According to riscv-v-spec-1.0, widening signed(vs2)-unsigned integer multiply
vwmulsu.vv vd, vs2, vs1, vm # vector-vector
vwmulsu.vx vd, vs2, rs1, vm # vector-scalar
It is worth noting that signed op is only for vs2.
For vwmulsu.vv, we can swap two ops, and don't care which is sign extension,
but for vwmulsu.vx signExt can not be a vector extended from scalar (rs1).
I specifically added two functions ending with _swap in the test case.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D118215
Return false from ShouldShrinkFPConstant(), so that these constants are stored
in their full size on the constant pool, even if they could have been shrunk
and used with an extending load.
This is better since LD is faster than LDE, and it also enables reg/mem opcodes.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D117927
By reordering the objects on the stack frame after looking at the users, a
better utilization of displacement operands will result. This means less
needed Load Address instructions for the accessing of these objects.
This is important for very large functions where otherwise small changes
could cause a lot more/less accesses go out of range.
Note: this is not yet enabled for SystemZXPLINKFrameLowering, but should be.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D115690
Since it's introduction, the qrdmlah has been represented as a qrdmulh
and a sadd_sat. This doesn't produce the same result for all input
values though. This patch fixes that by introducing a qrdmlah (and
qrdmlsh) intrinsic specifically for the vqrdmlah and sqrdmlah
instructions. The old test cases will now produce a qrdmulh and sqadd,
as expected.
Fixes#53120 and #50905 and #51761.
Differential Revision: https://reviews.llvm.org/D117592
Rejecting AGPR DS_WRITE instructions before adding them to any mergeable
list seems cleaner than adding them to the list and rejecting them
later.
Differential Revision: https://reviews.llvm.org/D118368
Using separate lists for AGPR and non-AGPR instructions seems like a
cleaner solution than putting them all in the same list and then later
refusing to merge instructions of different AGPR-ness.
Differential Revision: https://reviews.llvm.org/D118367
Change CombineInfo::setMI to take a reference to the
SILoadStoreOptimizer instance, for easy access to common fields like
TII and STM.
Differential Revision: https://reviews.llvm.org/D118366
This adds the following changes:
* Fold: vselect(<all active predicate>, x, y) => x
* Extend isAllActivePredicate to take vscale_range into account, e.g.
isAllActivePredicate(vl16) for nxv16i1 and vscale == 1 => true.
isAllActivePredicate(vl32) for nxv16i1 and vscale == 2 => true.
Differential Revision: https://reviews.llvm.org/D118147
InstCombine performs this more generally with SimplifyUsingDistributiveLaws, but we don't need anything that complex here - this is mainly to fix up cases where logic ops get created late on during lowering, often in conjunction with sext/zext ops for type legalization.
https://alive2.llvm.org/ce/z/gGpY5v
Swizzled accesses are not merged, but there is no particular reason not
to merge two instructions if any of the intervening instructions happens
to be a swizzled access.
This moves the check for swizzled accesses out of checkAndPrepareMerge
into collectMergeableInsts where I think it makes more sense.
Differential Revision: https://reviews.llvm.org/D118267
The ISel patterns for PFALSE helps recognise the instructions as being
free of side-effects, which helps MachineCSE remove redundant
PFALSE instructions.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D118054
SILoadStoreOptimizer::collectMergeableInsts already ends the current
block if it sees a volatile (or ordered) memory access, so there is no
need to check for them again when scanning the instructions between two
pairing candidates in a block.
Differential Revision: https://reviews.llvm.org/D118266
This patch adds support for expanding VP_MERGE through a sequence of
vector operations producing a full-length mask setting up the elements
past EVL/pivot to be false, combining this with the original mask, and
culminating in a full-length vector select.
This expansion should work for any data type, though the only use for
RVV is for boolean vectors, which themselves rely on an expansion for
the VSELECT.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D118058
CSKY arch has multiple FPU instruction versions such as FPU, FPUv2 and FPUv3 to implement floating operations.
For now, we just only support FPUv2 and FPUv3.
It includes the encoding, asm parsing of instructions and codegen of DAG nodes.
