This patch adds support for the custom lowering sign- and zero-extension
of fixed-length vector types. It does so through custom nodes. Since the
source and destination types are (necessarily) of different sizes, it is
possible that the source type is legal whilst the larger destination
type isn't. In this case the legalization makes heavy use of
EXTRACT_SUBVECTOR.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97194
This patch unifies the two disparate paths for lowering
EXTRACT_SUBVECTOR operations under one roof. Consequently, with this
patch it is possible to support any fixed-length subvector extraction,
not just "cast-like" ones.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97192
We always create the VL operand using a register, but if we can
determine that it came from an ADDI X0, imm with a sufficiently
small immediate, we can use VSETIVLI.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97332
We just started using a ComplexPattern for sexti32. This updates
zexti32 to match.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D97231
I've changed to use VL=1 for slidedown and shifts to avoid extra
element processing that we don't need.
The i64 fixed vector handling on i32 isn't great if the vector type
isn't legal due to an ordering issue in type legalization. If the
vector type isn't legal, we fall back to default legalization
which will bitcast the vector to vXi32 and use two independent extracts.
Doing better will require handling several different cases by
manually inserting insert_subvector/extract_subvector to adjust the type
to a legal vector before emitting custom nodes.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97319
This patch extends the support for RVV INSERT_SUBVECTOR to cover those
which don't align to a vector register boundary. Like the support for
EXTRACT_SUBVECTOR in D96959, it accomplishes this by extracting the
nearest register-sized subvector (a subregister operation), then sliding
the vector down with VSLIDEDOWN, inserting the subvector to the first
position, and sliding the vector back up again afterwards.
Unlike subvector extraction, for vectors that occupy less than a full
vector register we must preserve the untouched elements. We do this by
lowering to an LMUL=1 INSERT_SUBVECTOR using the above method and
lowering that to a VSLIDEUP with a zero offset. This uses a
tail-undisturbed policy and so has the effect of "sliding in" the
subvector elements while preserving the surrounding ones.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96972
An i64 AssertZExt from a type smaller than i32 has at least 33
leading zeros which mean it has at least 33 sign bits.
Since we have a couple patterns that use two sexti32, I've
switched to a ComplexPattern so tablegen didn't have to generate
9 different permutations.
As noted in the FIXME, maybe we should just call computeNumSignBits,
but we don't have tests that benefit from that yet.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D97130
This should fix the issue reported in D96972.
I don't have a good test case for this without those changes.
Differential Revision: https://reviews.llvm.org/D97082
A previous patch moved the index versions. This moves the rest.
I also removed the custom lowering for VLEFF since we can now
do everything directly in the isel handling.
I had to update getLMUL to handle mask registers to index the
pseudo table correctly for VLE1/VSE1.
This is good for another 15K reduction in llc size.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97097
This also removes a pattern from RISCV that is no longer needed
since the sexti32 on the LHS of the srem in the pattern implies
the result is sign extended so the sign_extend_inreg should be
removed in DAG combine now.
Reviewed By: luismarques, RKSimon
Differential Revision: https://reviews.llvm.org/D97133
This patch extends the support for RVV EXTRACT_SUBVECTOR to cover those
which don't align to a vector register boundary. It accomplishes this by
extracting the nearest register-sized subvector (a subregister
operation), then sliding the vector down with VSLIDEDOWN and extracting
the subvector from the first position (a COPY operation).
Since this procedure involves the use of VSCALE and multiplication, the
handling of such operations is done during lowering to simplify the
implementation and make use of DAG combining. This necessitated moving
some helper functions from RISCVISelDAGToDAG to RISCVTargetLowering.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96959
With vector mask registers only allocatable to V0 (VMV0Regs) it is
relatively simple to generate code which uses multiple masks and naively
requires spilling.
This patch aims to improve codegen in such cases by telling LLVM it can
use VRRegs to hold masks. This will prevent spilling in many cases by
having LLVM copy to an available VR register.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97055
We don't currently create memory operands for these intrinsics,
but there was a suggestion of using the indexed load/store
intrinsics to implement isel for scalable vector gather/scatter.
That may propagate the memory operand from the gather/scatter
ISD nodes.
