Do not commit the llvm/test/ExecutionEngine/MCJIT/cet-code-model-lager.ll because it will
cause build bot fail(not suitable for window 32 target).
Summary:
This patch comes from H.J.'s 2bd54ce7fa
**This patch fix the failed llvm unit tests which running on CET machine. **(e.g. ExecutionEngine/MCJIT/MCJITTests)
The reason we enable IBT at "JIT compiled with CET" is mainly that: the JIT don't know the its caller program is CET enable or not.
If JIT's caller program is non-CET, it is no problem JIT generate CET code or not.
But if JIT's caller program is CET enabled, JIT must generate CET code or it will cause Control protection exceptions.
I have test the patch at llvm-unit-test and llvm-test-suite at CET machine. It passed.
and H.J. also test it at building and running VNCserver(Virtual Network Console), it works too.
(if not apply this patch, VNCserver will crash at CET machine.)
Reviewers: hjl.tools, craig.topper, LuoYuanke, annita.zhang, pengfei
Reviewed By: LuoYuanke
Subscribers: tstellar, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76900
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
In lieu of a proper pass that strips debug info, add a way
to omit debug-locations from the MIR output so that
instructions with MMO's continue to match CHECK's when
mir-debugify is used
Reviewers: aprantl, bogner, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77575
Summary:
Thanks to Bill Wendling (void) for the report and steps to reproduce. It looks
like this was missed during r350508's cleanup of the CallSite split into
CallBase, CallInst, and CallBrInst.
This was exposed by running pgo on a callbr, which was creating a ptrtoint to
the inline asm thinking it was an indirect call. The relevant callchain looks
like:
IndirectCallPromotionPlugin::run()
-> PGOIndirectCallVisitor::findIndirectCalls()
-> PGOIndirectCallVisitor::visitCallBase()
-> CallBase::isIndirectCall()
Reviewers: void, chandlerc
Reviewed By: void
Subscribers: hiraditya, llvm-commits, craig.topper, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77600
Summary:
In some cases, ASan may insert instrumentation before function arguments
have been stored into their allocas. This causes two issues:
1) The argument value must be spilled until it can be stored into the
reserved alloca, wasting a stack slot.
2) Until the store occurs in a later basic block, the debug location
will point to the wrong frame offset, and backtraces will show an
uninitialized value.
The proposed solution is to move instructions which initialize allocas
for arguments up into the entry block, before the position where ASan
starts inserting its instrumentation.
For the motivating test case, before the patch we see:
```
| 0033: movq %rdi, 0x68(%rbx) | | DW_TAG_formal_parameter |
| ... | | DW_AT_name ("a") |
| 00d1: movq 0x68(%rbx), %rsi | | DW_AT_location (RBX+0x90) |
| 00d5: movq %rsi, 0x90(%rbx) | | ^ not correct ... |
```
and after the patch we see:
```
| 002f: movq %rdi, 0x70(%rbx) | | DW_TAG_formal_parameter |
| | | DW_AT_name ("a") |
| | | DW_AT_location (RBX+0x70) |
```
rdar://61122691
Reviewers: aprantl, eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77182
Summary:
To debugify MIR, we need to be able to create metadata and to do that, we
need a non-const Module. However, MachineFunction only had a const reference
to the Function preventing this.
Reviewers: aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77439
Summary:
It can be helpful to test behaviour w.r.t locations without having DEBUG_VALUE
around. In particular, because DEBUG_VALUE has the potential to change CodeGen
behaviour (e.g. hasOneUse() vs hasOneNonDbgUse()) while locations generally
don't.
Reviewers: aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77438
A global symbol that is defined in a comdat should not generate an alias since
call sites that would've referred to that symbol will refer to their own
independent local aliases rather than the surviving global comdat one. This
could result in something that looks like:
```
ld.lld: error: relocation refers to a discarded section: .text._ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> defined in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.file.cc.o)
>>> section group signature: _ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> prevailing definition is in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.vnode.cc.o)
>>> referenced by function.h:169 (../../zircon/system/ulib/fbl/include/fbl/function.h:169)
>>> minfs._sources.file.cc.o:(minfs::File::AllocateAndCommitData(std::__2::unique_ptr<minfs::Transaction, std::__2::default_delete<minfs::Transaction> >)) in archive user-x64-clang/obj/system/ulib/minfs/libminfs.a
```
We ran into this when experimenting with a new C++ ABI for fuchsia
(refer to D72959) which takes relative offsets between comdat'd functions
which is why the normal C++ user wouldn't run into this.
Differential Revision: https://reviews.llvm.org/D77429
Summary:
A bug report mentioned that LLVM was producing jumps off the end of a
function when using "asm goto with outputs". Further digging pointed to
MachineBasicBlocks that had their address taken and were indirect
targets of INLINEASM_BR being removed by BranchFolder, because their
predecessor list was empty, so they appeared to have no entry.
This was a cascading failure caused earlier, during Pre-RA instruction
scheduling. We have a few special cases in Pre-RA instruction scheduling
where we split a MachineBasicBlock in two. This requires careful
handing of predecessor and successor lists for a MachineBasicBlock that
was split, and careful handing of PHI MachineInstrs that referred to the
MachineBasicBlock before it was split.
The clue that led to this fix was the observation that many callers of
MachineBasicBlock::splice() frequently call
MachineBasicBlock::transferSuccessorsAndUpdatePHIs() to update their PHI
nodes after a splice. We don't want to reuse that method, as we have
custom successor transferring logic for this block split.
This patch fixes 2 pre-existing bugs, and adds tests.
The first bug was that MachineBasicBlock::splice() correctly handles
updating most successors and predecessors; we don't need to do anything
more than removing the previous fallthrough block from the first half of
the split block post splice. Previously, we were updating the successor
list incorrectly (updating successors updates predecessors).
The second bug was that PHI nodes that needed registers from the first
half of the split block were not having entries populated. The register
live out information was correct, and the FuncInfo->PHINodesToUpdate was
correct. Specifically, the check in SelectionDAGISel::FinishBasicBlock:
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
continue;
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
was `continue`ing because FuncInfo->MBB tracks the second half of
the post-split block; no one was updating PHI entries for the first half
of the post-split block.
SelectionDAGBuilder::UpdateSplitBlock() already expects to perform
special handling for MachineBasicBlocks that were split post calls to
ScheduleDAGSDNodes::EmitSchedule(), so I'm confident that it's both
correct for ScheduleDAGSDNodes::EmitSchedule() to return the second half
of the split block `CopyBB` which updates `FuncInfo->MBB` (ie. the
current MachineBasicBlock being processed), and perform special handling
for this in SelectionDAGBuilder::UpdateSplitBlock().
Reviewers: void, craig.topper, efriedma
Reviewed By: void, efriedma
Subscribers: hfinkel, fhahn, MatzeB, efriedma, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76961
The extracts from control flow intrinsics are already properly handled
by divergence analysis. The inline asm case isn't dead, but has also
never really worked correctly so leave it as-is for now.
This pass is created in d6de5f12d4 and tested
for new and legacy pass manager but never added to new pass manager pipeline.
I am adding it to new pass manager pipeline.
This pass is get used in Vector Function Database (VFDatabase) and without
this pass in new pass manager pipeline, none of the vector libraries are work
ing with new pass manager.
Related passes:
66c120f025https://reviews.llvm.org/D74944
Differential revision: https://reviews.llvm.org/D75354
The previous code used the type of the first field for the VT
passed to getNode for every field.
I've based the implementation here off what is done in visitSelect
as it removes the need to special case aggregates.
Differential Revision: https://reviews.llvm.org/D77093
The patch introduces the system to distinctively store the information
needed for the Control Flow Graph as well as the instrumentary needed for
the follow-up changes: BlockFrequencyInfo and BranchProbabilityInfo.
The patch is a part of sequence of three patches, related to graphs Heat Coloring.
Reviewers: rcorcs, apilipenko, davidxl, sfertile, fedor.sergeev, eraman, bollu
Differential Revision: https://reviews.llvm.org/D76820
So that constant expressions like the following are permitted:
and w0, w0, #~(0xfe<<24)
and w1, w1, #~(0xff<<24)
The behavior matches GNU as (opcodes/aarch64-opc.c:aarch64_logical_immediate_p).
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D75885
When entering a basic block, RDA inserts reaching definitions coming
from predecessor blocks (which will be negative numbers) in a rather
peculiar way. If you have incoming reaching definitions -4, -3, -2, -1,
it will insert those. If you have incoming reaching definitions
-1, -2, -3, -4, it will insert -1, -1, -1, -1, as the max is taken
at each step. That's probably not what was intended...
However, RDA only actually cares about the most recent reaching
definition from a predecessor (to calculate clearance), so this
ends up working fine as far as behavior is concerned. It does
waste memory on unnecessary reaching definitions though.
This patch changes the implementation to first compute the most
recent reaching definition in one loop, and then insert only that
one in a separate loop.
Differential Revision: https://reviews.llvm.org/D77508
At the end of a basic block, RDA adjusts all the reaching defs it
found to be relative to the end of the basic block, rather than the
start of it. However, it also does this to registers which don't
have a reaching def, indicated by ReachingDefDefaultVal. This means
that code checking against ReachingDefDefaultVal will not skip them,
and may insert them into the reaching definition list. This is
ultimately harmless, but causes unnecessary work and is logically
not right.
Differential Revision: https://reviews.llvm.org/D77506
The cmyk test is based on the known regression that resulted from:
rGf2fbdf76d8d0
This improves on the equivalent signed min/max change:
rG867f0c3c4d8c
The underlying icmp equivalence is:
~X pred ~Y --> Y pred X
For an icmp with constant, canonicalization results in a swapped pred:
~X < C --> X > ~C
This patch moves calls to their own recipe, to simplify the transition
to VPUser for operands of VPWidenRecipe, as discussed in D76992.
Subsequently additional information can be added to the recipe rather
than computing it during the execute step.
Reviewers: rengolin, Ayal, gilr, hsaito
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D77467
Summary:
In D77454 we explain that `LoadInst` and `StoreInst` always have their alignment defined.
This allows to work backward here and to infer that `getNewAlignment` does not need to return `0` in case of failure.
Returning `1` also works since it needs to be greater than the Load/Store alignment which is a least `1`.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77538
SUMMARY:
For the llvm-objdump -D, the symbol name is used as a label in the disassembly for the specific address (when a symbol address is equal to the virtual address in the dump).
In XCOFF, multiple symbols may have the same name, being differentiated by their storage mapping class. It is helpful to print the QualName and not just the name when forming the output label for a csect symbol. The symbol index further removes any ambiguity caused by duplicate names.
To maintain compatibility with the binutils objdump, the XCOFF-specific --symbol-description option is added to enable the enhanced format.
Reviewers: hubert.reinterpretcast, James Henderson, Jason Liu ,daltenty
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D72973
ExecutionEngine/MCJIT/cet-code-model-lager.ll is failing on 32-bit
windows, see llvm-commits thread for fef2dab.
This reverts commit 43f031d312
and the follow-ups fef2dab100 and
6a800f6f62.
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Summary:
This patch adds the optional Error argument, and the Cursor variants to
more DataExtractor methods. The functions now behave the same way as
other error-aware functions (they set the error when they fail, and
don't do anything if the error is already set).
I have merged the LEB128 implementations via a template (similarly to
how fixed-size functions are handled) to reduce code duplication.
Depends on D77304.
