* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
Previously we tried to split them into narrower v64i1 or v16i1
pieces that each got promoted to vXi8 and then passed in a zmm
or xmm register. But this crashes when you need to pass more
pieces than available registers reserved for argument passing.
The scalarizing done here generates much longer and slower code,
but is consistent with the behavior of avx2 and earlier targets
for these types.
Fixes PR43323.
llvm-svn: 372069
Some prep work for PR42863, this change allows us to move all the FMA opcode mappings into the negateFMAOpcode helper.
For the FMADDSUB/FMSUBADD cases, we can only negate the accumulator - any other negations will result in an error.
llvm-svn: 371840
The X86 decision assumes the compare will produce a result in an XMM
register, but that can't happen for an fp128 compare since those
go to a libcall the returns an i32. Pass the VT so X86 can check
the type.
llvm-svn: 371775
I found three issues:
1. the loop over E[ABCD]X copies run over BB start
2. the direct address of cmpxchg8b could be a frame index
3. the displacement of cmpxchg8b could be a global instead of an
immediate
These were all introduced together in r287875, and should be fixed with
this change.
Issue reported by Zachary Turner.
llvm-svn: 371678
fp128 is considered a legal type for a register, but has almost no legal operations so everything needs to be converted to a libcall. Previously this was implemented by tricking type legalization into softening the operations with various checks for "is legal in hardware register" to change the behavior to still use f128 as the resulting type instead of converting to i128.
This patch abandons this approach and instead moves the libcall conversions to LegalizeDAG. This is the approach taken by AArch64 where they also have a legal fp128 type, but no legal operations. I think this is more in spirit with how SelectionDAG's phases are supposed to work.
I had to make some hacks for STRICT_FP_ROUND because some of the strict FP handling checks if ISD::FP_ROUND is Legal for a given result type, but I had to make ISD::FP_ROUND Custom to allow making a libcall when the input is f128. For all other types the Custom handler just returns the original node. These hacks are incomplete and don't work for a strict truncate from f128, but I don't think it worked before either since LegalizeFloatTypes doesn't know about strict ops yet. I've also raised PR43209 against AArch64 which currently crashes on a strict ftrunc from f64->f32 because of FP_ROUND being marked Custom for the same reason there.
Differential Revision: https://reviews.llvm.org/D67128
llvm-svn: 371672
See D66309 for context.
This is the first sweep of x86 target specific code to add isAtomic bailouts where appropriate. The intention here is to have the switch from AtomicSDNode to LoadSDNode/StoreSDNode be close to NFC; that is, I'm not looking to allow additional optimizations at this time.
Sorry for the lack of tests. As discussed in the review, most of these are vector tests (for which atomicity is not well defined) and I couldn't figure out to exercise the anyextend cases which aren't vector specific.
Differential Revision: https://reviews.llvm.org/D66322
llvm-svn: 371547
This is the first patch in a large sequence. The eventual goal is to have unordered atomic loads and stores - and possibly ordered atomics as well - handled through the normal ISEL codepaths for loads and stores. Today, there handled w/instances of AtomicSDNodes. The result of which is that all transforms need to be duplicated to work for unordered atomics. The benefit of the current design is that it's harder to introduce a silent miscompile by adding an transform which forgets about atomicity. See the thread on llvm-dev titled "FYI: proposed changes to atomic load/store in SelectionDAG" for further context.
Note that this patch is NFC unless the experimental flag is set.
The basic strategy I plan on taking is:
introduce infrastructure and a flag for testing (this patch)
Audit uses of isVolatile, and apply isAtomic conservatively*
piecemeal conservative* update generic code and x86 backedge code in individual reviews w/tests for cases which didn't check volatile, but can be found with inspection
flip the flag at the end (with minimal diffs)
Work through todo list identified in (2) and (3) exposing performance ops
(*) The "conservative" bit here is aimed at minimizing the number of diffs involved in (4). Ideally, there'd be none. In practice, getting it down to something reviewable by a human is the actual goal. Note that there are (currently) no paths which produce LoadSDNode or StoreSDNode with atomic MMOs, so we don't need to worry about preserving any behaviour there.