We had more combinations of data and index lmuls than we needed.
Also add some asserts to verify that the IndexVT and data VT have
the same element count when we isel these pseudo instructions.
There are many legal combinations of index and data VTs supported
for these intrinsics. This results in a lot of isel patterns in
RISCVGenDAGISel.inc.
By adding a separate table similar to what we use for segment
load/stores, we can more efficiently manually select these
intrinsics. We should also be able to reuse this table scalable
vector gather/scatter.
This reduces the llc binary size by ~56K.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D97033
Just like we do for isel patterns, we need to call selectVLOp
to prevent 0 from being selected to X0 by the default isel.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97021
We previously used isel patterns for this, but that used quite
a bit of space in the isel table due to OR being associative
and commutative. It also wouldn't handle shifts/ands being in
reversed order.
This generalizes the shift/and matching from GREVI to
take the expected mask table as input so we can reuse it for
SHFLI.
There is no SHFLIW instruction, but we can promote a 32-bit
SHFLI to i64 on RV64. As long as bit 4 of the control bit isn't
set, a 64-bit SHFLI will preserve 33 sign bits if the input had
at least 33 sign bits. ComputeNumSignBits has been updated to
account for that to avoid sext.w in the tests.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96661
We were creating more combinations of value and index lmul than
we needed.
I've copied the loop structure used here from VPseudoAMOEI with
all data sew values instead of just 32/64.
Similar can be done for segment loads/store.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D97008
Intrinsic ID is a 32-bit value which made each row of the table 4
byte aligned. The remaining fields used 5 bytes. This meant 3 bytes
of padding per row.
This patch breaks the table into 4 separate tables and indexes them
by properties we know about the intrinsic. NF, masked,
strided, ordered, etc. The indexed load/store tables have no
padding in their rows now.
All together this reduces the size of llc binary by ~28K.
I'm considering adding similar tables for isel of non-segment
load/store as well to cut down the size of the isel table and
probably improve our isel performance. Those tables would need to
indexed from intrinsics, IR loads/stores, gathers/scatters, and
RISCVISD opcodes. So having a table that can be indexed without using
intrinsic ID is more flexible.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D96894
This table is queried in RISCVMCInstLower without knowing
whether the instruction is a vector pseudo. Due to the way the
binary search works, we have to do log2(tablesize) checks just
to determine a non-vector instruction isn't in the table.
Conveniently, all the vector pseudos are pretty tightly
packed within the internal instruction enum. By enabling the
PrimaryKeyEarlyOut, tablegen will emit a check against the
beginning and end of the table before doing the binary search.
This gives a quick early out on the search for the majority
of non-vector instructions.
Differential Revision: https://reviews.llvm.org/D97016
This avoids tedious repetition and matches what we do for the
ValueTypeByHwMode uses.
Reviewed By: craig.topper, luismarques
Differential Revision: https://reviews.llvm.org/D96649
This uses to division by constant optimization to use MULHU/MULHS.
Reviewed By: frasercrmck, arcbbb
Differential Revision: https://reviews.llvm.org/D96934
Due to vXi64 on RV32, I've directly emitted this using _VL ISD
opcodes. If it wasn't for that we could just use fixed vector
BUILD_VECTOR and VSELECT and let those each be legalized.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96910
These should be NOPs so we can just replace with the input. This
matches what SVE does with isel patterns for all permutations.
Custom isel saves us from having to list all permurations for
all LMULs.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96921
For masked segment load, the destination register should not overlap
with mask register. It could not be V0.
In the original implementation, there is no segment load/store register
class without V0. In this patch, I added these register classes and
modify `GetVRegNoV0` to get the correct one.
Differential Revision: https://reviews.llvm.org/D96937
This patch adds support for INSERT_SUBVECTOR and EXTRACT_SUBVECTOR
(nominally where both operands are scalable vector types) where the
vector, subvector, and index align sufficiently to allow decomposition
to subregister manipulation:
* For extracts, the extracted subvector must correctly align with the
lower elements of a vector register.
* For inserts, the inserted subvector must be at least one full vector
register, and correctly align as above.
