Without Zfh the half type isn't legal, but it could still be
used as an argument/return in IR. Clang will not generate this today.
Previously we promoted the half value to float for arguments and
returns if the F extension is enabled but Zfh isn't. Then depending on
which ABI is enabled we would pass it in either an FPR or a GPR in
float format.
If the F extension isn't enabled, it would get passed in the lower
16 bits of a GPR in half format.
With this patch the value will always in half format and will be
in the lower bits of a GPR or FPR. This should be consistent
with where the bits are located when Zfh is enabled.
I've based this implementation off of how this is done on ARM.
I've manually nan-boxed the value to 32 bits using integer ops.
It looks like flw, fsw, fmv.s, fmv.w.x, fmf.x.w won't
canonicalize nans so should leave the value alone. I think those
are the instructions that could get used on this value.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D98670
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
This matches what we do in our isel patterns. In our internal
testing we've found this is needed to make the fast register
allocator happy at -O0. Otherwise it may assign V0 to an earlier
operand and find itself with no registers left when it reaches
the mask operand. By using V0 explicitly, the fast register allocator
will see it when it checks for phys register usages before it
starts allocating vregs. I'll try to update this with a test case.
Unfortunately, this does appear to prevent some instruction reordering
by the pre-RA scheduler which leads to the increased spills seen in
some tests. I suspect that problem could already occur for other
instructions that already used V0 directly.
There's a lot of repeated code here that could do with some
wrapper functions. Not sure if that should be at the level of the
new code that deals with V0. That would require multiple output
parameters to pass the glue, chain and register back. Maybe it
should be at a higher level over the entire set of push_backs.
Reviewed By: frasercrmck, HsiangKai
Differential Revision: https://reviews.llvm.org/D99367
In D97111 we changed the RVV frame layout when using sp or bp to address
the stack slots so we could address the emergency stack slot. The idea
is to put the RVV objects as far as possible (in offset terms) from the
frame reference register (sp / fp / bp).
When using fp this happens naturally because the RVV objects are already
the top of the stack and due to the constraints of RVV (VLENB being a
power of two >= 128) the stack remains aligned. The rest of this summary
does not apply to this case.
When using sp / bp we need to skip the non-RVV stack slots. The size of
the the non-RVV objects is computed subtracting the callee saved
register size (whose computation is added in D97111 itself) to the total
size of the stack (which does not account for RVV stack slots). However,
when doing so we round to 16 bytes when computing that size and we end
emitting a smaller offset that may belong to a scalar stack slot (see
D98801). So this change removes that rounding.
Also, because we want the RVV objects be between the non-RVV stack slots
and the callee-saved register slots, we need to make sure the RVV
objects are properly aligned to 8 bytes. Adding a padding of 8 would
render the stack unaligned. So when allocating space for RVV (only when
we don't use fp) we need to have extra padding that preserves the stack
alignment. This way we can round to 8 bytes the offset that skips the
non-RVV objects and we do not misalign the whole stack in the way. In
some circumstances this means that the RVV objects may have padding
before (=lower offsets from sp/bp) and after (before the CSR stack
slots).
Differential Revision: https://reviews.llvm.org/D98802
We have a special pattern for
(mul (and X, 0xffffffff), (and Y, 0xffffffff)), to optimize the
ANDs to shift. But if a sext_inreg coms first, we'll form a MULW
and limit the effectiveness of the special match. So this patch
adds a larger pattern to suppress the MULW formation by emitting
a sext.w and then the same output we use for the
(mul (and X, 0xffffffff), (and Y, 0xffffffff)). This should all
get CSEd.
This is the issue I was trying to fix with D99029, but that affected
many more tests.
It's unlikely that FMADD and FMSUB would have different scheduling
information so merge them.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D99140
I've used IALU for the simplest operations from Zbb:
min, minu, max, maxu, sext.b, sext.h, zext.h, andn, orn, xnor
I've put add.uw in IALU32 and slli.uw in ShiftImm32.
Remaining instructions have received new classes.
All 3 sh*add are grouped together. sh*add.uw are grouped together.
Rotate left and right are together. Everything else got their own
class containing one instruction.
I think what I have here is the minimum granularity we need. I
could be convinced that we need more classes.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D99040
Add the constraint when destination EEW not equals the source EEW for
correctness.