We've taken a very similar strategy twice before with success - once at IR level, and once at the MI level (post ISEL).
Differential Revision: https://reviews.llvm.org/D66309
llvm-svn: 371441
Current for SAE instructions we only allow _MM_FROUND_CUR_DIRECTION(bit 2) or _MM_FROUND_NO_EXC(bit 3) to be used as the immediate passed to the inrinsics. But these instructions don't perform rounding so _MM_FROUND_CUR_DIRECTION is just sort of a default placeholder when you don't want to suppress exceptions. Using _MM_FROUND_NO_EXC by itself is really bit equivalent to (_MM_FROUND_NO_EXC | _MM_FROUND_TO_NEAREST_INT) since _MM_FROUND_TO_NEAREST_INT is 0. Since we aren't rounding on these instructions we should also accept (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) as equivalent to (_MM_FROUND_NO_EXC). icc allows this, but gcc does not.
Differential Revision: https://reviews.llvm.org/D67289
llvm-svn: 371430
This patch decodes target and faux shuffles with getTargetShuffleInputs - a reduced version of resolveTargetShuffleInputs that doesn't resolve SM_SentinelZero cases, so we can correctly remove zero vectors if they aren't demanded.
llvm-svn: 371353
If the two zero vectors have undefs in different places they
won't get combined by simplifySelect.
This fixes a regression from an earlier commit.
llvm-svn: 371351
The change to avx512-vec-cmp.ll is a regression, but should be
easy to fix. It occurs because the getZeroVector call was
canonicalizing both sides to the same node, then SimplifySelect
was able to simplify it. But since only called getZeroVector
on some VTs this isn't a robust way to combine this.
The change to vector-shuffle-combining-ssse3.ll is more
instructions, but removes a constant pool load so its unclear
if its a regression or not.
llvm-svn: 371350
This generalizes the existing <32 x i1> pre-AVX2 split code to support reductions from <64 x i1> as well, we can probably generalize to any larger pow2 case in the future if the (unlikely) need ever arises.
We still need to tweak combineBitcastvxi1 to improve AVX512F codegen as its assumes vXi1 types should be handled on the mask registers even when they aren't legal.
Differential Revision: https://reviews.llvm.org/D67070
llvm-svn: 371328
isel used to require zero vectors to be canonicalized to a single
type to minimize the number of patterns needed to match. This is
no longer required.
I plan to do this to integers too, but floating point was simpler
to start with. Integer has a complication where v32i16/v64i8 aren't
legal when the other 512-bit integer types are.
llvm-svn: 371325
Use getAPIntValue() directly - this is mainly a best practice style issue to help prevent fuzz tests blowing up when a i12345 (or whatever) is generated.
Use getConstantOperandVal/getConstantOperandAPInt wrappers where possible.
llvm-svn: 371315
Fix for https://bugs.llvm.org/show_bug.cgi?id=43230.
When creating PSHUFLW from a repeated shuffle mask, we have to apply
the checks to the repeated mask, not the original one. For the test
case from PR43230 the inspected part of the original mask is all undef.
Differential Revision: https://reviews.llvm.org/D67314
llvm-svn: 371307
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, javed.absar, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, ychen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67267
llvm-svn: 371212
As noted in PR43197, we can use test+add+cmov+sra to implement
signed division by a power of 2.
This is based off the similar version in AArch64, but I've
adjusted it to use target independent nodes where AArch64 uses
target specific CMP and CSEL nodes. I've also blocked INT_MIN
as the transform isn't valid for that.
I've limited this to i32 and i64 on 64-bit targets for now and only
when CMOV is supported. i8 and i16 need further investigation to be
sure they get promoted to i32 well.
I adjusted a few tests to enable cmov to demonstrate the new
codegen. I also changed twoaddr-coalesce-3.ll to 32-bit mode
without cmov to avoid perturbing the scenario that is being
set up there.
Differential Revision: https://reviews.llvm.org/D67087
llvm-svn: 371104
As discussed on D64551 and PR43227, we don't correctly handle cases where the base load has a non-zero byte offset.