Reviewers: dblaikie, aprantl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77306
Summary:
This patch adds an optional Error argument to DataExtractor functions
for string extraction, and makes them behave like other DataExtractor
functions (set the error if extraction fails, don't do anything if the
error is already set).
I have merged the StringRef and C string versions of the functions to
reduce code duplication.
Reviewers: dblaikie, MaskRay
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77307
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
Summary:
24 March 2020: LLVM 10.0.0 is out.
I gathered all deprecated function introduced between 9 and 10 and cleaned them up so they will be removed from 11.
> git log -p -S LLVM_ATTRIBUTE_DEPRECATED llvmorg-9.0.0..llvmorg-10.0.0
Reviewers: courbet
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77409
truncateVectorWithPACK has its own vector length controls, so we can rely on those directly. This helps some existing truncation to subvector tests, which were being combined later during shuffle lowering at which point the sign/zero bit detection had become obscured preventing lowerShuffleWithPACK working as well as it could.
Summary:
Modify lea/load/store instructions to accept `disp(index, base)`
style addressing mode (called ASX format). Also, uniform the
number of DAG nodes to have 3 operands for this ASX format
instructions, and update selectADDR functions to lower
appropriate MI.
Reviewers: arsenm, simoll, k-ishizaka
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D76822
This patch adds a -matrix-default-layout option which can be used to
set the default matrix layout to row-major or column-major (default).
The initial patch updates codegen for loads, stores, binary operators
and matrix multiply.
Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D76325
This patch adds initial fusion for load/multiply/store chains of matrix
operations.
The patch contains roughly two parts:
1. Code generation for a fused load/multiply/store chain (LowerMatrixMultiplyFused).
First, we ensure that both loads of the multiply operands do not alias the store.
If they do, we create new non-aliasing copies of the operands. Note that this
may introduce new basic block. Finally we process TileSize x TileSize blocks.
That is: load tiles from the input operands, multiply and store them.
2. Identify fusion candidates & matrix instructions.
As a first step, collect all instructions with shape info and fusion candidates
(currently @llvm.matrix.multiply calls). Next, try to fuse candidates and
collect instructions eliminated by fusion. Finally iterate over all matrix
instructions, skip the ones eliminated by fusion and lower the rest as usual.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D75566
In package files, the base offset provided by index sections should be
used to find the contribution of a unit. The patch adds that base
offset when reading range list tables.
Differential revision: https://reviews.llvm.org/D77401
This fixes the reading of location lists headers for compilation units
in package files by adjusting the reading offset according to the
corresponding record in the unit index. This is required for
DW_FORM_loclistx to work.
Differential revision: https://reviews.llvm.org/D77146
Without the patch, all version 5 compile units in a DWP file read
location tables from the beginning of a .debug_loclists.dwo section.
The patch fixes that by adjusting the reading offset the same way as
for pre-v5 units. The section identifier to find the contribution
entry corresponds to the version of the unit.
Differential revision: https://reviews.llvm.org/D77145
DWARFv5 defines index sections in package files in a slightly different
way than the pre-standard GNU proposal, see Section 7.3.5 in the DWARF
standard and https://gcc.gnu.org/wiki/DebugFissionDWP for GNU proposal.
The main concern here is values for section identifiers, which are
partially overlapped with changed meanings. The patch adds support for
v5 index sections and resolves that difficulty by defining a set of
identifiers for internal use which can represent and distinct values
of both standards.
Differential Revision: https://reviews.llvm.org/D75929
This is a preparation for an upcoming patch which adds support for
DWARFv5 unit index sections. The patch adds tag "_EXT_" to identifiers
which reference sections that are deprecated in the DWARFv5 standard.
See D75929 for the discussion.
Differential Revision: https://reviews.llvm.org/D77141
We're ANDing with 1 right after which will cause the SIGN_EXTEND to
be combined to ANY_EXTEND later. Might as well just start with an
ANY_EXTEND.
While there replace create the AND using the getZeroExtendInReg
helper to remove the need to explicitly create the VecOnes constant.
Move the listing of allowed clauses per OpenMP directive to the new
macro file in `llvm/Frontend/OpenMP`. Also, use a single generic macro
that specifies the directive and one allowed clause explicitly instead
of a dedicated macro per directive.
We save 800 loc and boilerplate for all new directives/clauses with no
functional change. We also need to include the macro file only once and
not once per directive.
Depends on D77112.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D77113
This code is replacing a shift with a new shift on an extended type.
If the shift amount type can't represent the maximum shift amount
for the new type, the amount needs to be extended to a type that
can.
Previously, the code just hardcoded a check for 256 bits which
seems to have been an assumption that the original shift amount
was MVT::i8. But that seems more catered to a specific target
like X86 that uses i8 as its legal shift amount type. Other
targets may use different types.
This commit changes the code to look at the real type of the shift
amount and makes sure it has enough bits for the Log2 of the
new type. There are similar checks to this in SelectionDAGBuilder
and LegalizeIntegerTypes.
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Reviewed By: fghanim
Differential Revision: https://reviews.llvm.org/D77112
The new and old pass managers (PassManagerBuilder.cpp and
PassBuilder.cpp) are exposed to an `extern` declaration of
`attributor-disable` option which will guard the addition of the
attributor passes to the pass pipelines.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76871
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.
The LLI tool is updated to use this overload.
We had previously limited the shuffle(HORIZOP,HORIZOP) combine to binary shuffles, but we can often merge unary shuffles just as well, folding in UNDEF/ZERO values into the 64-bit half lanes.
For the (P)HADD/HSUB cases this is limited to fast-horizontal cases but PACKSS/PACKUS combines under all cases.
This patch builds upon D76140 by updating metadata on pointer typed
loads in inlined functions, when the load is the return value, and the
callsite contains return attributes which can be updated as metadata on
the load.
Added test cases show this for nonnull, dereferenceable,
dereferenceable_or_null
Reviewed-By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76792
Previously line table symbol was represented as `DIE::value_iterator`
inside `DwarfCompileUnit` and subsequent function `intStmtList`
was used to create a local `MCSymbol` to initialize it.
This patch removes `DIE::value_iterator` from `DwarfCompileUnit`
and intoduce `MCSymbol` for representing this units symbol for
`debug_line` section. As a result `applyStmtList` is also modified
to utilize this. Further more a helper function `getLineTableStartSym`
is also introduced to get this symbol, this would be used by clients
which need to access this line table, i.e `debug_macro`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77489
The newly-created constant zero will need an extra register to hold it
in the current statepoint lowering implementation. Remove it if there
exists one.
Summary:
This patch upstreams support the optional ARMv8.0 Data Gathering Hint (DGH)
extension, which adds the Data Gathering Hint instruction to the hint
space.
See ARMv8.0-DGH in the Arm Architecture Reference Manual Armv8 for more
information.
Reviewers: t.p.northover, rengolin, SjoerdMeijer, ab, danielkiss, samparker
Reviewed By: SjoerdMeijer
Subscribers: LukeGeeson, ostannard, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77097
Summary:
This patch upstreams support for the ARMv8.6A Enhanced Counter Virtualization
(ECV) extension, which adds 6 new system registers.
See ARMv8.6-ECV in the Arm Architecture Reference Manual Armv8 for more
information.
Reviewers: t.p.northover, rengolin, SjoerdMeijer, pcc, ab, chill
Reviewed By: SjoerdMeijer
Subscribers: LukeGeeson, ostannard, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77094
As discussed in D76983, that patch can turn a chain of insert/extract
with scalar trunc ops into bitcast+extract and existing instcombine
vector transforms end up creating a shuffle out of that (see the
PhaseOrdering test for an example). Currently, that process requires
at least this sequence: -instcombine -early-cse -instcombine.
Before D76983, the sequence of insert/extract would reach the SLP
vectorizer and become a vector trunc there.
Based on a small sampling of public targets/types, converting the
shuffle to a trunc is better for codegen in most cases (and a
regression of that form is the reason this was noticed). The trunc is
clearly better for IR-level analysis as well.
This means that we can induce "spontaneous vectorization" without
invoking any explicit vectorizer passes (at least a vector cast op
may be created out of scalar casts), but that seems to be the right
choice given that we started with a chain of insert/extract, and the
backend would expand back to that chain if a target does not support
the op.
Differential Revision: https://reviews.llvm.org/D77299
Summary:
This patch upstreams support for the ARMv8.6A Fine Grain Traps (FGT)
extension, which adds 5 new system registers.
See ARMv8.6-FGT in the Arm Architecture Reference Manual Armv8 for more
information.
Reviewers: t.p.northover, rengolin, SjoerdMeijer, ab, momchil.velikov
Reviewed By: SjoerdMeijer
Subscribers: LukeGeeson, ostannard, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76991
The cmyk tests are based on the known regression that resulted from:
rGf2fbdf76d8d0
So this improvement in analysis might be enough to restore that commit.
Summary:
This patch upstreams v8.6A activity monitors virtualization
assembler support, which consists of 32 new system
registers (two groups, each with 16 numbered registers).
See ARMv8.6-AMU in the Arm Architecture Reference Manual Armv8 for more
information.
Reviewers: t.p.northover, rengolin, SjoerdMeijer, ab, john.brawn, ostannard
Reviewed By: ostannard
Subscribers: LukeGeeson, dnsampaio, ostannard, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76998
D51664 added Instruction::comesBefore which should provide better
performance than the manual check.
Reviewers: rnk, nikic, spatel
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D76228
Our existing combine allows to merge the shuffle of 2 similar 64-bit wide 'horizontal ops' (HADD/PACK/etc.) if the shuffle was a UNPCK/MOVSD.
This patch generalizes this to decode any target shuffle mask that can be widened to a 128-bit repeating v2*64 mask, which helps us catch PBLENDW/PBLENDD cases.
If we're packing from 128-bits to 64-bits then we don't need the RHS argument. This helps with register allocation, especially as we avoid repeating a use of the input value.
Query AAValueSimplify on pointers in memory accessing instructions to take
advantage of the constant propagation (or any other value simplification) of such values.
After 49d00824bb, VPWidenRecipe only stores a single instruction.
tryToWiden can simply return the widen recipe, like other helpers in
VPRecipeBuilder.
Summary:
D77423 started using a dominator tree in WasmEHPrepare, but we deleted
BBs in `prepareThrows` before we used the domtree in `prepareEHPads`,
and those CFG changes were not reflected in the domtree. This uses
`DomTreeUpdater` to make sure we update the domtree every time we delete
BBs from the CFG. This fixes ubsan/msan/expensive_check errors caught in
LLVM buildbots.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77465
eraseInstFromFunction() adds the operands of the erased instructions,
as those might now be dead as well. However, this is limited to
instructions with less than 8 operands.
This check doesn't make a lot of sense to me. As the instruction
gets removed afterwards, I don't see a potential for anything
overly pathological happening here (as we can only add those
operands to the worklist once). The impact on CTMark is in
the noise. We also have the same code in instruction sinking
and don't limit the operand count there.
Differential Revision: https://reviews.llvm.org/D77325
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.
There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)
There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
foo();
} catch (int) {
// wasm.lsda() call and a store are inserted here, like, in
// pseudocode,
// %lsda = wasm.lsda();
// store %lsda to a field in __wasm_lpad_context
try {
foo();
} catch (int) {
// We don't need to insert the wasm.lsda() and store again, because
// to arrive here, we have already stored the LSDA address to
// __wasm_lpad_context in the outer catch.
}
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.
But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
foo();
} catch (...) {
// wasm.lsda() call and a store are NOT inserted here
try {
foo();
} catch (int) {
// We need wasm.lsda() here!
}
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.
To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.