This approach should work for fixed-length vector insertion/extraction
too, but that will come later.
Reviewed By: craig.topper, khchen, arcbbb
Differential Revision: https://reviews.llvm.org/D96873
The type legalizer can call this code based on the scalar type so
we need to verify the vector type is a scalable vector.
I think due to how type legalization visits nodes, the vector type
will have already been legalized so we don't have an issue with
using MVT here like we did for EXTRACT_VECTOR_ELT.
I've added a test just in case.
The type legalizer is calling this code based on the scalar type so
we need to verify the input type is a scalable vector.
The vector type has also not been legalized yet when this is called
so we need to use EVT for it.
A lot of the code for the masked and unmasked is the same. This
patch adds a boolean to handle the differences so we can share
the code.
Differential Revision: https://reviews.llvm.org/D96841
This patch adds support for fixed-length vector vselect. It does so by
lowering them to a custom unmasked VSELECT_VL node with a vector length
operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96768
This patch proposes how to deal with RISC-V vector frame objects. The
layout of RISC-V vector frame will look like
|---------------------------------|
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there is realignment or variable length array in the stack, we will use
frame pointer to access fixed objects and stack pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there are both realignment and variable length array in the stack, we
will use frame pointer to access fixed objects and base pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------| <- base pointer (bp)
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------|
| /////////////////////////////// |
| variable length array |
| /////////////////////////////// |
|---------------------------------| <- end of frame (sp)
| scalar outgoing arguments |
|---------------------------------|
In this version, we do not save the addresses of RVV objects in the
stack. We access them directly through the polynomial expression
(a x VLENB + b). We do not reserve frame pointer when there is any RVV
object in the stack. So, we also access the scalar frame objects through the
polynomial expression (a x VLENB + b) if the access across RVV stack
area.
Differential Revision: https://reviews.llvm.org/D94465
Non-splatted non-integer build_vector nodes were mistakenly being
lowered as VID expressions, which should not happen. VID can only be
used to select integer build_vector nodes.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96718
The patterns mostly follow the scalar counterparts, save for some extra
optimizations to match the vector/scalar forms.
The patch adds a DAGCombine for ISD::FCOPYSIGN to try and reorder
ISD::FNEG around any ISD::FP_EXTEND or ISD::FP_TRUNC of the second
operand. This helps us achieve better codegen to match vfsgnjn.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96028
This stops tablegen from generating patterns with the opposite type
in the opposite HwMode. This just adds wasted bytes to the isel table.
This reduces the isel table by about 1800 bytes.
This is annoying because the condition code legalization belongs
to LegalizeDAG, but our custom handler runs in Legalize vector ops
which occurs earlier.
This adds some of the mask binary operations so that we can combine
multiple compares that we need for expansion.
I've also fixed up RISCVISelDAGToDAG.cpp to handle copies of masks.
This patch contains a subset of the integer setcc patch as well.
That patch is dependent on the integer binary ops patch. I'll rebase
based on what order the patches go in.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96567
This patch prepares the RISCV VSLIDEUP and VSLIDEDOWN custom nodes to
ones carrying additional mask and vector-length operands. This is
primarily so they can be used by both systems.
This also takes the opportunity to create some helper functions to deal
with the common task of getting the default (unmasked) VL operands.
Reviewed By: craig.topper, arcbbb
Differential Revision: https://reviews.llvm.org/D96505
I believe I've covered all orderings of splat operands here. Better
canonicalization in lowering might help reduce this. I did not handle
the immediate adjustments needed for set(u)gt/set(u)lt.
Testing here is limited to byte types because the scalable vector
type used for masks for the store is calculated assuming 8 byte
elements. But for the setcc its based on the element count of the
container type for the setcc input. So they don't agree. We'll need
to enhanced D96352 to handle this I think.
Differential Revision: https://reviews.llvm.org/D96443
Unlike scalable vectors, I'm only using a ComplexPattern for
the immediate itself. The vmv_v_x is matched explicitly. We igore
the VL argument when matching a binary operator, but we do check
it when matching splat directly.
I left out tests for vXi64 as they fail on rv32 right now.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96365
Change parseVTypeI function to Make the added vset instruction test cases report more concrete error message.