Until we can properly handle this, we must bail from EltsFromConsecutiveLoads.
llvm-svn: 371078
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
This reverts r370525 (git commit 0bb1630685)
Also reverts r370543 (git commit 185ddc08ee)
The approach I took only works for functions marked `noreturn`. In
general, a call that is not known to be noreturn may be followed by
unreachable for other reasons. For example, there could be multiple call
sites to a function that throws sometimes, and at some call sites, it is
known to always throw, so it is followed by unreachable. We need to
insert an `int3` in these cases to pacify the Windows unwinder.
I think this probably deserves its own standalone, Win64-only fixup pass
that runs after block placement. Implementing that will take some time,
so let's revert to TrapUnreachable in the mean time.
llvm-svn: 370829
This merges the 32-bit and 64-bit mode code to just use Custom
for both i32 and i64. We already had most of the handling in
the custom handling due to the AVX512 having legal fp_to_uint.
Just needed to add the i32->i64 promotion handling. Refactor
the fp_to_uint code in the custom handler to simplify the
number of times we check things.
Tweak cost model tables to match the default handling we were
getting due to Expand before.
llvm-svn: 370700
Use Custom lowering instead. Fall back to default expansion only
when the scalar FP type belongs in an XMM register. This improves
lowering for i32 to fp80, and also i32 to double on SSE1 only.
llvm-svn: 370699
FP128 values are passed in xmm registers so should be asssociated
with an SSE feature rather than MMX which uses a different set
of registers.
llc enables sse1 and sse2 by default with x86_64. But does not
enable mmx. Clang enables all 3 features by default.
I've tried to add command lines to test with -sse
where possible, but any test that returns a value in an xmm
register fails with a fatal error with -sse since we have no
defined ABI for that scenario.
llvm-svn: 370682
Rename to lowerShuffleAsLanePermuteAndShuffle to make it clear that not just blends are performed.
Cleanup the in-lane shuffle mask generation to make it more obvious what's going on.
Some prep work noticed while investigating the poor shuffle code mentioned in D66004.
llvm-svn: 370613
EltsFromConsecutiveLoads was assuming that the number of input elts was the same as the number of elements in the output vector type when creating a zeroing shuffle, causing an assert when subvectors were being combined instead of just scalars.
llvm-svn: 370592
Users have complained llvm.trap produce two ud2 instructions on Win64,
one for the trap, and one for unreachable. This change fixes that.
TrapUnreachable was added and enabled for Win64 in r206684 (April 2014)
to avoid poorly understood issues with the Windows unwinder.
There seem to be two major things in play:
- the unwinder
- C++ EH, _CxxFrameHandler3 & co
The unwinder disassembles forward from the return address to scan for
epilogues. Inserting a ud2 had the effect of stopping the unwinder, and
ensuring that it ran the EH personality function for the current frame.
However, it's not clear what the unwinder does when the return address
happens to be the last address of one function and the first address of
the next function.
The Visual C++ EH personality, _CxxFrameHandler3, needs to figure out
what the current EH state number is. It does this by consulting the
ip2state table, which maps from PC to state number. This seems to go
wrong when the return address is the last PC of the function or catch
funclet.
I'm not sure precisely which system is involved here, but in order to
address these real or hypothetical problems, I believe it is enough to
insert int3 after a call site if it would otherwise be the last
instruction in a function or funclet. I was able to reproduce some
similar problems locally by arranging for a noreturn call to appear at
the end of a catch block immediately before an unrelated function, and I
confirmed that the problems go away when an extra trailing int3
instruction is added.
MSVC inserts int3 after every noreturn function call, but I believe it's
only necessary to do it if the call would be the last instruction. This
change inserts a pseudo instruction that expands to int3 if it is in the
last basic block of a function or funclet. I did what I could to run the
Microsoft compiler EH tests, and the ones I was able to run showed no
behavior difference before or after this change.
Differential Revision: https://reviews.llvm.org/D66980
llvm-svn: 370525