We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.
- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
means we don't need `wasm.lsda()` in the current EH pad. We also insert
the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
- If the current EH pad is a `catch (...)` or a cleanuppad, done.
- If the current EH pad is neither a `catch (...)` nor a cleanuppad,
add `wasm.lsda()` and the store in the current EH pad, and add the
current EH pad to `ExecutedLSDA` set.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77423
Similar to the lowerV16I8Shuffle implementation, for binary compaction v8i16 shuffles we can avoid the PUNPCKLDQ(PSHUFB,PSHUFB) pattern on SSE41+ targets by using PACKUSDW and PBLENDW. Before SSE41 we would need to use PACKSSDW but that requires sign extension that seems to destroy any gains, even on targets without PSHUFB.
This is a bigger gain on AMD than Intel targets but should never be a regression, and avoiding the shuffle mask load(s) is always useful.
Noticed in codegen while dealing with PR31443.
Since D73835 we no longer need to define the whole IRBuilder
implementation in the header. This patch moves some of the larger
methods out of line, into the C++ file.
Differential Revision: https://reviews.llvm.org/D77332
Forward declare DemandedBits in IVDescriptors, and move include
into the cpp file. Also drop the include from LoopUtils, which
does not need it at all.
After finding all such gadgets in a given function, the pass minimally inserts
LFENCE instructions in such a manner that the following property is satisfied:
for all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
least one LFENCE instruction. The algorithm that implements this minimal
insertion is influenced by an academic paper that minimally inserts memory
fences for high-performance concurrent programs:
http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
The algorithm implemented in this pass is as follows:
1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the following components:
-SOURCE instructions (also includes function arguments)
-SINK instructions
-Basic block entry points
-Basic block terminators
-LFENCE instructions
2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e., gadgets) are already mitigated by existing LFENCEs. If all gadgets have been mitigated, go to step 6.
3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
4. Insert one LFENCE along each CFG edge that was cut in step 3.
5. Go to step 2.
6. If any LFENCEs were inserted, return true from runOnFunction() to tell LLVM that the function was modified.
By default, the heuristic used in Step 3 is a greedy heuristic that avoids
inserting LFENCEs into loops unless absolutely necessary. There is also a
CLI option to load a plugin that can provide even better optimization,
inserting fewer fences, while still mitigating all of the LVI gadgets.
The plugin can be found here: https://github.com/intel/lvi-llvm-optimization-plugin,
and a description of the pass's behavior with the plugin can be found here:
https://software.intel.com/security-software-guidance/insights/optimized-mitigation-approach-load-value-injection.
Differential Revision: https://reviews.llvm.org/D75937
Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.
More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).
Also adds a new target feature to X86: +lvi-load-hardening
The feature can be added via the clang CLI using -mlvi-hardening.
Differential Revision: https://reviews.llvm.org/D75936
Summary:
This patch includes two extensions:
1. It extends the GraphDiff to also keep the original list of updates
after legalization, not just the deletes/insert vectors.
It also provides an API to pop the first update (the updates are store
in reverse, such that the first update is at the end of the list)
2. It adds a bool to mark whether the given updates should be applied as
given, or applied in reverse. This moves the task of reversing the
updates (when the caller needs this) to a functionality inside
GraphDiff, versus having the caller do this.
The two changes could be split into two patches, but they seemed
reasonably small to be reviewed together.
Reviewers: kuhar, dblaikie
Subscribers: hiraditya, george.burgess.iv, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77167
Adding a pass that replaces every ret instruction with the sequence:
pop <scratch-reg>
lfence
jmp *<scratch-reg>
where <scratch-reg> is some available scratch register, according to the
calling convention of the function being mitigated.
Differential Revision: https://reviews.llvm.org/D75935
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: kparzysz, sdesmalen, efriedma
Reviewed By: kparzysz
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77267
We can fix register class of PHI based on its all AGPR uses.
That leaves behind all PHIs which were already processed
earlier. Propagate RC back to PHI operands of a PHI.
Differential Revision: https://reviews.llvm.org/D77344
As detailed on PR45043, static analysis was warning that the StringRef::iterator Position argument was being ignored and the function was hardwired to use the Current iterator.
This patch ensures we use the provided iterator and removes the (barely necessary) setError wrapper that always used Current.
Differential Revision: https://reviews.llvm.org/D76512
Extracting to the same index that we are going to insert back into
allows forming select ("blend") shuffles and enables further transforms.
Admittedly, this is a quick-fix for a more general problem that I'm
hoping to solve by adding transforms for patterns that start with an
insertelement.
But this might resolve some regressions known to be caused by the
extract-extract transform (although I have not gotten more details on
those yet).
In the motivating case from PR34724:
https://bugs.llvm.org/show_bug.cgi?id=34724
The combination of subsequent instcombine and codegen transforms gets us this improvement:
vmovshdup %xmm0, %xmm2 ## xmm2 = xmm0[1,1,3,3]
vhaddps %xmm1, %xmm1, %xmm4
vmovshdup %xmm1, %xmm3 ## xmm3 = xmm1[1,1,3,3]
vaddps %xmm0, %xmm2, %xmm0
vaddps %xmm1, %xmm3, %xmm1
vshufps $200, %xmm4, %xmm0, %xmm0 ## xmm0 = xmm0[0,2],xmm4[0,3]
vinsertps $177, %xmm1, %xmm0, %xmm0 ## xmm0 = zero,xmm0[1,2],xmm1[2]
-->
vmovshdup %xmm0, %xmm2 ## xmm2 = xmm0[1,1,3,3]
vhaddps %xmm1, %xmm1, %xmm1
vaddps %xmm0, %xmm2, %xmm0
vshufps $200, %xmm1, %xmm0, %xmm0 ## xmm0 = xmm0[0,2],xmm1[0,3]
Differential Revision: https://reviews.llvm.org/D76623
Added unit tests for 2 scenarios that were failing.
Made replace_path_prefix back to 3 parameters instead of 5, simplifying the implementation. The other 2 were always used with the default value.
This commit is intended to be the first of 3:
1) simplify/fix replace_path_prefix.
2) use it in the context of -fdebug-prefix-map and -fmacro-prefix-map (see D76869).
3) Make Windows version of replace_path_prefix insensitive to both case and separators (slash vs backslash).
Differential Revision: https://reviews.llvm.org/D77223
Extend lowerShuffleWithPACK/matchShuffleWithPACK/createPackShuffleMask to handle compaction style shuffle masks that can be lowered to chains of PACKSS/PACKUS if their inputs are suitably sign/zero extended.
This helps avoid PSHUFB (and its mask load) for short shuffle chains, shuffle combining will still replace with a PSHUFB if we have enough shuffles as getFauxShuffleMask should recognise the PACKSS/PACKUS chains.
As discussed in post-commit review in https://reviews.llvm.org/D73501
if the goal of this is to help vectorizer, then we should actually
be teaching vectorizer to do this, because right now this rewrite
is still budget-limited, which isn't what we'd want.
Additionally, while the rest of the patch series was universally profitable,
this particular patch is reportedly (https://reviews.llvm.org/D73501#1905171)
exposing cost-modeling issues on ARM.
So let's just back this particular patch out. Once there's an undo transform,
this could be considered for reintegration.
This reverts commit 44edc6fd2c.
Currently when the target is big-endian vmov.i64 reverses the order of the two
words of the vector. This is correct only when the underlying element type is
32-bit, as actually what it should be doing is considering it a vector of the
underlying type and reversing the elements of that.
Differential Revision: https://reviews.llvm.org/D76515
If we have an element-wise vmov immediate instruction then a subsequent vrev
with width greater or equal to the vmov element width, then that vrev won't do
anything. Add a DAG combine to convert bitcasts that would become such vrevs
into vector_reg_casts instead.
Differential Revision: https://reviews.llvm.org/D76514
Summary:
For current architect, we always require setContainingCsect to be
called on every MCSymbol got used in XCOFF context.
This is very hard to achieve because symbols gets created everywhere
and other MCSymbol types(ELF, COFF) do not have similar rules.
It's very easy to miss setting the containing csect, and we would
need to add a lot of XCOFF specialized code around some common code area.
This patch intendeds to do
1. Rely on getFragment().getParent() to get csect from labels.
2. Only use get/setRepresentedCsect (was get/setContainingCsect)
if symbol itself represents a csect.
Reviewers: DiggerLin, hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D77080
Summary: I think it would be better to require the alignment to be >= 1. It is currently confusing to allow both values.
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77372
This pass replaces each indirect call/jump with a direct call to a thunk that looks like:
lfence
jmpq *%r11
This ensures that if the value in register %r11 was loaded from memory, then
the value in %r11 is (architecturally) correct prior to the jump.
Also adds a new target feature to X86: +lvi-cfi
("cfi" meaning control-flow integrity)
The feature can be added via clang CLI using -mlvi-cfi.
This is an alternate implementation to https://reviews.llvm.org/D75934 That merges the thunk insertion functionality with the existing X86 retpoline code.
Differential Revision: https://reviews.llvm.org/D76812
The old name was a bit misleading because the functions actually return
contributions to the corresponding sections.
Differential revision: https://reviews.llvm.org/D77302
Summary:
This patch adds parsing and dumping DWARFv5 .debug_macro section in llvm-dwarfdump,
it does not introduce any new switch. Existing switch "--debug-macro"
should be used to dump macinfo or macro section.
Reviewed By: dblaikie, ikudrin, jhenderson
Differential Revision: https://reviews.llvm.org/D73086
isGCValue should detect whether the deopt value is a GC pointer.
Currently it checks by finding the value in SI.Bases and SI.Ptrs.
However these data structures contain only those values which
have corresponding gc.relocate call. So we can miss GC value if it
does not have gc.relocate call (dead after the call).
Check GC strategy whether pointer is GC one or consider any pointer
to be GC one conservatively.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77130
Summary:
A recent change in the instruction simplifier enables a call to a function that just returns one of its parameter to be simplified as simply loading the parameter. This exposes a bug in the inliner where double inlining may be involved which in turn may cause compiler ICE when an already-inlined callsite is reused for further inlining.
To put it simply, in the following-like C program, when the function call second(t) is inlined, its code t = third(t) will be reduced to just loading the return value of the callsite first(). This causes the inliner internal data structure to register the first() callsite for the call edge representing the third() call, therefore incurs a double inlining when both call edges are considered an inline candidate. I'm making a fix to break the inliner from reusing a callsite for new call edges.
```
void top()
{
int t = first();
second(t);
}
void second(int t)
{
t = third(t);
fourth(t);
}
void third(int t)
{
return t;
}
```
The actual failing case is much trickier than the example here and is only reproducible with the legacy inliner. The way the legacy inliner works is to process each SCC in a bottom-up order. That means in reality function first may be already inlined into top, or function third is either inlined to second or is folded into nothing. To repro the failure seen from building a large application, we need to figure out a way to confuse the inliner so that the bottom-up inlining is not fulfilled. I'm doing this by making the second call indirect so that the alias analyzer fails to figure out the right call graph edge from top to second and top can be processed before second during the bottom-up. We also need to tweak the test code so that when the inlining of top happens, the function body of second is not that optimized, by delaying the pass of function attribute deducer (i.e, which tells function third has no side effect and just returns its parameter). Since the CGSCC pass is iterative, additional calls are added to top to postpone the inlining of second to the second round right after the first function attribute deducing pass is done. I haven't been able to repro the failure with the new pass manager since the processing order of ininlined callsites is a bit different, but in theory the issue could happen there too.