This matches what the spec uses for the vncvt.x.x.w assembly
pseudoinstruction.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D118295
Form the MAI spec: It’s ok that Src_C and vDst are the exact same VGPRs
or Src_C and vDst are completely separated. The case that Src_C and vDst
are overlapping should be avoid as new value could be written to accumulator
input before it gets read.
Note that this inevitably increases register pressure to the point where
some programs will become uncompilable.
This patch separates MAC and FMA versions of MFMA instructions using either
tied dst and src2 or earlyclobber dst.
Fixes: SWDEV-318900
Differential Revision: https://reviews.llvm.org/D117844
Most importantly, fixes constant bus errors in the 64-bit cases. It's
surprising to me these were even passing the selection test using
SReg_* sources. Also fixes pattern matching in the 32-bit cases, with
simple operands.
These patterns aren't working in a few cases, like with mixed SGPR
inputs. The patterns aren't looking through the SGPR->VGPR copies like
they need to. The vector cases also have some unmerges of build_vector
which are obscuring the inputs.
For Zba/Zbb/Zbc/Zbs I've removed the 'B' completely and used the
extension names as presented at the start of Chapter 1 of the
1.0.0 Bitmanipulation spec.
For the unratified extensions, I've replaced 'B' with 'Zb' and
otherwise left them unchanged.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D117822
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
In commit 1674d9b6b2, I fixed the bug where we didn't consider
both words of the result of the comparison. However, the logic
needs to be different for eq and ne.
Namely for eq, we need both words of the doubleword to equal so it
is an AND. OTOH for ne, we need either word to be unequal so it
is an OR.
AMDGPUHSAMetadataStreamer currently assumes that pointer arguments
without align attribute have ABI alignment of the pointee type.
This is incompatible with opaque pointers, but also plain incorrect:
Pointer arguments without explicit alignment have alignment 1. It is
the responsibility of the frontent to add correct align annotations.
Differential Revision: https://reviews.llvm.org/D118229
We have some bitcasts which we know will be simplified,
so their cost is zero.
Reviewed By: david-arm, sdesmalen
Differential Revision: https://reviews.llvm.org/D118019
Packed-mode broadcast of f32/i32 requires the subregister to be
replicated to the full I64 register prior. Add repl_i32 and repl_f32 to
faciliate this.
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D117878
Currently not (xor_one_use) pattern is always selected to S_XNOR irrelative od the node divergence.
This relies on further custom selection pass which converts to VALU if necessary and replaces with V_NOT_B32 ( V_XOR_B32)
on those targets which have no V_XNOR.
Current change enables the patterns which explicitly select the not (xor_one_use) to appropriate form.
We assume that xor (not) is already turned into the not (xor) by the combiner.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D116270
NOTE: Only considers i64 based vectors at this time because smaller
element types require extra isel operand parsing.
Differential Revision: https://reviews.llvm.org/D118040
When wider vectors are used, for example fixed width SVE,
there is no patterns to select AArch64ISD::LD1LANEpost
nodes, so we should do an early exit.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D117674
In the Zve* extensions, the vlen could be 64. This patch change the vlen constraint of low bound to 64.
Differential Revision: https://reviews.llvm.org/D118217
According to GNU as documentation, PowerPC supports some .gnu_attribute
tags to represent the vector and float ABI type in the object file.
Some linkers like GNU ld respects the attribute and will prevent objects
with conflicting ABIs being linked.
This patch emits gnu_attribute value in assembly printer according to
the float-abi metadata. More attributes for soft-fp, hard single/double
and even vector ABI need to be supported in the future.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D117193
This fixes a bug where (SUBREG_TO_REG 0 (MOVi32imm <negative-number>) sub_32)
would generate invalid code since the top 32-bits were not zeroed when inspecting the
immediate value. A new test was added for this case.
Change to abstract shared behavior in MIPeepholeOpt. Both
visitAND and visitADDSUB attempt to split an RR instruction with an immediate
operand into two RI instructions with the immediate split.
The differing behavior lies in how the immediate is split into two pieces and
how the new instructions are built. The rest of the behavior (adding new VRegs,
checking for the MOVImm, constraining reg classes, removing old intructions)
are shared between the operations.
The new helper function splitTwoPartImm implements the shared behavior and
delegates differing behavior to two function objects passed by the caller.