Differential Revision: https://reviews.llvm.org/D96218
This patch extends the initial fixed-length vector support to include
smin, smax, umin, and umax.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96491
This patch handles cast-like insert_subvector & extract_subvector
in which case:
1. index starts from 0.
2. inserting a fixed-width vector into a scalable vector,
or extracting a fixed-width vector from a scalable vector.
Reviewed By: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D96352
This refines how we determine which masks types are legal and adds
support for loads, stores, and all ones/zeros splats.
I left a fixme in store handling where I think we need to zero
extra bits if the type isn't a multiple of a byte. If I remember
right from X86 there was some case we could have a store of a
1, 2, or 4 bit mask and have a scalar zextload that then expected the
bits to be 0. Its tricky to zero the bits with RVV. We need to do
something like round VL up, zero a register, lower the VL back down,
then do a tail undisturbed move into the zero register. Another
option might be to generate a mask of 1/2/4 bits set with a VL of 8
and use that to mask off the bits.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96468
The test cases extract a fixed element from a vector and splat it
into a vector. This gets DAG combined into a splat shuffle.
I've used some very wide vectors in the test to make sure we have
at least a couple tests where the element doesn't fit into the
uimm5 immediate of vrgather.vi so we fall back to vrgather.vx.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96186
This patch optimizes a build_vector "index sequence" and lowers it to
the existing custom RISCVISD::VID node. This pattern is common in
autovectorized code.
The custom node was updated to allow it to be used by both scalable and
fixed-length vectors, thus avoiding pattern duplication.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96332
As of the current draft these are no longer being considered
for the bitmanip spec. It wasn't clear what sub extension they
belonged in in the 0.93 spec.
So remove them. They can always be added back if something changes.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96157
Commit a2d19bad07 introduced a
dependency in the RISCV disassembler on two additional libraries
(MC, RISCVDesc) which wasn't added to the CMakeLists.txt. This
causes shared library builds to break. This patch just adds them
to fix failures seen on some bots, such as the PPC64LE Multistage.
In vector v0.10, there are whole vector register load/store
instructions. I suggest to use the whole register load/store
instructions for generic load/store for scalable vector types. It could
save up vset{i}vl{i} for these load/store.
For fractional LMUL, I keep to use vle{eew}.v/vse{eew}.v instructions to
load/store partial vector registers.
Differential Revision: https://reviews.llvm.org/D95853
Define an option -riscv-vector-bits-max to specify the maximum vector
bits for vectorizer. Loop vectorizer will use the value to check if it
is safe to use the whole vector registers to vectorize the loop.
It is not the optimum solution for loop vectorizing for scalable vector.
It assumed the whole vector registers will be used to vectorize the code.
If it is possible, we should configure vl to do vectorize instead of
using whole vector registers.
We only consider LMUL = 1 in this patch.
This patch just an initial work for loop vectorizer for RISC-V Vector.
Differential Revision: https://reviews.llvm.org/D95659
Building on the fixed vector support from D95705
I've added ISD nodes for vmv.v.x and vfmv.v.f and switched to
lowering the intrinsics to it. This allows us to share the same
isel patterns for both.
This doesn't handle splats of i64 on RV32 yet. The build_vector
gets converted to a vXi32 build_vector+bitcast during type
legalization. Not sure the best way to handle this at the moment.
Differential Revision: https://reviews.llvm.org/D96108
This is an alternative to D95563.
This is modeled after a similar feature for AArch64's SVE that uses
predicated scalable vector instructions.a
Rather than use predication, this patch uses an explicit VL operand.
I've limited it to always use LMUL=1 for now, but we can improve this
in the future.
This requires a bunch of new ISD opcodes to carry the VL operand.
I think we can probably lower intrinsics to these ISD opcodes to
cut down on the size of the isel table. Which is why I've added
patterns for all integer/float types and not just LMUL=1.
I'm only testing one vector width right now, but the width is
programmable via the command line.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95705
This adds support for commuting operands and converting between
vfmadd and vfmacc to avoid register copies.