Note that this fix could introduce a side effect that blocks the simplification of inlined code, specifically for a call site that can be folded to another call site. I hope this can probably be complemented by subsequent inlining or folding, as shown in the attached unit test. The ideal fix should be to separate the use of VMap. However, in reality this failing pattern shouldn't happen often. And even if it happens, there should be a good chance that the non-folded call site will be refolded by iterative inlining or subsequent simplification.
Reviewers: wenlei, davidxl, tejohnson
Reviewed By: wenlei, davidxl
Subscribers: eraman, nikic, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76248
Summary:
This patch comes from H.J.'s 2bd54ce7fa
**This patch fix the failed llvm unit tests which running on CET machine. **(e.g. ExecutionEngine/MCJIT/MCJITTests)
The reason we enable IBT at "JIT compiled with CET" is mainly that: the JIT don't know the its caller program is CET enable or not.
If JIT's caller program is non-CET, it is no problem JIT generate CET code or not.
But if JIT's caller program is CET enabled, JIT must generate CET code or it will cause Control protection exceptions.
I have test the patch at llvm-unit-test and llvm-test-suite at CET machine. It passed.
and H.J. also test it at building and running VNCserver(Virtual Network Console), it works too.
(if not apply this patch, VNCserver will crash at CET machine.)
Reviewers: hjl.tools, craig.topper, LuoYuanke, annita.zhang, pengfei
Subscribers: tstellar, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76900
This was causing a machine verifier failure on the test suite.
Make sure that we don't end up with a weird register class here.
Failure for reference:
*** Bad machine code: Illegal virtual register for instruction ***
- function: check_constrain
- basic block: %bb.1 (0x7f8b70839f80)
- instruction: early-clobber %6:gpr64, early-clobber %7:gpr64sp =
JumpTableDest32 %5:gpr64, %1:gpr64sp, %jump-table.0
- operand 3: %1:gpr64sp
Expected a GPR64 register, but got a GPR64sp register
Differential Revision: https://reviews.llvm.org/D77349
MI peephole will remove unnecessary FRSP instructions. This patch
removes such unnecessary XSRSP.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D77208
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
Summary:
[llvm][TextAPI] adding inlining reexported libraries support
* this patch adds reader/writer support for MachO tbd files.
The usecase is to represent reexported libraries in top level library
that won't need to exist for linker indirection because all of the
needed content will be inlined in the same document.
Reviewers: ributzka, steven_wu, jhenderson
Reviewed By: ributzka
Subscribers: JDevlieghere, hiraditya, mgrang, dexonsmith, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67646
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate valid attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
Also, this is valid only for attributes which are a property of a
callsite and not those that are not dependent on the ABI, or a property
of the call itself.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
This is a workaround for clang adding noinline to all functions at
-O0. Previously, we would just add alwaysinline, and the verifier
would complain about having both noinline and alwaysinline. We
currently can't truly codegen this case as a freestanding function, so
override the user forcing noinline.
bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
We do not attempt this in InstCombine because we do not want to change
types and create new shuffle ops that are potentially not lowered as
well as the original code. Here, we can check the cost model to see if
it is worthwhile.
I've aggressively enabled this transform even if the types are the same
size and/or equal cost because moving the bitcast allows InstCombine to
make further simplifications.
In the motivating cases from PR35454:
https://bugs.llvm.org/show_bug.cgi?id=35454
...this is enough to let instcombine and the backend eliminate the
redundant shuffles, but we probably want to extend VectorCombine to
handle the inverse pattern (shuffle-of-bitcast) to get that
simplification directly in IR.
Differential Revision: https://reviews.llvm.org/D76727
SILoadStoreOptimizer::checkAndPrepareMerge() expects base and
paired instruction to come in order and scans MBB from base to
the paired instruction. An original order can be changed if
there were a dependent instruction in between and base instruction
was moved.
Fixed by bailing the optimization. In theory it might be possible
still to perform a merge by swapping instructions, but on practice
it bails anyway because it finds dependency on that same instruction
which has resulted in the base move.
Differential Revision: https://reviews.llvm.org/D77245
These are versions of a function that regressed with:
rGf2fbdf76d8d0
That particular problem occurs with an instcombine-simplifycfg-instcombine
sequence, but we can show that it exists within instcombine only with
other variations of the pattern.
This does not change much in code generation, but in rare cases MachineCSE
can figure out that an instruction is redundant after commuting it.
Review: Ulrich Weigand
This reverts commit f2fbdf76d8.
As noted in the post-commit thread:
https://reviews.llvm.org/rGf2fbdf76d8d0
...this can obscure a min/max pattern where the components
have extra uses. We can show that the problem is independent
of this change with a slightly modified source example, so
this revert just delays/reduces the need to fix the real
problem.
We need to improve our analysis of negation or -- more
generally -- subtraction using patches like D77230 or D68408.
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
This patch adds
- New arguments to getMinPrefetchStride() to let the target decide on a
per-loop basis if software prefetching should be done even with a stride
within the limit of the hw prefetcher.
- New TTI hook enableWritePrefetching() to let a target do write prefetching
by default (defaults to false).
- In LoopDataPrefetch:
- A search through the whole loop to gather information before emitting any
prefetches. This way the target can get information via new arguments to
getMinPrefetchStride() and emit prefetches more selectively. Collected
information includes: Does the loop have a call, how many memory
accesses, how many of them are strided, how many prefetches will cover
them. This is NFC to before as long as the target does not change its
definition of getMinPrefetchStride().
- If a previous access to the same exact address was 'read', and the
current one is 'write', make it a 'write' prefetch.
- If two accesses that are covered by the same prefetch do not dominate
each other, put the prefetch in a block that dominates both of them.
- If a ConstantMaxTripCount is less than ItersAhead, then skip the loop.
- A SystemZ implementation of getMinPrefetchStride().
Review: Ulrich Weigand, Michael Kruse
Differential Revision: https://reviews.llvm.org/D70228
This adds MVE vmull patterns, which are conceptually the same as
mul(vmovl, vmovl), and so the tablegen patterns follow the same
structure.
For i8 and i16 this is simple enough, but in the i32 version the
multiply (in 64bits) is illegal, meaning we need to catch the pattern
earlier in a dag fold. Because bitcasts are involved in the zext
versions and the patterns are a little different in little and big
endian. I have only added little endian support in this patch.
Differential Revision: https://reviews.llvm.org/D76740
The unpredictable/hasSideEffects flag is usually inferred by tablegen
from whether the instruction has a tablegen pattern (and that pattern
only has a single output instruction). Now that the MVE intrinsics are
all committed and producing code, the remaining instructions still
marked as unpredictable need to be specially handled. This adds the flag
directly to instructions that need it, notably the V*MLAL instructions
and some of the MOV's.
Differential Revision: https://reviews.llvm.org/D76910
Summary:
This allows doing `memcmp(p, q, 7)` with 2 loads instead of a call to
memcmp.
This fixes part of PR45147.
Reviewers: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76133
As pointed out by @thakis, currently CallSiteSplitting bails out after
checking the first PHI node. We should check all PHI nodes, until we
find one where call site splitting is beneficial.
This patch also slightly simplifies the code using BasicBlock::phis().
Reviewers: davidxl, junbuml, thakis
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D77089
When compiling AMDGPUDisassembler.cpp in a stage 1 trunk build with
CMAKE_BUILD_TYPE=RelWithDebInfo LLVM_USE_SANITIZER=Address LiveDebugVariables
accounts for 21.5% wall clock time. This fix reduces that to 1.2% by switching
out a linked list lookup with a map lookup.
Note that the linked list is still used to group UserValues by vreg. The vreg
lookups don't cause any problems in this pathological case.
This is the same idea as D68816, which was reverted, except that it is a less
intrusive fix.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D77226
Different file formats have different naming style for the debug
sections. The method is implemented for ELF, COFF and Mach-O formats.
Differential Revision: https://reviews.llvm.org/D76276
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Differential Revision: https://reviews.llvm.org/D77112
It was added by D76591 for migration purposes (not all
printBranchOperand users have migrated to the overload with `uint64_t Address`).
Now that all have been migrated, the parameter can go away.
There was a TODO in genericValueTraversal to provide the context
instruction and due to the lack of it users that wanted one just used
something available. Unfortunately, using a fixed instruction is wrong
in the presence of PHIs so we need to update the context instruction
properly.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D76870
This cannot be triggered right now, as far as I know, but it doesn't
make sense to deduce a constant range on arguments of declarations.
Exposed during testing of AAValueSimplify extensions.
Use DL & ABI information for better alignment deduction, e.g., if a type
is accessed and the ABI specifies an alignment requirement for such an
access we can use it. This is based on a patch by @lebedev.ri and
inspired by getBaseAlign in Loads.cpp.
Depends on D76673.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D76674
If we have a must-tail call the callee and caller need to have matching
ABIs. Part of that is alignment which we might modify when we deduce
alignment of arguments of either. Since we would need to keep them in
sync, which is not as simple, we simply avoid deducing alignment for
arguments of the must-tail caller or callee.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D76673
Failure to export __cxa_atexit can lead to an attempt to import a definition
from the process itself (if __cxa_atexit is referenced from another JITDylib),
but the process definition will clash with the existing non-exported definition
to produce an unexpected DuplicateDefinitionError.
This patch fixes the immediate issue by exporting __cxa_atexit. It also fixes a
bug where atexit functions in other JITDylibs were not being run by adding a
copy of run_atexits_helper to every JITDylib.
A follow up patch will deal with the bug where definition generators are called
despite a non-exported definition being present.
We create a lot of AbstractAttributes and they live as long as
the Attributor does. It seems reasonable to allocate them via a
BumpPtrAllocator owned by the Attributor.
Reviewed By: baziotis
Differential Revision: https://reviews.llvm.org/D76589
This means the linker will be expect them be undefined at link time an
will generate imports from the `env` module rather than reporting
undefined externals.
Differential Revision: https://reviews.llvm.org/D77192
The legalizer has a tendency to lose DebugLoc's when expanding or
combining instructions. The verifier that detected these isn't ready
for upstreaming yet but this patch fixes the cases that came up when
applying it to our out-of-tree backend's CodeGen tests.
This pattern comes up a few more times in this file and probably in
the backends too but I'd prefer to fix the others separately (and
preferably when the lost-location verifier detects them).
The MemoryBuffer::getMemBuffer method's RequiresNullTerminator parameter
defaults to true, but object files are not null terminated so we need to
explicitly pass false here.
Negation is equivalent to bitwise-not + 1, so try to convert more
subtracts into adds using this relationship:
0 - (A ^ C) => ((A ^ C) ^ -1) + 1 => A ^ ~C + 1
I doubt this will recover the regression noted in rGf2fbdf76d8d0,
but seems like we're going to need to improve here and/or revive D68408?
Alive2 proofs:
http://volta.cs.utah.edu:8080/z/Re5tMUhttp://volta.cs.utah.edu:8080/z/An-uns
Differential Revision: https://reviews.llvm.org/D77230
find() was altering the UserChain, even in cases where it subsequently
discovered that the resulting constant was a 0. This confuses
rebuildWithoutConstOffset() when it attempts to walk the chain later, since it
is expected that the chain itself be a path down the use-def edges of an
expression.
Make the attributor pass aware of aligned_alloc for converting heap
allocations to stack ones.
Depends on D76971.