One function object splits the immediate into two values and returns the
opcode to use if it is a valid split. The other function object builds
the new instructions.
I felt this abstraction would help since I believe it will help reduce the
code repetition when adding new instructions of the pattern, such as
SUBS for this conditional optimization.
Tested it locally by running check all with compiler-rt, mlir, clang-tools-extra,
flang, llvm, and clang enabled.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D118000
The goal is support tail and mask policy in RVV builtins.
We focus on IR part first.
If the passthru operand is undef, we use tail agnostic, otherwise
use tail undisturbed.
Co-Authored-by: Hsiangkai Wang <Hsiangkai@gmail.com>
Reviewers: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D117647
Addresses are floats when a sampler is present and unsigned integers
when no sampler is present.
Therefore, only zext instructions, not sext instructions should match.
Also match integer constants that can be truncated.
Differential Revision: https://reviews.llvm.org/D118043
NOTE: This patch also includes tests that highlight those cases
where the existing DAG combine doesn't yet work well for SVE.
Differential Revision: https://reviews.llvm.org/D117873
The following SubtargetFeatures are removed from the definition of
HasV8_0rOps, on the grounds that they are optional in Armv8.4-A, and
therefore (by the definition of Armv8.0-R) also optional in v8.0-R:
* performance monitoring: FeaturePerfMon
* cryptography: FeatureSM4 and FeatureSHA3
* half-precision FP: FeatureFullFP16, FeatureFP16FML
* speculation control: FeatureSSBS, FeaturePredRes, FeatureSB,
FeatureSpecRestrict
This isn't the full set of features that are listed as optional in the
spec. FeatureCCIDX and FeatureTRACEV8_4 are also optional. But LLVM
includes those in HasV8_3aOps and HasV8_4aOps respectively (I think on
the grounds that the system registers they enable are useful to be
able to access after a runtime check), and so for consistency, I've
left those in HasV8_0rOps too.
After this commit, HasV8_0rOps is a strict subset of HasV8_4aOps (but
missing features that are not in Armv8.0-R at all).
The definition of Cortex-R82 is correspondingly updated to add most of
the features that I've removed from base Armv8.0-R (with the exception
of the cryptography ones), since that particular implementation of
v8.0-R does have them.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D118045
Given how small the function is and how often it gets used it
makes more sense to live in the header file.
Differential Revision: https://reviews.llvm.org/D117883
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
There's no further reasons to limit this to cmpeq-with-zero, the outstanding regressions with lowering to PTEST have now been addressed
Improves codegen for Issue #53379
vXi16 patterns allof(cmp()) reduction patterns will have to be pack the comparison results to vXi8 to use PMOVMSKB.
If we're reducing cmpeq(), then we can compare the vXi8 halves directly - similar to what we already do for vXi64 -> vXi32 for cases without PCMPEQQ.
This patch emits a warning when the stack pointer register (`R1`) is found in
the clobber list of an inline asm statement. Clobbering the stack pointer is
not supported.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D112073
As suggested on PR53379, for all-of icmp-eq patterns, we can use ptest(sub(x,y)) on SSE41+ targets
This is a generalization of the existing allof(cmpeq(x,0)) -> ptest(x) pattern
We can probably extend this further, in particularly to handle 256-bit cases on pre-AVX2 targets, but this part of the generalization is pretty trivial
Fixes Issue #53379
Add might be faster than shift. We can't do this earlier without
using a Freeze instruction.
This is the intrinsic version of D106689.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D118013
These have negative / out of bounds frame index values and would
assert when trying to set the BitVector. Fixed stack objects can't be
colored away so ignore them.
This patch introduces new intrinsics that enable the use of vsetvli in
contexts where only the returned vector length is of interest. The
pre-existing intrinsics are marked with side-effects, which prevents
even trivial optimizations on/across them.
These intrinsics are intended to be used in situations where the vector
length is fed in turn to RVV intrinsics or to vector-predication
intrinsics during loop vectorization, for example. Those codegen paths
ensure that instructions are generated with their own implicit vsetvli,
so the vector length and vtype can be relied upon to be correct.