The RVV spec has three register overlap rules and I implement the first
stricter constraint because the others are difficult to enforce.
Reviewed By: frasercrmck, craig.topper
Differential Revision: https://reviews.llvm.org/D98920
getMinRVVVectorSizeInBits() asserts if the V extension isn't
enabled. So check that gather/scatter is legal first since it
already contains a check for V extension being enabled. It
also already checks getMinRVVVectorSizeInBits for fixed length
vectors so we don't need a check in getGatherScatterOpCost.
We look for this pattern frequently in isel patterns so its a
good idea to try to preserve it.
This also let's us remove our special isel handling for srliw
and use a direct pattern match of (srl (and X, 0xffffffff), C)
since no bits will be removed from the and mask.
Differential Revision: https://reviews.llvm.org/D99042
This patch adds a small optimization for vector shuffle lowering,
detecting shuffles which can be re-expressed as vector selects.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99270
This patch adds further optimization techniques to RVV BUILD_VECTOR
lowering. It teaches the compiler to find splats of larger vector
element types "hidden" in smaller ones. For example, a v4i8 build_vector
(0x1, 0x2, 0x1, 0x2) could be splat as v2i16 0x0201. This is generally
more optimal than the dominant-element BUILD_VECTORs and so takes
priority.
This optimization is currently limited to all-constant-or-undef
BUILD_VECTORs as those were found to be the most common. There's no
reason this couldn't be extended to other BUILD_VECTORs, but the
additional bit-manipulation instructions may require more sophisticated
heuristics.
There are some cases where the materialization of the larger constant
takes more scalar instructions than it does to build the vector with
vector instructions. We could add heuristics to try and catch this.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99195
This will tell loop idiom recognize that it can make popcount loops countable
using the ctpop intrinsic. I didn't bother checking for illegal types.
Type legalization knows how to split a ctpop into multiple ctops added together.
Assuming we only receive reasonable integer bit widths, a few cpop instructions
added together is probably better than the loop.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D99203
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
Copysign from double and to double patterns have lack of HasStdExtD predicate.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99234
Previously we used selectImm for RV64 and isel patterns for
RV32. This should be NFC, but will allow RV32 and RV64 to share
improvements in the future. For example, it might be useful to
use BSETI from Zbs to make single bit constants.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D98877
This patch builds upon the initial BUILD_VECTOR work introduced in
D98700. It further optimizes the lowering of BUILD_VECTOR by using
VSELECT operations to effectively insert repeated elements into the
vector with relatively few instructions. This allows us to optimize more
BUILD_VECTORs without significantly increasing the size of the generated
code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98969
This patch adds an optimization for mask-vector BUILD_VECTOR nodes whose
elements are all constants or undef. It lowers such operations by
building up the vector via a series of integer operations, in which
multiple mask elements are inserted into a vector at a time via
i8/i16/i32/i64 element types. The final result is then bitcast from that
integer vector.
We restrict this optimization in certain circumstances when optimizing
for size. If we are required to use more than one integer insert
operation, then it will likely increase code size compared with using a
load from a constant pool.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98860
It doesn't look like any instructions have ever been assigned to these classes.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D99050
I've split the gather/scatter custom handler to avoid complicating
it with even more differences between gather/scatter.
Tests are the scalable vector tests with the vscale removed and
dropped the tests that used vector.insert. We're probably not
as thorough on the splitting cases since we use 128 for VLEN here
but scalable vector use a known min size of 64.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98991
The reason for generating mv a0, a0 instruction is when the stack object offset is large then int<12>. To deal this situation, in the elimintateFrameIndex function, it will
create a virtual register, which needs the register scavenger to scavenge it. If the machine instruction that contains the stack object and the opcode is ADDI(the addi
was generated by frameindexNode), and then this instruction's destination register was the same as the register that was generated by the register scavenger, then the
mv a0, a0 was generated. So to eliminnate this instruction, in the eliminateFrameIndex function, if the instrution opcode is ADDI, then the virtual register can't be created.
Differential Revision: https://reviews.llvm.org/D92479
This optimization is trying to save SRLI instructions needed to
implement the ANDs. If we have zext.w we won't save anything.
Because we don't check that the multiply is the only user of the
AND we might even increase instruction count.