Differential Revision: https://reviews.llvm.org/D76974
Summary:
The previous code for determining the innermost region in CFGSort was
not correct. We determine subregion relationship by domination of their
headers, i.e., if region A's header dominates region B's header, B is a
subregion of A. Previously we assumed that if a BB belongs to both a
loop and an exception, the region with fewer number of BBs is the
innermost one. This may not be true, because while WebAssemblyException
contains BBs in all its subregions (loops or exceptions), MachineLoop
may not, because MachineLoop does not contain BBs that don't have a path
to its header even if they are dominated by its header.
Loop header <---|
| |
Exception header |
| \ |
A B |
| \ |
| C |
| |
Loop latch |
| |
-------------|
For example, in this CFG, the loop does not contain B and C, because
they don't have a path back to the loops header. But for CFGSort we
consider the exception here belongs to the loop and the exception should
be a subregion of the loop and scheduled together.
So here we should use `WE->contains(ML->getHeader())` (but not
`ML->contains(WE->getHeader())`, for the stated region above).
This also fixes some comments and deletes `Regions` vector in
`RegionInfo` class, which was not used anywere.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77181
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
First step toward making use of canLowerByDroppingEvenElements to match chains of PACKSS/PACKUS for compaction shuffles.
At the moment we still only match a single stage but the MatchPACK is now more general.
This allows the MVE VPT Block insertion pass to remove VPNOTs in
order to create more complex VPT blocks such as TE, TEET, TETE, etc.
Differential Revision: https://reviews.llvm.org/D75993
VPTMaskValue was using the "instruction" encoding to represent the masks
(= the same encoding as the one used by the instructions in an object file),
but it is only used to build MCOperands, so it should use the MCOperand
encoding of the masks, which is slightly different.
Differential Revision: https://reviews.llvm.org/D76139
Summary:
Aggregate types containing scalable vectors aren't supported and as far
as I can tell this pass is mostly concerned with optimisations on
aggregate types, so the majority of this pass isn't very useful for
scalable vectors.
This patch modifies SROA such that mem2reg is run on allocas with
scalable types that are promotable, but nothing else such as slicing is
done.
The use of TypeSize in this pass has also been updated to be explicitly
fixed size. When invoking the following methods in DataLayout:
* getTypeSizeInBits
* getTypeStoreSize
* getTypeStoreSizeInBits
* getTypeAllocSize
we now called getFixedSize on the resultant TypeSize. This is quite an
extensive change with around 50 calls to these functions, and also the
first change of this kind (being explicit about fixed vs scalable
size) as far as I'm aware, so feedback welcome.
A test is included containing IR with scalable vectors that this pass is
able to optimise.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D76720
PTEST/TESTP sets EFLAGS as:
TESTZ: ZF = (Op0 & Op1) == 0
TESTC: CF = (~Op0 & Op1) == 0
TESTNZC: ZF == 0 && CF == 0
If we are inverting the 0'th operand of a PTEST/TESTP instruction we can adjust the comparisons to correct handle the inversion implicitly.
Additionally, for "TESTZ" (ZF) cases, the allones case, PTEST(X,-1) can be simplified to PTEST(X,X).
We can expand this for the TESTZ(X,~Y) pattern and also handle KTEST/KORTEST in the future.
Differential Revision: https://reviews.llvm.org/D76984
Summary:
Make sure we do not assert on value types not being
simple in getFauxShuffleMask when analysing operations
such as "v8i16 = truncate v8i24".
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77136
Currently ConstantRange::binaryAnd/binaryOr results are too pessimistic
for single element constant ranges.
If both operands are single element ranges, we can use APInt's AND and
OR implementations directly.
Note that some other binary operations on constant ranges can cover the
single element cases naturally, but for OR and AND this unfortunately is
not the case.
Reviewers: nikic, spatel, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76446
Currently, DAG combiner uses (fmul (rsqrt x) x) to estimate square
root of x. However, this method would return NaN if x is +Inf, which
is incorrect.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76853
This patch adds checks to the verifier to ensure the dimension arguments
passed to the matrix intrinsics match the vector types for their
arugments/return values.
Reviewers: anemet, Gerolf, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D77129
getCallCost is only used within the different layers of TTI, with no
backend implementing it so fold the base implementation into
getUserCost. I think this is an NFC.
Differential Revision: https://reviews.llvm.org/D77050
Summary: These were templated due to SelectionDAG using int masks for shuffles and IR using unsigned masks for shuffles. But now that D72467 has landed we have an int mask version of IRBuilder::CreateShuffleVector. So just use int instead of a template
Reviewers: spatel, efriedma, RKSimon
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77183
Also add lowerShuffleWithPACK call to lowerV32I16Shuffle - shuffle combining was catching it but we avoid a lot of temporary shuffle creations if we catch it at lowering first.
For the downstream RISCV maintenance, it would be easier to inherent
RISCVISelDAGToDAG by including header and only override the method that needs
to be customized for the provider non-standard ISA extension without touching
RISCVISelDAGToDAG.cpp which may cause conflict when upgrading the downstream
LLVM version.
Differential Revision: https://reviews.llvm.org/D77117
Summary:
In https://bugs.llvm.org/show_bug.cgi?id=45297, it fails selecting
instructions for `PPCISD::ST_VSR_SCAL_INT`. The reason it generate the
`PPCISD::ST_VSR_SCAL_INT` with `-power8-vector` in IR is PPC's
combiner checks `hasP8Altivec` rather than `hasP8Vector`. This patch
should resolve PR45297.
Differential Revision: https://reviews.llvm.org/D76773
Summary:
Select folding in JumpThreading can create a conditional branch on a
code patch that did not have one in the original program. This is not a
valid transformation in sanitize_memory functions.
Note that JumpThreading does select folding in 3 different places. Two
of them seem safe - they apply to a select instruction in a BB that ends
with an unconditional branch to another BB, which (in turn) ends with a
conditional branch or a switch with the same condition.
Fixes PR45220.
Reviewers: glider, dvyukov, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76332
Summary:
When we encounter an XCOFF file, reflect that in the triple information.
In addition to knowing the object file format, we know that the
associated OS is AIX.
This means that we can expect that there is no output difference in the
processing of an XCOFF32 input file between cases where the triple is
left unspecified by the user and cases where the user specifies
`--triple powerpc-ibm-aix` explicitly.
Reviewers: jhenderson, sfertile, jasonliu, daltenty
Reviewed By: jasonliu
Subscribers: wuzish, nemanjai, hiraditya, MaskRay, rupprecht, steven.zhang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77025
The UnwindHelp object is used during exception handling by runtime
code. It must be findable from a fixed offset from FP.
This change allocates the UnwindHelp object as a fixed object (as is
done for x86_64) to ensure that both the generated code and runtime
agree on the location of the object.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45346
Differential Revision: https://reviews.llvm.org/D77016
The generated code for a funclet can have an add to sp in the epilogue
for which there is no corresponding sub in the prologue.
This patch removes the early return from emitPrologue that was
preventing the sub to sp, and instead conditionalizes the appropriate
parts of the rest of the function.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45345
Differential Revision: https://reviews.llvm.org/D77015
This reverts commit 28518d9ae3.
There is a failure in MsgPackReader.cpp when built with clang. It
complains about "signext and zeroext" are incompatible. Investigating
offline if it is infact a UB in the MsgPackReader code.
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
The attached test case is simplified from tcmalloc. Both function calls should be optimized as tailcall. But llvm can only optimize the first call. The second call can't be optimized because function dupRetToEnableTailCallOpts failed to duplicate ret into block case2.
There 2 problems blocked the duplication:
1 Intrinsic call llvm.assume is not handled by dupRetToEnableTailCallOpts.
2 The control flow is more complex than expected, dupRetToEnableTailCallOpts can only duplicate ret into its predecessor, but here we have an intermediate block between call and ret.
The solutions:
1 Since CodeGenPrepare is already at the end of LLVM IR phase, we can simply delete the intrinsic call to llvm.assume.
2 A general solution to the complex control flow is hard, but for this case, after exit2 is duplicated into case1, exit2 is the only successor of exit1 and exit1 is the only predecessor of exit2, so they can be combined through eliminateFallThrough. But this function is called too late, there is no more dupRetToEnableTailCallOpts after it. We can add an earlier call to eliminateFallThrough to solve it.
Differential Revision: https://reviews.llvm.org/D76539
We have loads preserving low and high 16 bits of their
destinations. However, we always use a whole 32 bit register
for these. The same happens with 16 bit stores, we have to
use full 32 bit register so if high bits are clobbered the
register needs to be copied. One example of such code is
added to the load-hi16.ll.
The proper solution to the problem is to define 16 bit subregs
and use them in the operations which do not read another half
of a VGPR or preserve it if the VGPR is written.
This patch simply defines subregisters and register classes.
At the moment there should be no difference in code generation.
A lot more work is needed to actually use these new register
classes. Therefore, there are no new tests at this time.
Register weight calculation has changed with new subregs so
appropriate changes were made to keep all calculations just
as they are now, especially calculations of register pressure.
Differential Revision: https://reviews.llvm.org/D74873
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate those attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
See added test cases.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
Registers used in any address (as well as in a few other contexts)
have special semantics when a "zero" register is used, which is
why the back-end defines extra register classes ADDR32, ADDR64 etc
to be used to prevent the register allocator from using %r0 there.
However, when writing assembler code "by hand", you sometimes need
to trigger that special semantics. However, currently the AsmParser
will reject %r0 in those places. In some cases it may be possible
to write that instruction differently - but in others it is currently
not possible at all.
This check in AsmParser simply seems overly strict, so this patch
just removes the check completely. This brings the behaviour of
AsmParser in line with the GNU assembler as well.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45092
Make InstCombine aware of the aligned_alloc library function.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Depends on D76970.
Differential Revision: https://reviews.llvm.org/D76971
Summary:
CGProfilePass is run by default in certain new pass manager optimization pipeline. Assemblers other than llvm as (such as gnu as) cannot recognize the .cgprofile entries generated and emitted from this pass, causing build time error.
This patch adds new options in clang CodeGenOpts and PassBuilder options so that we can turn cgprofile off when not using integrated assembler.
Reviewers: Bigcheese, xur, george.burgess.iv, chandlerc, manojgupta
Reviewed By: manojgupta
Subscribers: manojgupta, void, hiraditya, dexonsmith, llvm-commits, tcwang, llozano
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62627
Summary: this patch preserve information from various places in EarlyCSE into assume bundles.
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76769
--no-threads is a name copied from gold.
gold has --no-thread, --thread-count and several other --thread-count-*.
There are needs to customize the number of threads (running several lld
processes concurrently or customizing the number of LTO threads).
Having a single --threads=N is a straightforward replacement of gold's
--no-threads + --thread-count.
--no-threads is used rarely. So just delete --no-threads instead of
keeping it for compatibility for a while.
If --threads= is specified (ELF,wasm; COFF /threads: is similar),
--thinlto-jobs= defaults to --threads=,
otherwise all available hardware threads are used.
There is currently no way to override a --threads={1,2,...}. It is still
a debate whether we should use --threads=all.
Reviewed By: rnk, aganea
Differential Revision: https://reviews.llvm.org/D76885
If canLowerByDroppingEvenElements indicates that the shuffle is a N:1 compaction pattern and the inputs are suitably sign/zero extended then we can use a chain of PACKSS/PACKUS to compact.
This helps avoid PSHUFB (and its mask load) for short shuffle chains, shuffle combining will still replace with a PSHUFB if we have enough shuffles as getFauxShuffleMask can recognise PACKSS/PACKUS chains.
This patch updates ValueLattice to distinguish between ranges that are
guaranteed to not include undef and ranges that may include undef.