No corresponding C builtins are planned at this stage, though that is a
possibility for the future if the need arises.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117910
Only using that change in StringRef already decreases the number of
preoprocessed lines from 7837621 to 7776151 for LLVMSupport
Perhaps more interestingly, it shows that many files were relying on the
inclusion of StringRef.h to have the declaration from STLExtras.h. This
patch tries hard to patch relevant part of llvm-project impacted by this
hidden dependency removal.
Potential impact:
- "llvm/ADT/StringRef.h" no longer includes <memory>,
"llvm/ADT/Optional.h" nor "llvm/ADT/STLExtras.h"
Related Discourse thread:
https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
This patch adds support for zbkx extension from K extension(v1.0.0) in MC layer.
Instructions with same functionality and same encoding is defined in the bitmanip extension.
It defines {Xperm8, Xperm4} as instruction aliases for xperm.* in Zbp extension. When Zbkx is enabled while Zbp is not, xperm.h will not be available. When Zbkx and Zbp are both enabled, the instructions will be decoded in Zbp format.
[[ https://reviews.llvm.org/D94999 | D94999 ]] this is the patch that introduces xperm.* instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117889
This patch adds lowering of the llvm.vp.merge.* intrinsic
(ISD::VP_MERGE) to RVV vmerge/vfmerge instructions. It introduces a
special pseudo form of vmerge which allows a tied merge operand,
allowing us to specify the tail elements as being equal to the "on
false" operand, using a tied-def constraint and a "tail undisturbed"
policy.
While this strategy allows us to often lower the intrinsic to just one
instruction, it may be less efficient in fixed-vector types as the
number of tail elements may extend far beyond the length of the fixed
vector. Another strategy could be to use a vmerge/vfmerge instruction
with an AVL equal to the length of the vector type, and manipulate the
condition operand such that mask elements greater than the operation's
EVL are false.
I've also observed inefficient codegen in which our 'VF' patterns don't
match raw floating-point SPLAT_VECTORs, which occur in scalable-vector
code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117561
This patch follows up on D117697 to help the simple binary operations
behave similarly in the presence of masks.
It also enables CGP sinking support for vp.fdiv and vp.fsub intrinsics,
now that VFRDIV and VFRSUB are consistently matched with a LHS splat for
masked and unmasked variants.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117783
According to the spec, there are some difference between V and Zve64d. For example, the vmulh integer multiply variants that return the high word of the product (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) are not included for EEW=64 in Zve64*, but V extension does support these instructions. So we should decouple Zve* extensions and the V extension.
Differential Revision: https://reviews.llvm.org/D117854
This commit is currently implementing supports for scalar cryptography extension for LLVM according to version v1.0.0 of [K Ext specification](https://github.com/riscv/riscv-crypto/releases)(scala crypto has been ratified already). Currently, we are implementing the MC (Machine Code) layer of his extension and the majority of work is done under `llvm/lib/Target/RISCV` directory. There are also some test files in `llvm/test/MC/RISCV` directory.
Remove the subfeature of Zbk* which conflict with b extensions to reduce the size of the patch.
(Zbk* will be resubmit after this patch has been merged)
**Co-author:**@ksyx & @VincentWu & @lihongliang & @achieveartificialintelligence
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98136
The Zbk* extensions have some overlap with Zb so have been placed in this file.
Reviewed By: VincentWu
Differential Revision: https://reviews.llvm.org/D117958
The register R1 is defined to have the constant value 0 in the avr-gcc
calling convention (which we follow). Unfortunately, we don't really
make use of it. This patch replaces `LDI 0` instructions with a copy
from R1.
This reduces code size: my AVR build of compiler-rt goes from 50660 to
50240 bytes of code size, which is a 0.8% reduction. Presumably it will
also improve execution speed, although I didn't measure this.
Differential Revision: https://reviews.llvm.org/D117425
Background: https://github.com/avr-rust/rust-legacy-fork/issues/126
In short, this workaround was introduced to fix a "ran out of registers
during regalloc" issue. The root cause has since been fixed in
https://reviews.llvm.org/D54218 so this workaround can be removed.
There is one test that changes a little bit, removing a single
instruction. I also compiled compiler-rt before and after this patch but
didn't see a difference. So presumably the impact is very low. Still,
it's nice to be able to remove such a workaround.