To avoid messing up intrinsic behavior, I've added new pseudo
instructions that have the isCommutable flag set. These pseudos also
force a tail agnostic policy. The intrinsic version still use
the tail undisturbed policy.
For best results it looks like we need to start with fmadd and only
pick fmacc if its beneficial. MachineCSE commutes without contraining
the operands and then commutes back if it didn't help with CSE. So
I've made sure that when the operand choice isn't constrained, we
will keep fmadd for MachineCSE and when it does the second commute,
we get back the original instruction.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95800
This ensures that we'll match immediates consistently regardless
of whether we match them as a standalone splat or as part of
another operation.
While I was there I added complexities to the simm5/uimm5 patterns so
we didn't have to assume that the 1 on the non-immediate was lower
than what tablegen inferred.
I had to make a minor tweak to tablegen to fix one place that
didn't expect to see a ComplexPattern that wasn't a "leaf".
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D96199
This patch adds support for both the fadd reduction intrinsic, in both
the ordered and unordered modes.
The fmin and fmax intrinsics are not currently supported due to a
discrepancy between the LLVM semantics and the RVV ISA behaviour with
regards to signaling NaNs. This behaviour is likely fixed in version 2.3
of the RISC-V F/D/Q extension, but until then the intrinsics can be left
unsupported.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95870
This patch adds support for the integer reduction intrinsics supported
by RVV. This excludes "mul" which has no corresponding instruction.
The reduction instructions in RVV have slightly complicated type
constraints given they always produce a single "M1" vector register.
They are lowered to custom nodes including the second "scalar" reduction
operand to simplify the patterns and in the hope that they can be useful
for future DAG combines.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95620
This patch custom-legalizes all integer EXTRACT_VECTOR_ELT nodes where
SEW < XLEN to VMV_S_X nodes to help the compiler infer sign bits from
the result. This allows us to eliminate redundant sign extensions.
For parity, all integer EXTRACT_VECTOR_ELT nodes are legalized this way
so that we don't need TableGen patterns for some and not others.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95741
This patch adds support for lowering the sqrt intrinsic to the RVV
vfsqrt instruction.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96012
The vrgather.vv instruction uses a vector of indices with the same
SEW as operand 0. The vrgather.vx instructions use a scalar index
operand of XLen bits.
By splitting this into 2 intrinsics we are able to use LLVMatchType
in the definition to avoid specifying the type for the index operand
when creating the IR for the intrinsic. For .vv it will match the
operand 0 type. And for .vx it will match the type of the vl operand
we already needed to specify a type for.
I'm considering splitting more intrinsics. This was a somewhat
odd one because the .vx doesn't use the element type, it always
use XLen.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D95979
Due to a clerical error, the sdiv operation was mapping to vdivu and
udiv to vdiv, when the opposite mapping is the correct one.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95869
A follow up patch will add support for commuting operands or
changing opcode to vfmacc and friends.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D95662
Rather than materializing the 0xffff immediate for the AND, use
a shift left to remove the upper bits and then shift in zeros
from the right.
This pattern occurs when type legalizing an i16 right shift.
I've implemented this with custom selection code for a number of
reasons. I've limited this to the AND having a single use. We need
to compensate for SimplifyDemandedBits altering the AND mask. I'm
using *W opcodes on RV64. We may want to generlize this in the
future. For all these reason it seemed easiest to do it this way.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95774
We need to add a mask to the shift amount for these operations
to use the FSR/FSL instructions. We were previously doing this
in isel patterns, but custom lowering will make the mask
visible to optimizations earlier.
Not all combinations of SEW and LMUL we need to support. For example, we
only need to support [M1, M2, M4, M8] for SEW = 64. There is no need to
define pseudos for PseudoVLSE64MF8, PseudoVLSE64MF4, and PseudoVLSE64MF2.
Differential Revision: https://reviews.llvm.org/D95667
Various *TargetStreamer.h need formatted_raw_ostream but rely on a
forward declaration of formatted_raw_ostream in MCStreamer.h. This
patch adds forward declarations right in *TargetStreamer.h.
While we are at it, this patch removes the one in MCStreamer.h, where
it is unnecessary.
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
These instructions have been removed from the 0.94 bitmanip spec.
