated. This adds lowering for the simple cases of masked loads and stores.
It does not yet deal with widening/narrowing or pre/post inc, and so is
currently behind an option.
The llvm masked load intrinsic will accept a "passthru" value, dictating the
values used for the zero masked lanes. In MVE the instructions write 0 to the
zero predicated lanes, so we need to match a passthru that isn't 0 (or undef)
with a select instruction to pull in the correct data after the load.
Differential Revision: https://reviews.llvm.org/D67186
llvm-svn: 371932
Because memory intrinsics are handled differently than other calls, we need to
check them for tail call eligiblity in the legalizer. This allows us to still
inline them when it's beneficial to do so, but also tail call when possible.
This adds simple tail calling support for when the intrinsic is followed by a
return.
It ports the attribute checks from `TargetLowering::isInTailCallPosition` into
a similarly-named function in LegalizerHelper.cpp. The target-specific
`isUsedByReturnOnly` hook is not ported here.
Update tailcall-mem-intrinsics.ll to show that GlobalISel can now tail call
memory intrinsics.
Update legalize-memcpy-et-al.mir to have a case where we don't tail call.
Differential Revision: https://reviews.llvm.org/D67566
llvm-svn: 371893
In preparation for def-pat selection of dot product instructions,
this patch moves the custom instruction selection of extract_vector_elt
to the td file. Without this change it is impossible to catch a pattern that
starts with an extract_vector_elt: the custom cpp code is executed first
ahead of the patterns in the td files that are only executed at the end of
the switch statement in SelectCode(Node).
With this patch applied, it becomes possible to select a different pattern
that starts with extract_vector_elt by selecting a higher complexity than
this pattern.
The patch has been tested on aarch64-linux with make check-all.
Differential Revision: https://reviews.llvm.org/D67497
llvm-svn: 371887
This adds support for tail calling callees with varargs, equivalent to how it
is done in AArch64ISelLowering.
This only works for sibling calls, and does not add the necessary support for
musttail with varargs. (See r345641 for equivalent ISelLowering support.) This
should be implemented when we stop falling back on musttail.
Update call-translator-tail-call.ll to show that we can now tail call varargs.
Differential Revision: https://reviews.llvm.org/D67518
llvm-svn: 371868