Differential Revision: https://reviews.llvm.org/D117831
MSVC currently doesn't support 80 bits long double. ICC supports it when
the option `/Qlong-double` is specified. Changing the alignment of f80
to 16 bytes so that we can be compatible with ICC's option.
Reviewed By: rnk, craig.topper
Differential Revision: https://reviews.llvm.org/D115942
This patch is the first step to enable support of GNU attribute in LLVM
PowerPC, enabling it for PowerPC targets, otherwise llvm-mc raises error
when seeing the attribute section.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D115854
Pulled out of D106237, this folds truncstore(extend(x)) back to store(x)
if the original store was legal. This can come up due to the order we
fold nodes. A fold from X86 needs to be adjusted to prevent infinite
loops, to have it pick the operand of a trunc more directly.
Differential Revision: https://reviews.llvm.org/D117901
Fixes the build issue with D111034, whose goal was to optimize
add/sub with long immediates.
Optimize ([add|sub] r, imm) -> ([ADD|SUB] ([ADD|SUB] r, #imm0, lsl #12), #imm1),
if imm == (imm0<<12)+imm1. and both imm0 and imm1 are non-zero 12-bit unsigned
integers.
Optimize ([add|sub] r, imm) -> ([SUB|ADD] ([SUB|ADD] r, #imm0, lsl #12), #imm1),
if imm == -(imm0<<12)-imm1, and both imm0 and imm1 are non-zero 12-bit unsigned
integers.
The change which fixed the build issue in D111034 was the use of new virtual
registers so that SSA form is maintained until deleting MI.
Differential Revision: https://reviews.llvm.org/D117429
Instead of passing the both the SDNode* and 2 of the operands
in two different orders, just pass the SDNode * and a bool to
indicate which operand order to test.
While there rename to combineMUL_VLToVWMUL_VL.
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
This patch brings better splat-matching to our VP support, by sinking
splat operands of VP intrinsics back into the same block as the VP
operation. The list of VP intrinsics we are interested in matches that
of the regular instructions.
Some optimization is still lacking. For instance, our VL nodes aren't
recognized as commutative, so splats must be on the RHS. Because of
this, we limit our sinking of splats to just the RHS operand for now.
Improvement in this regard can come in another patch.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117703
If the bias is zero, we can remove it from the image instruction.
Also copy other image optimizations (l->lz, mip->nomip) to IR combines.
Differential Revision: https://reviews.llvm.org/D116042
As the codegen fix in D111754, the LOD bias needs to be converted to 16
bits. Fix this in the combine.
Differential Revision: https://reviews.llvm.org/D116038
After D86836, we can define multiple cost values for
different cost models. So here we set CostPerUse to
1 iff RVC is enabled to avoid potential impact on RA.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117741
There are static and dynamic TLS address lowering in DAG stage according to different TLS model.
It needs PseudoTLSLA32 pseudo to get address of TLS-related entry which resides in constant pool.
Zbkb supports some encodings of the general grevi, shfli, and
unshfli instructions legal, so we added separate instructions for
those encodings to improve the diagnostics for assembler and
disassembler. To be consistent we should always use these separate
instructions whenever those specific encodings of grevi/shfli/unshfli
occur. So this patch adds specific isel patterns to override the generic
isel patterns for these cases. Similar was done for rev8 and zext.h
for Zbb previously.
This commit add instructions supports of `zbkb` which defined in scalar cryptography extension version v1.0.0 (has been ratified already).
Most of the zbkb directives reuse parts of the zbp and zbb directives, so this patch just modified some of the inst aliases and predicates.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117640
Intel's CET/IBT requires every indirect branch target to be an ENDBR instruction. Because of that, the compiler needs to correctly emit these instruction on function's prologues. Because this is a security feature, it is desirable that only actual indirect-branch-targeted functions are emitted with ENDBRs. While it is possible to identify address-taken functions through LTO, minimizing these ENDBR instructions remains a hard task for user-space binaries because exported functions may end being reachable through PLT entries, that will use an indirect branch for such. Because this cannot be determined during compilation-time, the compiler currently emits ENDBRs to every non-local-linkage function.