A constant range guaranteed to not contain undef can be used to simplify
instructions to arbitrary values. A constant range that may contain
undef can only be used to simplify to a constant. If the value can be
undef, it might take a value outside the range. For example, consider
the snipped below
define i32 @f(i32 %a, i1 %c) {
br i1 %c, label %true, label %false
true:
%a.255 = and i32 %a, 255
br label %exit
false:
br label %exit
exit:
%p = phi i32 [ %a.255, %true ], [ undef, %false ]
%f.1 = icmp eq i32 %p, 300
call void @use(i1 %f.1)
%res = and i32 %p, 255
ret i32 %res
}
In the exit block, %p would be a constant range [0, 256) including undef as
%p could be undef. We can use the range information to replace %f.1 with
false because we remove the compare, effectively forcing the use of the
constant to be != 300. We cannot replace %res with %p however, because
if %a would be undef %cond may be true but the second use might not be
< 256.
Currently LazyValueInfo uses the new behavior just when simplifying AND
instructions and does not distinguish between constant ranges with and
without undef otherwise. I think we should address the remaining issues
in LVI incrementally.
Reviewers: efriedma, reames, aqjune, jdoerfert, sstefan1
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D76931
For the PHI node
%1 = phi [%A, %entry], [%X, %latch]
it is incorrect to use SCEV of backedge val %X as an exit value
of PHI unless %X is loop invariant.
This is because exit value of %1 is value of %X at one-before-last
iteration of the loop.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D73181
Canonicalize the case when a scalar extracted from a vector is
truncated. Transform such cases to bitcast-then-extractelement.
This will enable erasing the truncate operation.
This commit fixes PR45314.
reviewers: spatel
Differential revision: https://reviews.llvm.org/D76983
Summary:
In method SelectionDAGBuilder::LowerStatepoint, array SI.GCTransitionArgs
is initialized from wrong part of ImmutableStatepoint class.
We copy gc args instead of transitions args.
Reviewers: reames, skatkov
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77075
Add a new llvm.amdgcn.ballot intrinsic modeled on the ballot function
in GLSL and other shader languages. It returns a bitfield containing the
result of its boolean argument in all active lanes, and zero in all
inactive lanes.
This is intended to replace the existing llvm.amdgcn.icmp and
llvm.amdgcn.fcmp intrinsics after a suitable transition period.
Use the new intrinsic in the atomic optimizer pass.
Differential Revision: https://reviews.llvm.org/D65088
For casts with constant range operands, we can use
ConstantRange::castOp.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71938
Leverage ARM ELF build attribute section to create ELF attribute section
for RISC-V. Extract the common part of parsing logic for this section
into ELFAttributeParser.[cpp|h] and ELFAttributes.[cpp|h].
Differential Revision: https://reviews.llvm.org/D74023
Octeon branches (bbit0/bbit032/bbit1/bbit132) have an immediate operand,
so it is legal to have such replacement within
MipsBranchExpansion::replaceBranch().
According to the specification, a branch (e.g. bbit0 ) looks like:
bbit0 rs p offset // p is an immediate operand
if !rs<p> then branch
Without this patch, an assertion triggers in the method,
and the problem has been found in the real example.
Differential Revision: https://reviews.llvm.org/D76842
In the past, AVR functions were only lowered with interrupt-specific
machine code if the function was defined with the "avr-interrupt" or
"avr-signal" calling conventions.
This patch modifies the backend so that if the function does not have a
special calling convention, but does have an "interrupt" attribute,
that function is interpreted as a function with interrupts.
This also extracts the "is this function an interrupt" logic from
several disparate places in the backend into one AVRMachineFunctionInfo
attribute.
Bug found by Wilhelm Meier.
Compbinary format uses MD5 to represent strings in name table. That gives smaller profile without the need of compression/decompression when writing/reading the profile. The patch adds the support in extbinary format. It is off by default but user can choose to enable it.
Note the feature of using MD5 in name table can bring very small chance of name conflict leading to profile mismatch. Besides, profile using the feature won't have the profile remapping support.
Differential Revision: https://reviews.llvm.org/D76255
When we have
```
a = G_OR x, x
```
or
```
b = G_AND y, y
```
We can drop the G_OR/G_AND and just use x/y respectively.
Also update arm64-fallback.ll because there was an or in there which hits this
transformation.
Differential Revision: https://reviews.llvm.org/D77105
Implement identity combines for operations like the following:
```
%a = G_SUB %b, 0
```
This can just be replaced with %b.
Over CTMark, this gives some minor size improvements at -O3.
Differential Revision: https://reviews.llvm.org/D76640
This reverts commit b3297ef051.
This change is incorrect. The current semantic of null in the IR is a
pointer with the bitvalue 0. It is not a cast from an integer 0, so
this should preserve the pointer type.
Summary:
This code was throwing away the opcode for a boolean, which was then
reconstructing the opcode from that boolean. Just pass the opcode, and
forget the boolean.
Reviewers: srhines
Reviewed By: srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77100
We currently don't have a way to map to the equivalent intrinsic
opcode, so track immediate 0s in place of the address for the
selection to know to change the final opcode.
Extend the FileCollector's API with addDirectory which adds a directory
and its contents to the VFS mapping.
Differential revision: https://reviews.llvm.org/D76671
InstCombine has a mess of logic that tries to preserve min/max patterns,
but AFAICT, this one is not necessary because we can always narrow the
corresponding select in this sequence to match the narrow compare.
The biggest danger for this patch is inducing infinite looping or
assert from exceeding max iterations. If any bots hit that in the
vicinity of this commit, this is the likely patch to blame.
Optimize the common case of splat vector constant. For large vector
going through all elements is expensive. For splatr/broadcast cases we
can skip going through all elements.
Differential Revision: https://reviews.llvm.org/D76664
Summary:
This change adds amdgcn.reloc.constant intrinsic to the amdgpu backend, which will compile into a relocation entry in the resulting elf.
The intrinsics takes a MetadataNode (String) as its only argument, which specifies the symbol name of the relocation entry.
`SelectionDAGBuilder::getValueImpl` is changed to allow metadata operands passed through to ISel.
Author: csyonghe <yonghe@google.com>
Reviewers: tpr, nhaehnle
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76440
For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.
The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".
This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.
The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.
Reviewers: madhur13490, arsenm, nhaehnle
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D75865
In InnerLoopVectorizer::getOrCreateTripCount, when the backedge taken
count is a SCEV add expression, its type is defined by the type of the
last operand of the add expression.
In the test case from PR45259, this last operand happens to be a
pointer, which (according to llvm::Type) does not have a primitive size
in bits. In this case, LoopVectorize fails to truncate the SCEV and
crashes as a result.
Uing ScalarEvolution::getTypeSizeInBits makes the truncation work as expected.
https://bugs.llvm.org/show_bug.cgi?id=45259
Differential Revision: https://reviews.llvm.org/D76669
Summary:
Otherwise PostRA list scheduler may reorder instruction, such as
schedule this
'''
pushq $0x8
pop %rbx
lea 0x2a0(%rsp),%r15
'''
to
'''
pushq $0x8
lea 0x2a0(%rsp),%r15
pop %rbx
'''
by mistake. The patch is to prevent this to happen by making sure POP has
implicit use of SP.
Reviewers: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77031
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
I still think the call lowering type legalization logic split between
the generic code and target is too confusing, but largely induced by
the reliance on the DAG infrastructure.
If we are lowering to X86ISD::SHUF128 we are going to lose track of individual 128-bit lanes that are UNDEF, so if we can widen these to guarantee that they are sequential with their neighbour we should. This helps with later shuffle combines.
This fixes
warning: loop variable 'Def' of type 'const llvm::Register' creates a copy from type 'const llvm::Register' [-Wrange-loop-analysis]
llvm::Register just contains a single unsigned and should be copied.
Reviewers: rampitec
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D77011
Add a bit more logic into the 'FalseLaneZeros' tracking to enable
horizontal reductions and also make the VADDV variants
validForTailPredication.
Differential Revision: https://reviews.llvm.org/D76708
Summary:
Also deprecate getOriginalAlignment, getAlignment will take much more time as it is pervasive through the codebase (including TableGened files).
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76933
In the original batch of MVE VMOVimm code generation VMOV.i64 was left
out due to the way it was done downstream. It turns out that it's fairly
simple though. This adds the codegen for it, similar to NEON.
Bigendian is technically incorrect in this version, which John is fixing
in a Neon patch.
In past, isGuaranteedToTransferExecutionToSuccessor contained some weird logic
for volatile loads/stores that was ultimately removed by patch D65375. It's time to
remove a piece of dependent logic that used to be a workaround for the code which
is now deleted.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D76918
As we don't return the result of replaceInstUsesWith(), we are
responsible for erasing the instruction.
There is a small subtlety here in that we need to do this after
the other uses of Builder, which uses the original multiply as
the insertion point.
NFC apart from worklist order changes.
Aligned_alloc is a standard lib function and has been in glibc since
2.16 and in the C11 standard. It has semantics similar to malloc/calloc
for several analyses/transforms. This patch introduces aligned_alloc
in target library info and memory builtins. Subsequent ones will
make other passes aware and fix https://bugs.llvm.org/show_bug.cgi?id=44062
This change will also be useful to LLVM generators that need to allocate
buffers of vector elements larger than 16 bytes (for eg. 256-bit ones),
element boundary alignment for which is not typically provided by glibc malloc.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76970
Rather than converting to a dummy select with equal true and false
ops, just directly return the resulting value.
As a side-effect, this fixes missing DCE of the previously replaced
operand.
BitVector::set_bits() returns an iterator range yielding unsinged
elements, which always will be copied while const & gives the impression
that there will be no copy. Newer version of clang complain:
warning: loop variable 'SetBitsIt' is always a copy because the range of type 'iterator_range<llvm::BitVector::const_set_bits_iterator>' (aka 'iterator_range<const_set_bits_iterator_impl<llvm::BitVector> >') does not return a reference [-Wrange-loop-analysis]
Reviewers: jdoerfert, rnk
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D77010
Usually when we replaceInstUsesWith() we also return the original
instruction, and InstCombine will take care of erasing it. Here
we don't do that, so we need to manually erase it.
NFC apart from worklist order changes.
As explained on PR40720, EXTRACTF128 is always as good/better than VPERM2F128, and we can use the implicit zeroing of the upper half.
I've added some extra tests to vector-shuffle-combining-avx2.ll to make sure we don't lose coverage.
This was an inner helper function for the real matchShuffleAsByteRotate function, but it is more generic and is used directly for VALIGN lowering which doesn't work at the byte level.
This patch changes VPWidenRecipe to only store a single original IR
instruction. This is the first required step towards modeling it's
operands as VPValues and also towards breaking it up into a
VPInstruction.
Discussed as part of D74695.
Reviewers: Ayal, gilr, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D76988
Replace the explicit isAtom() || isSLM() test with the more general (and more specific) slowTwoMemOps() check to avoid the use of the PUSHrmm push from memory case.
This is actually very tricky to test in anything but quite complex code, but the atomic-idempotent.ll tests seem to be the most straightforward to use.
Differential Revision: https://reviews.llvm.org/D76239
Summary:
On targets with different pointer sizes, -alignment-from-assumptions could attempt to create SCEV expressions which use different effective SCEV types. The provided test illustrates the issue.
In `getNewAlignment`, AASCEV would be the (only) alloca, which would have an effective SCEV type of i32. But PtrSCEV, the GEP in this case, due to being in the flat/default address space, will have an effective SCEV of i64.