This patterns computes the full 64 bit product of a 32x32 unsigned
multiply. This requires a two pairs of SLLI+SRLI to zero the
upper 32 bits of the inputs.
We can do better than this by using two SLLI to move the lower
bits to the upper bits then use MULHU to compute the product. This
is the high half of a full 64x64 product. Since we put 32 0s in the lower
bits of the inputs we know the 128-bit product will have zeros in the
lower 64 bits. So the upper 64 bits, which MULHU computes, will contain
the original 64 bit product we were after.
The same trick would work for (mul (sext_inreg X, i32), (sext_inreg Y, i32))
using MULHS, but sext_inreg is sext.w which is already one instruction so we
wouldn't save anything.
Differential Revision: https://reviews.llvm.org/D99026
Previously only immediate shifts were in WriteShift. Register
shifts were grouped with IALU. Seems likely that immediate shifts
would be as fast or faster than register shifts. And that immediate
shifts wouldn't be any faster than IALU. So if any deserved to be in
their own group it should be register shifts not immediate shifts.
Rather than try to flip them let's just add more granularity
and give each kind their own class. I've used new names for both to
make them unambiguous and to force any downstream implementations to
be forced to put correct information in their scheduler models.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D98911
Found by adding asserts to LegalizeDAG to catch incorrect result
types being returned.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98964
I'm not sure how I failed to notice this before, but when optimizing
dominant-element BUILD_VECTORs we would lower via the scalable container type,
which lost us the information about the fixed length of the vector types. By
lowering via the fixed-length type we can preserve that information and
eliminate redundant vsetvli instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98938
Returning the scalable-vector container type would present problems when
the fixed-length INSERT_VECTOR_ELT was used by later operations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98776
For Zvlsseg, we create several tuple register classes. When spilling for
these tuple register classes, we need to iterate NF times to load/store
these tuple registers.
Differential Revision: https://reviews.llvm.org/D98629
We returned the input chain instead of the output chain from the
new load. This bypasses the load in the chain. I haven't found a
good way to test this yet. IR order prevents my initial attempts
at causing reordering.
This patch adds support for masked scatter intrinsics on scalable vector
types. It is mostly an extension of the earlier masked gather support
introduced in D96263, since the addressing mode legalization is the
same.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96486
This patch supports the masked gather intrinsics in RVV.
The RVV indexed load/store instructions only support the "unsigned unscaled"
addressing mode; indices are implicitly zero-extended or truncated to XLEN and
are treated as byte offsets. This ISA supports the intrinsics directly, but not
the majority of various forms of the MGATHER SDNode that LLVM combines to. Any
signed or scaled indexing is extended to the XLEN value type and scaled
accordingly. This is done during DAG combining as widening the index types to
XLEN may produce illegal vectors that require splitting, e.g.
nxv16i8->nxv16i64.
Support for scalable-vector CONCAT_VECTORS was added to avoid spilling via the
stack when lowering split legalized index operands.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96263
Without this patch, bitcasts of fixed-length mask vectors would go
through the stack.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98779
This patch changes the operand order of masked vmslt[u]
from (mask, rs1, scalar, maskedoff, vl)
to (maskedoff, rs1, scalar, mask, vl).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98839
This patch adds an optimization path for BUILD_VECTOR nodes where the
majority of the elements are identical. These can be splatted, with the
remaining elements patched up with INSERT_VECTOR_ELTs. The threshold can
be tweaked as required - it is currently conservative. Undef elements
are disregarded when judging the dominance of a particular element. This
allows them to be covered by the splat value.
In addition, vectors of 2 elements are always optimized to a splat (for
the upper element) and an insert at element zero.
This optimization is disabled when optimizing for size.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98700
The InstrEmitter can sometimes insert a copy after an IMPLICIT_DEF
before connecting it to the vector instruction. This occurs when
constrainRegClass reduces to a class with less than 4 registers.
I believe LMUL8 on masked instructions triggers this since the
result can only use the v8, v16, or v24 register group as the mask
is using v0.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98567
The default promotion uses zero extends that become shifts. We
cam use sign extend instead which is better for RISCV.
I've used two different implementations based on whether we
have minu/maxu instructions.
Differential Revision: https://reviews.llvm.org/D98683