Despite the challenge presented for user-space, the kernel landscape is different as no PLTs are used. With the intent of providing the most fit ENDBR emission for the kernel, kernel developers proposed an optimization named "ibt-seal" which replaces the ENDBRs for NOPs directly in the binary. The discussion of this feature can be seen in [1].
This diff brings the enablement of the flag -mibt-seal, which in combination with LTO enforces a different policy for ENDBR placement in when the code-model is set to "kernel". In this scenario, the compiler will only emit ENDBRs to address taken functions, ignoring non-address taken functions that are don't have local linkage.
A comparison between an LTO-compiled kernel binaries without and with the -mibt-seal feature enabled shows that when -mibt-seal was used, the number of ENDBRs in the vmlinux.o binary patched by objtool decreased from 44383 to 33192, and that the number of superfluous ENDBR instructions nopped-out decreased from 11730 to 540.
The 540 missed superfluous ENDBRs need to be investigated further, but hypotheses are: assembly code not being taken care of by the compiler, kernel exported symbols mechanisms creating bogus address taken situations or even these being removed due to other binary optimizations like kernel's static_calls. For now, I assume that the large drop in the number of ENDBR instructions already justifies the feature being merged.
[1] - https://lkml.org/lkml/2021/11/22/591
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D116070
Originally, hasRVVFrameObject() will scan all the stack objects to check
whether if there is any scalable vector object on the stack or not.
However, it causes errors in the register allocator. In issue 53016, it
returns false before RA because there is no RVV stack objects. After RA,
it returns true because there are spilling slots for RVV values during RA.
The compiler will not reserve BP during register allocation and generate BP
access in the PEI pass due to the inconsistent behavior of the function.
The function is changed to use hasStdExtV() as the return value. It is
not precise, but it can make the register allocation correct.
Refer to https://github.com/llvm/llvm-project/issues/53016.
Differential Revision: https://reviews.llvm.org/D117663
This is needed to properly limit fractional LMULs for Zve32.
Add new RUN Zve32 RUN lines to the existing tests for the
-riscv-v-fixed-length-vector-elen-max command line option.
All code should use one of the cleaner named hasVInstructions*
functions. Fix the two uses that weren't and delete the methods
so no new uses can be created.
RISCV only has a unary shuffle that requires places indices in a
register. For interleaving two vectors this means we need at least
two vrgathers and a vmerge to do a shuffle of two vectors.
This patch teaches shuffle lowering to use a widening addu followed
by a widening vmaccu to implement the interleave. First we extract
the low half of both V1 and V2. Then we implement
(zext(V1) + zext(V2)) + (zext(V2) * zext(2^eltbits - 1)) which
simplifies to (zext(V1) + zext(V2) * 2^eltbits). This further
simplifies to (zext(V1) + zext(V2) << eltbits). Then we bitcast the
result back to the original type splitting the wide elements in half.
We can only do this if we have a type with wider elements available.
Because we're using extends we also have to be careful with fractional
lmuls. Floating point types are supported by bitcasting to/from integer.
The tests test a varied combination of LMULs split across VLEN>=128 and
VLEN>=512 tests. There a few tests with shuffle indices commuted as well
as tests for undef indices. There's one test for a vXi64/vXf64 vector which
we can't optimize, but verifies we don't crash.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D117743
Compares, v_cndmask_b32, and v_readfirstlane_b32 use EXEC
in a way which modifies the result. This implicit EXEC use
shall not be ignored for the purposes of instruction moves.
Differential Revision: https://reviews.llvm.org/D117814
This string no longer appears in the Vector Extension specification.
The segment load/store instructions are just part of the vector
instruction set.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D117724
Similar for ceil, trunc, round, and roundeven. This allows us to use
static rounding modes to avoid a libcall.
This is similar to D116771, but for the saturating conversions.
This optimization is done for AArch64 as isel patterns.
RISCV doesn't have instructions for ceil/floor/trunc/round/roundeven
so the operations don't stick around until isel to enable a pattern
match. Thus I've implemented a DAG combine.
I'm only handling saturating to i64 or i32. This could be extended
to other sizes in the future.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D116864
This flag was set in the presence of stacksave/stackrestore in order to force
a frame pointer.