We should focus on optimizing the codegen without using them.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D95302
This patch adds support for the full range of vector int-to-float,
float-to-int, and float-to-float conversions on legal types.
Many conversions are supported natively in RVV so are lowered with
patterns. These include conversions between (element) types of the same
size, and those that are half/double the size of the input. When
conversions take place between types that are less than half or more
than double the size we must lower them using sequences of instructions
which go via intermediate types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95447
In d2927f786e, I added patterns
to remove (and X, 31) from sllw/srlw/sraw shift amounts.
There is code in SelectionDAGISel.cpp that knows to use
computeKnownBits to fill in bits of the mask that were removed
by SimplifyDemandedBits based on bits being known zero.
The non-W shift patterns use immbottomxlenset which allows the
mask to have more than log2(xlen) trailing ones, but doesn't
have a call to computeKnownBits to fill in bits of the mask that may
have been cleared by SimplifyDemandedBits.
This patch copies code from X86 to handle more than log2(xlen)
bottom bits set and uses computeKnownBits to fill in missing bits
before counting.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95422
RISCVBaseInfo.h belongs to the MC layer, but the Pseudo instructions
are only used by the CodeGen layer. So it makes sense to keep this
table in the CodeGen layer.
-Remove the ISD opcode for READ_VL. Just emit the MachineSDNode directly.
-Move segmented fault first only load intrinsic handling completely to
RISCVISelDAGToDAG.cpp and emit the ReadVL MachineSDNode there
instead of lowering to ISD opcodes first.
Remove the RISCVVMVTs namespace because I don't think it provides
a lot of value. If we change the mappings we'd likely have to add
or remove things from the list anyway.
Add a wrapper around addRegisterClass that can determine the
register class from the fixed size of the type.
Reviewed By: frasercrmck, rogfer01
Differential Revision: https://reviews.llvm.org/D95491
This patch fixes some crashes coming from
`RISCVISelLowering::getSetCCResultType`, which would occasionally return
an EVT constructed from an invalid MVT, which has a null Type pointer.
The attached test shows this happening currently for some fixed-length
vectors, which hit this issue when the V extension was enabled, even
though they're not legal types under the V extension. The fix was also
pre-emptively extended to scalable vectors which can't be represented as
an MVT, even though a test case couldn't be found for them.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95434
Move the Suffix string into the VTypeInfo class so we don't need a helper class to get to it.
Adjust pseudo naming scheme for FPRs to put F16/F32/F64 in
place of F in the pseudo instruction name rather than as a suffix.
This avoids special cases like VFMERGE from the original patch.
Differential Revision: https://reviews.llvm.org/D95404
When spilling, the spill size will depend on the size of register class.
For .vf vector instructions, it may spill the floating point scalar
argument. In order to use the correct load/store instructions for
spilling, we need to provide the correct floating point register class
for the .vf vector pseudo instructions.
In this commit, we define the .vf pseudo instructions as three
different kinds of pseudo instructions for half/float/double. For
example, PseudoVFADD_M1 will become as PseudoVFADD_F16_M1,
PseudoVFADD_F32_M1, and PseudoVFADD_F64_M1.
Differential Revision: https://reviews.llvm.org/D95234
This pattern can occur when an unsigned is used to index an array
on RV64.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95290
Original patch by @rogfer01.
This patch adds support for insertelt and extractelt operations on
scalable vectors.
Special care must be taken on RV32 when dealing with i64 vectors as
there are no straightforward ways to insert a 64-bit element without a
register of that size. To that end, both are custom-lowered to different
sequences.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Fraser Cormack <fraser@codeplay.com>
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94615
This makes our i8/i16 codegen more similar to the i32 codegen.
I've also added computeKnownBits support for DIVUW/REMUW so
that we can remove zero extending ANDs from the output. Without
this we end up turning DIVUW/REMUW back into DIVU/REMU via some
isel patterns.
Reviewed By: frasercrmck, luismarques
Differential Revision: https://reviews.llvm.org/D95322
As far as I know 32 bits arguments and returns on RV64 are always
sign extended to i64. So I think we should be taking this into
account around libcalls.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95285
This patch adds support for scalable-vector splats in DAGCombiner's
`isConstantOrConstantVector` and `ISD::matchUnaryPredicate` functions,
which enable the SelectionDAG div/rem-by-constant optimizations for
scalable vector types.