This patch resolves the issue by truncating PtrSCEV to AASCEV's effective type.
Reviewers: hfinkel, jdoerfert
Reviewed By: jdoerfert
Subscribers: jvesely, nhaehnle, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75471
Dropping unreachable code may reduce use counts on other instructions,
so it's better to do this earlier rather than later.
NFC-ish, may only impact worklist order.
Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned __int128 saddr;
unsigned short lport;
};
clang will generate IR type
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.
But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.
But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.
For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
%struct.ipv6_key_t = type { i32, i128, i16 }
Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.
The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.
Differential Revision: https://reviews.llvm.org/D76587
There was already a test case for landingpads to handle this case, but I
had forgotten to consider PHI instructions preceding the EH_LABEL in the
landingpad.
PR45261
To make sure that replaced operands get DCEd. This drops one
iteration from gepphigep.ll, which is still not optimal.
This was the last test case performing more than 3 iterations.
NFC-ish, only worklist order should change.
Because this code does not use the IC-aware replaceInstUsesWith()
helper, we need to manually push users to the worklist.
This is NFC-ish, in that it may only change worklist order.
MC already knows how to emulate the .weak directive (with its ELF
semantics; i.e., an undefined weak symbol resolves to 0, and a defined
weak symbol has lower link precedence than a strong symbol of the same
name) using COFF weak externals. Plumb this through the ASM printer too,
so that definitions marked with __attribute__((weak)) at the language
level (which gets translated to weak linkage at the IR level) have the
corresponding .weak directive emitted. Note that declarations marked
with __attribute__((weak)) at the language level (which translates to
extern_weak at the IR level) already have .weak directives emitted.
Weak*/linkonce* symbols without an associated comdat (in particular, ones
generated with __attribute__((weak)) in C/C++) were earlier emitted as
normal unique globals, as the comdat is required to provide the linkonce
semantics. This change makes sure they are emitted as .weak instead,
allowing other symbols to override them.
Rename the existing coff-weak.ll test to coff-linkonce.ll. I'm not
quite sure what that test covers, since the behavior being tested in it
(the emission of a one_only section) is just a result of passing
-function-sections to llc; the linkonce_odr makes no difference.
Add a new coff-weak.ll which tests the new directive emission.
Based on an previous patch by Shoaib Meenai.
Differential Revision: https://reviews.llvm.org/D44543
The LatticeVal alias was introduced to reduce the diff size for the
transition to ValueLatticeElement, which is done now.
This patch removes the unnecessary alias and updates some very verbose
type uses with auto.
Minor update/fixes to comments for the Attributor pass, and dyn_cast -> cast.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76972
This change implements constant folding to constrained versions of
intrinsics, implementing rounding: floor, ceil, trunc, round, rint and
nearbyint.
Differential Revision: https://reviews.llvm.org/D72930
When we see this:
```
%a = COPY $physreg
...
SOMETHING implicit-def $physreg
...
%b = COPY $physreg
```
The two copies are not equivalent, and so we shouldn't perform any folding
on them.
When we have two instructions which use a physical register check that they
define the same virtual register(s) as well.
e.g., if we run into this case
```
%a = COPY $physreg
...
%b = COPY %a
```
we can say that the two copies are the same, and can be folded.
Differential Revision: https://reviews.llvm.org/D76890
Extend the FileCollector's API with addDirectory which adds a directory
and its contents to the VFS mapping.
Differential revision: https://reviews.llvm.org/D76671
Summary:
It is safe to assume that the TypeSize associated to scalar types has
a fixed size.
This avoids an implicit cast of TypeSize to integer inside
`Type::getScalarSizeInBits()`, as such implicit cast is deprecated.
Reviewers: efriedma, sdesmalen
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76892
Currently -fno-unroll-loops is ignored when doing LTO on Darwin. This
patch adds a new -lto-no-unroll-loops option to the LTO code generator
and forwards it to the linker if -fno-unroll-loops is passed.
Reviewers: thegameg, steven_wu
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D76916
The current implementation of the JSONWriter does not support writing
out directory entries. Earlier today I added a unit test to illustrate
the problem. When an entry is added to the YAMLVFSWriter and the path is
a directory, it will incorrectly emit the directory as a file, and any
files inside that directory will not be found by the VFS.
It's possible to partially work around the issue by only adding "leaf
nodes" (files) to the YAMLVFSWriter. However, this doesn't work for
representing empty directories. This is a problem for clients of the VFS
that want to iterate over a directory. The directory not being there is
not the same as the directory being empty.
This is not just a hypothetical problem. The FileCollector for example
does not differentiate between file and directory paths. I temporarily
worked around the issue for LLDB by ignoring directories, but I suspect
this will prove problematic sooner rather than later.
This patch fixes the issue by extending the JSONWriter to support
writing out directory entries. We store whether an entry should be
emitted as a file or directory.
Differential revision: https://reviews.llvm.org/D76670
Summary:
The method is used where TypeSize is implicitly cast to integer for
being checked against 0.
Reviewers: sdesmalen, efriedma
Reviewed By: sdesmalen, efriedma
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76748
Summary:
"Per CU" is a bit simplistic for gfx10, but I couldn't think of a better
name.
Reviewers: arsenm, rampitec, nhaehnle, dstuttard, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76861
Generalizes D62014 (R_386_NONE/R_X86_64_NONE).
Unlike ARM (D76746) and AArch64 (D76754), we cannot delete FK_NONE from
getFixupKindSize because FK_NONE is still used by R_386_TLS_DESC_CALL/R_X86_64_TLSDESC_CALL.
SUMMARY:
Address clang format issue:
"clang format this block, I don't think the spaces are aligned correctly."
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D76162
Having arbitrary passes looking at the TargetOptions is pretty
messy. This was also disregarding if a function already had an
explicit attribute setting on it. opt/llc now add the attributes to
functions that don't specify the attribute. clang and lld do not call
the function to do this, which they maybe should.
This was also treating unsafe-fp-math as implying the others, and
setting the other attributes based on it. This is not done anywhere
else, and I'm not sure is correct based on the current description of
the option bit.
Effectively reverts 1d8cf2be89
Make these behave the same way unsafe-fp-math and co. The command line
flag should add the attribute to functions that do not already have
it, and leave existing attributes. The attribute is the actual
implementation, but the flag is useful in some testing situations.
AMDGPU has a variety of tests with denormals enabled/disabled that
would require a painful level of test duplication without a flag. This
doesn't expose setting the separate input/output modes, or add a flag
for the f32 version yet.
Tests will be included in future patch.
Generalizes D61992. In GNU as, the .reloc directive supports arbitrary relocation types.
A MCFixupKind value `V` larger than or equal to FirstLiteralRelocationKind
is used to represent the relocation type whose number is V-FirstLiteralRelocationKind.
This is useful for linker tests. Without the feature the assembler
cannot produce certain relocation records (e.g. R_ARM_ALU_PC_G0/R_ARM_LDR_PC_G0)
This helps move forward D75349 and D76575.
Differential Revision: https://reviews.llvm.org/D76746
This flag can be used to mark a symbol as existing only for the purpose of
enabling materialization. Such a symbol can be looked up to trigger
materialization with the lookup returning only once materialization is
complete. Symbols with this flag will never resolve however (to avoid
permanently polluting the symbol table), and should only be looked up using
the SymbolLookupFlags::WeaklyReferencedSymbol flag. The primary use case for
this flag is initialization symbols.
This will cause the operation to be repeated in both a mask and another masked
or unmasked form. This can a wasted of execution resources.
Differential Revision: https://reviews.llvm.org/D60940
Summary:
Implement several XCOFF hooks to get '-r' option working for llvm-objdump -r.
Reviewer: DiggerLin, hubert.reinterpretcast, jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D75131
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
Given that some instructions generate wider result elements than
their inputs, flag them as being able to generate non zeros in the
false lanes.
Differential Revision: https://reviews.llvm.org/D76766
Before this patch, it wasn't possible to extend the ThinLTO threads to all SMT/CMT threads in the system. Only one thread per core was allowed, instructed by usage of llvm::heavyweight_hardware_concurrency() in the ThinLTO code. Any number passed to the LLD flag /opt:lldltojobs=..., or any other ThinLTO-specific flag, was previously interpreted in the context of llvm::heavyweight_hardware_concurrency(), which means SMT disabled.
One can now say in LLD:
/opt:lldltojobs=0 -- Use one std::thread / hardware core in the system (no SMT). Default value if flag not specified.
/opt:lldltojobs=N -- Limit usage to N threads, regardless of usage of heavyweight_hardware_concurrency().
/opt:lldltojobs=all -- Use all hardware threads in the system. Equivalent to /opt:lldltojobs=$(nproc) on Linux and /opt:lldltojobs=%NUMBER_OF_PROCESSORS% on Windows. When an affinity mask is set for the process, threads will be created only for the cores selected by the mask.
When N > number-of-hardware-threads-in-the-system, the threads in the thread pool will be dispatched equally on all CPU sockets (tested only on Windows).
When N <= number-of-hardware-threads-on-a-CPU-socket, the threads will remain on the CPU socket where the process started (only on Windows).
Differential Revision: https://reviews.llvm.org/D75153
Add a flag for those instructions which read from the top/bottom
halves of their inputs and produce a vector of results with double
width elements.
Differential Revision: https://reviews.llvm.org/D76762
This untangles the logic in widenIntOrFpInduction in order to make more
explicit and visible how exactly the induction variable is lowered.
Differential Revision: https://reviews.llvm.org/D76686
We might have a crash scenario when we have an invalid DT_STRTAB value
that is larger than the file size. I've added a test case to demonstrate.
Differential revision: https://reviews.llvm.org/D76706
This is the first part extracted from D71179 and cleaned up.
This patch provides parsing support for `omp begin/end declare variant`,
as defined in OpenMP technical report 8 (TR8) [0].
A major purpose of this patch is to provide proper math.h/cmath support
for OpenMP target offloading. See PR42061, PR42798, PR42799. The current
code was developed with this feature in mind, see [1].
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74941
Summary:
There is a tiny logic error of D75300, making branch is not
correctly aligned with option -x86-pad-max-prefix-size
Reviewers: reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76285
Summary: This patch is the first effort to adding basic optimizations for FREEZE in SelDag.
Reviewers: spatel, lebedev.ri
Reviewed By: spatel
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76707
Fix the LowerGlobalDtors pass to run destructors in the same order as the
regular LLVM destructor lowering -- in reverse order. Adjacent
destructors with the same associated object are grouped, but destructors
are not reordered based on associated objects.
Differential Revision: https://reviews.llvm.org/D70685
These transforms rely on a vector reduction flag on the SDNode
set by SelectionDAGBuilder. This flag exists because SelectionDAG
can't see across basic blocks so SelectionDAGBuilder is looking
across and saving the info. X86 is the only target that uses this
flag currently. By removing the X86 code we can remove the flag
and the SelectionDAGBuilder code.
This pass adds a dedicated IR pass for X86 that looks across the
blocks and transforms the IR into a form that the X86 SelectionDAG
can finish.
An advantage of this new approach is that we can enhance it to
shrink the phi nodes and final reduction tree based on the zeroes
that we need to concatenate to bring the partially reduced
reduction back up to the original width.
Differential Revision: https://reviews.llvm.org/D76649
Summary: I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76860
Summary:
These methods were identical. I chose to remove getMaxWavesPerCU because
I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76859
Having an alloca in a function causes the stack pointer to be generated in the
prolog, but if it's unused other than for debug info, explicit-locals will drop
it and not allocate a local. In this case we need to reset the FrameBaseVreg.