This should however not be needed per the comment in MachineFrameInfo.h
stating that a a variable sized object "...is the sole condition which
prevents frame pointer elimination", and experiments have also shown that
there seems to be no effect whatsoever on code generation with ManipulatesSP.
Review: Ulrich Weigand
Emit an error if the return value is used on subtargets that do not
support them. Previously we were falling back to the DAG on selection
failure, where it would emit this error and then fail again.
The struct/raw forms for the buffer atomics now work as
expected. However, we're incorrectly handling the legacy form (which
we probably shouldn't handle at all). We also are not diagnosing the
use of the return value on gfx908. These will be addressed separately.
This was inheriting the mesa behavior, and as far as I know nobody is
using opencl kernels with amdpal. The isMesaKernel check was
irrelevant because this property needs to be held for all functions.
AVX512 doesn't provide a ADDSUB instruction, but if we've built this from a build vector of scalar fsub/fadd elements we can still lower to blend(fsub,fadd)
The Armv8-R.64 architecture defines numbered MPU region registers with
indices 1-15, not 0-15. So there's no such register as PRBAR0_EL2 or
PRLAR0_EL1 (for example). The encodings that they would occupy are
used for the unnumbered PRBAR_ELn and PRLAR_ELn registers.
Reviewed By: labrinea
Differential Revision: https://reviews.llvm.org/D117755
GlobalISelEmitter was skipping these patterns when its predicates were
checked. This patch should allow us to select d16_hi stores in
GlobalISel.
Differential Revision: https://reviews.llvm.org/D117762
This brings floating-point RVV vector/scalar support more in line with
the integer vector patterns, which can already match '.vx' instructions
with masked operations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117697
This idea has come up in several reviews -- D115978 and D105902 -- so I
can't take any credit for the idea. Instead of using a constant pool to
lower -0.0, we can emit a sequence of two instructions:
fmv.[hwd].x freg, zero
fsgnjn.[hsd] freg, freg, freg
This is only done when the floating-point type is legal.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117687
`zve` is the new standard vector extension to specify varying degrees of
vector support for embedding processors. The `zve` extension is related
to the `zvl` extension and other updates that are added in v1.0.
According to https://github.com/riscv-non-isa/riscv-c-api-doc/pull/21,
Clang defines macro `__riscv_v_max_elen`, `__riscv_v_max_elen_fp` for
`zve` and it can be used by applications that uses the vector extension.
Authored by: Zakk Chen <zakk.chen@sifive.com> @khchen
Co-Authored by: Eop Chen <eop.chen@sifive.com> @eopXD
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D112408
It seems that implementation of Bt refered from x86.
In M68k, Bt(BT) should be renamed to Btst(BTST).
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D117534
D108960 added support for SjLj using Wasm EH instructions, which we call
Wasm SjLj going forward. (We call the old SjLj Emscripten SjLj) But it
did not support using Wasm EH and Wasm SjLj together. So far users of
Wasm EH had to use Wasm EH with Emscripten SjLj, which had a certain
limitation and it suffered from bigger code size increases as well.
This enables using Wasm EH and Wasm SjLj together.
1. This redirects `catchswitch` and `cleanupret` that unwind to caller
to `catch.dispatch.longjmp` BB, which is a `catchswitch` BB that
handles longjmps.
2. D108960 converted all longjmpable `call`s to `invokes` that unwind to
`catch.dispatch.longjmp`. This CL checks if the `call` is embedded
within another `catchpad`, and if so, makes it unwind to its nearest
parent's unwind destination, rather than `catch.dispatch.longjmp`.
This is necessary to preserve the scoping structure.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D117610
AArch64 supports unsigned shift right and accumulate. In case we see a
unsigned shift right followed by an OR. We could turn them into a USRA
instruction, given the operands of the OR has no common bits.
Differential Revision: https://reviews.llvm.org/D114405
For instructions without operands, the final `AsmToken::EndOfStatement`
wasn't being consumed. In the context of inline assembly, the resulting
empty statements would cause extraneous empty lines to be emitted. Fix
the issue by consuming the `EndOfStatement` token.
Differential Revision: https://reviews.llvm.org/D117565