It also fixes up one case where the UDIV optimization was generating a
SETCC without first consulting the target for its preferred SETCC result
type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94501
This adds support for ".attribute arch" for all extensions that are
currently supported by the compiler.
Differential Revision: https://reviews.llvm.org/D94931
The patterns that use this really want to know if the operand has at
least 32 sign/zero bits.
This increases opportunities to use W instructions when the original
source used i8/i16. Not sure how much this matters for performance,
but it makes i8/i16 code more consistent with i32.
This avoids being dependent on SimplifyDemandedBits having cleared
those bits.
It could make sense to teach SimplifyDemandedBits to keep all
lower bits 1 in an AND mask when possible. This could be
implemented with slli+srli in the general case rather than
needing to materialize the constant.
We try to do this during DAG combine with SimplifyDemandedBits,
but it fails if there are multiple nodes using the AND. For
example, multiple shifts using the same shift amount.
Similar to our free standing setcc patterns, we can use ADDI to
subtract the immediate from the other operand. Then the cmov
can check if the result is zero or non-zero.
Reviewed By: mundaym
Differential Revision: https://reviews.llvm.org/D95169
This adds an initial set of patterns for these instructions. Its
more complicated that I would like for the sh*add.uw instructions
because there is no guaranteed canonicalization for shl/and with
constants.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D95106
These instructions use a portion of the encodings for grevi and
gorci. The full encodings are only supported with Zbp. Note,
rev8 has a different encoding between rv32 and rv64.
Zbb is closer to being finalized that Zbp which has motivated
some decisions in this patch.
I'm treating rev8 and orc.b as separate instructions when
either Zbb or Zbp is enabled. This allows us to print to suggest
that either feature needs to be enabled to support these mnemonics.
I had tried to put HasStdExtZbbAndNotZbp on the Zbb instructions,
but that caused a diagnostic that said Zbp is required if neither
feature is enabled. We should really mention Zbb since its closer
to final.
This does require extra isel patterns for the different cases so
that bswap will always print as rev8 in assembly listing since
we can't use an InstAlias.
llvm-objdump disassembling should always pick the rev8 or orc.b
instructions. llvm-mc parsing and printing text will not convert
the grevi/gorci spellings to rev8/gorc.b. We could probably fix
this with a special case in processInstruction in the assembly
parser if it its important.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94944
zext.h uses the same encoding as pack rd, rs, x0 in rv32 and
packw rd, rs, x0 in rv64. Encodings without x0 as the second source
are not valid in Zbb.
I've added two new instructions with these specific encodings with
predicates that enable them when either Zbb or Zbp is enabled.
The pack spelling will only be accepted with Zbp. The disassembler
will use the zext.h instruction when either feature is enabled.
Using the pack spelling will print as pack when llvm-mc is
emitting text. We could fix this with some custom code in
processInstruction if this is important, but I'm not sure it is.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94818
Zext.h will need to come back to Zbb, but that only uses specific
encodings of pack.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94742
This didn't make it into the published 0.93 spec, but it was the
intention.
But it is in the tex source as of this commit
d172f029c0
This means zext.w now requires Zba. Not sure if we should still use
pack if Zbp is enabled and Zba isn't. I'll leave that for the future
when pack is closer to being final.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94736
The 0.93 spec has this implementation for add.uw
uint_xlen_t adduw(uint_xlen_t rs1, uint_xlen_t rs2) {
uint_xlen_t rs1u = (uint32_t)rs1;
return rs1u + rs2;
}
The 0.92 spec had the usages of rs1 and rs2 swapped.
Reviewed By: frasercrmck, asb
Differential Revision: https://reviews.llvm.org/D95090
Also renamed Zbe instructions to resolve name conflict even though
that change is in the 0.94 draft.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94653
It's not really clear in the spec that these are in Zbp now, but
that's what I've gather from previous commits to the spec. I've
file an issue to get it documented properly.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D94652