Differential Revision: https://reviews.llvm.org/D76784
We can improve computeKnownBits results by avoiding excess bitcasts.
For this pattern we were doing:
(v16i8 PACKUS(v8i16 BITCAST(v16i8 AND(V1, MASK)), v8i16 BITCAST(v16i8 AND(V2, MASK))))
By performing the MASK/AND with a v8i16 type and bitcasting V1/V2 directly we can help computeKnownBits see that the mask is clearing the upper bits and allows shuffle combining to peek through later on.
This will be necessary to extend rG9d1721ce3926 to AVX2+ targets in a future patch.
SUMMARY:
SUMMARY
for a source file "test.c"
void foo() {};
llc will generate assembly code as (assembly patch)
.globl foo
.globl .foo
.csect foo[DS]
foo:
.long .foo
.long TOC[TC0]
.long 0
and symbol table as (xcoff object file)
[4] m 0x00000004 .data 1 unamex foo
[5] a4 0x0000000c 0 0 SD DS 0 0
[6] m 0x00000004 .data 1 extern foo
[7] a4 0x00000004 0 0 LD DS 0 0
After first patch, the assembly will be as
.globl foo[DS] # -- Begin function foo
.globl .foo
.align 2
.csect foo[DS]
.long .foo
.long TOC[TC0]
.long 0
and symbol table will as
[6] m 0x00000004 .data 1 extern foo
[7] a4 0x00000004 0 0 DS DS 0 0
Change the code for the assembly path and xcoff objectfile patch for llc.
Reviewers: Jason Liu
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D76162
Summary:
The PC_32 DWARF register is for a 32-bit process address space which we
don't implement in AMDGCN; another way of putting this is that the size
of the PC register is not a function of the wavefront size. If we ever
implement a 32-bit process address space we will need to add two more
DwarfFlavours i.e. we will need to represent the product of (wave32,
wave64) x (64-bit address space, 32-bit address space).
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76732
Summary:
The linker is free to relax this (relocation R_PPC_GOT_TPREL16) against
R_PPC_TLS, if it sees fit (initial exec to local exec). If r0 is used,
this can generate execution-invalid code (converts to 'addi %rX, %r0,
FOO, which translates in PPC-lingo to li %rX, FOO). Forbid this
instead.
This fixes static binaries using locales on FreeBSD/powerpc
(tested on FreeBSD/powerpcspe).
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D76662
As discussed on PR31443, we should be trying to use PACKUS for binary truncation patterns to reduce the number of shuffles.
The plan is to support AVX2+ targets once we've worked around PR45315 - we fail to peek through a VBROADCAST_LOAD mask to recognise zero upper bits in a PACKUS pattern.
We should also be able to add support for v8i16 and possibly 256/512-bit vectors as well.
```
// llvm-objdump -d output (before)
0: bl .-4
4: bl .+0
8: bl .+4
// llvm-objdump -d output (after) ; GNU objdump -d
0: bl 0xfffffffc / bl 0xfffffffffffffffc
4: bl 0x4
8: bl 0xc
```
Many Operand's are not annotated as OPERAND_PCREL.
They are not affected (e.g. `b .+67108860`). I plan to fix them in future patches.
Modified test/tools/llvm-objdump/ELF/PowerPC/branch-offset.s to test
address space wraparound for powerpc32 and powerpc64.
Reviewed By: sfertile, jhenderson
Differential Revision: https://reviews.llvm.org/D76591
```
// llvm-objdump -d output (before)
400000: e8 0b 00 00 00 callq 11
400005: e8 0b 00 00 00 callq 11
// llvm-objdump -d output (after)
400000: e8 0b 00 00 00 callq 0x400010
400005: e8 0b 00 00 00 callq 0x400015
// GNU objdump -d. The lack of 0x is not ideal because the result cannot be re-assembled
400000: e8 0b 00 00 00 callq 400010
400005: e8 0b 00 00 00 callq 400015
```
In llvm-objdump, we pass the address of the next MCInst. Ideally we
should just thread the address of the current address, unfortunately we
cannot call X86MCCodeEmitter::encodeInstruction (X86MCCodeEmitter
requires MCInstrInfo and MCContext) to get the length of the MCInst.
MCInstPrinter::printInst has other callers (e.g llvm-mc -filetype=asm, llvm-mca) which set Address to 0.
They leave MCInstPrinter::PrintBranchImmAsAddress as false and this change is a no-op for them.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D76580
Follow-up of D72172 and D72180
This patch passes `uint64_t Address` to print methods of PC-relative
operands so that subsequent target specific patches can change
`*InstPrinter::print{Operand,PCRelImm,...}` to customize the output.
Add MCInstPrinter::PrintBranchImmAsAddress which is set to true by
llvm-objdump.
```
// Current llvm-objdump -d output
aarch64: 20000: bl #0
ppc: 20000: bl .+4
x86: 20000: callq 0
// Ideal output
aarch64: 20000: bl 0x20000
ppc: 20000: bl 0x20004
x86: 20000: callq 0x20005
// GNU objdump -d. The lack of 0x is not ideal because the result cannot be re-assembled
aarch64: 20000: bl 20000
ppc: 20000: bl 0x20004
x86: 20000: callq 20005
```
In `lib/Target/X86/X86GenAsmWriter1.inc` (generated by `llvm-tblgen -gen-asm-writer`):
```
case 12:
// CALL64pcrel32, CALLpcrel16, CALLpcrel32, EH_SjLj_Setup, JCXZ, JECXZ, J...
- printPCRelImm(MI, 0, O);
+ printPCRelImm(MI, Address, 0, O);
return;
```
Some targets have 2 `printOperand` overloads, one without `Address` and
one with `Address`. They should annotate derived `Operand` properly with
`let OperandType = "OPERAND_PCREL"`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D76574
Summary:
The existing helper function can only create a libcall to functions available in
RTLIB. Add a helper function that can create a libcall to a given function name
using the provided calling convention.
Reviewers: aditya_nandakumar, t.p.northover, rovka, arsenm, dsanders
Reviewed By: arsenm
Subscribers: wdng, hiraditya, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76845
In some scalarize/split result methods (unary, binary, ...), flags in
SDNode were not passed down, which may lead to unexpected results in
unsafe float-point optimization. This patch fixes them. (maybe not
complete)
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76832
As long we extract from a source vector with smaller elements and we zero-extend the element in the final shuffle mask then we can safely peek through truncations and any/zero-extensions to find the source extraction.
When Clang crashes a useful message is output:
"PLEASE submit a bug report to https://bugs.llvm.org/ and include the
crash backtrace, preprocessed source, and associated run script."
A similar message is now output for all tools.
Differential Revision: https://reviews.llvm.org/D74324
Summary:
Below InstAlias have been redefined, this patch is to remove the repeated
definition.
mtdec/mfdec mtsdr1/mfsdr1 mtsrr0/mfsrr0 mtsrr1/mfsrr1 mtasr
Reviewed By: nemanjai, steven.zhang
Differential Revision: https://reviews.llvm.org/D75821
Summary:
This patch adds initial support for the following intrinsics:
* llvm.aarch64.sve.st2
* llvm.aarch64.sve.st3
* llvm.aarch64.sve.st4
For storing two, three and four vectors worth of data. Basic codegen for
reg+immediate forms are implemented. Reg+reg addressing modes will be
addressed in a later patch.
These intrinsics are intended for use in the Arm C Language Extension
(ACLE).
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D75947
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html
In detail this patch
- march options for armv8.6-a
- BFloat16 assembly
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson
Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson
Reviewed By: SjoerdMeijer
Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D76062
Some MVE floating point instructions have gpr register variants that take
the scalar gpr value and splat them to all lanes. In order to accept
them in loops, the shuffle_vector and insert need to be sunk down into
the loop, next to the instruction so that ISel can see the whole
pattern.
This does that sinking for FAdd, FSub, FMul and FCmp. The patterns for
mul are slightly more constrained as there are no fms variants taking
register arguments.
Differential Revision: https://reviews.llvm.org/D76023
- UserParent = PN->getIncomingBlock(*I->use_begin());
+ UserParent = PN->getIncomingBlock(*SingleUse);
The first use of I may be droppable (llvm.assume).
When compiling llvm/lib/IR/AutoUpgrade.cpp with a bootstrapped clang
with ThinLTO with minimized bitcode files, I see such a case in
the function _ZN4llvm20UpgradeIntrinsicCallEPNS_8CallInstEPNS_8FunctionE
clang -c -fthinlto-index=AutoUpgrade.o.thinlto.bc AutoUpgrade.bc -O3
Unfortunately it is really difficult to get a minimized reproduce.
Previously, we would ignore alloca alignment when building the frame
and just use the natural alignment of the allocated type. If an alloca
is over-aligned for its IR type, this could lead to a frame entry with
inadequate alignment for the downstream uses of the alloca.
Since highly-aligned fields also tend to produce poor layouts under a
naive layout algorithm, I've also switched coroutine frames to use the
new optimal struct layout algorithm.
In order to communicate the frame size and alignment to later passes,
I needed to set align+dereferenceable attributes on the frame-pointer
parameter of the resume function. This is clearly the right thing to
do, but the align attribute currently seems to result in assumptions
being added during inlining that the optimizer cannot easily remove.
We can legalize the operation MUL for v8i16 with instruction (vmladduhm A, B, 0)
if altivec enabled. Now, it is set as custom and expand it later, which is not
the right way. And then, we can add the pattern to match the mul + add with (vmladduhm A, B, C)
Reviewed By: Nemanjai
Differential Revision: https://reviews.llvm.org/D76751
AMDGPUPropagateAttributes pass was skipping some of the functions
when cloning. Functions were added to root set and then skipped
on the next interation because they are already in the root set,
while were meant to be processed with different features.
Differential Revision: https://reviews.llvm.org/D76815
AMDGPUPropagateAttributes can swap names while cloning a function.
Only do it if original symbol was not externally visible.
Differential Revision: https://reviews.llvm.org/D76789
Summary:
This patch allows code-sinking in InstCombine to be performed when instruction have uses in llvm.assume.
Use are considered droppable when it is preferable to modify the User such that the use disappears rather than to prevent a transformation because of the use.
for now uses are considered droppable if they are in an llvm.assume.
Reviewers: jdoerfert, nikic, spatel, lebedev.ri, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73832
Summary:
Rename `succ_const_iterator` to `const_succ_iterator` and
`succ_const_range` to `const_succ_range` for consistency with the
predecessor iterators, and the corresponding iterators in
MachineBasicBlock.
Reviewers: nicholas, dblaikie, nlewycky
Subscribers: hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75952
Add support for combining shuffles to AVX512 truncate instructions - another step toward fixing D56387/D66004. It also fixes SKX code on PR31443.
We could probably extend this further to handle non-VLX truncation cases.
InnerLoopVectorizer's code called during VPlan execution still relies on
original IR's def-use relations to decide which vector code to generate,
limiting VPlan transformations ability to modify def-use relations and still
have ILV generate the vector code.
This commit introduces a VPValue for VPWidenMemoryInstructionRecipe to use as
the stored value. The recipe is generated with a VPValue wrapping the stored
value of the scalar store. This reduces ingredient def-use usage by ILV as a
step towards full VPlan-based def-use relations.
Differential Revision: https://reviews.llvm.org/D76373
Summary:
This patch implements the following CDE intrinsics:
T __arm_vcx1q_m(int coproc, T inactive, uint32_t imm, mve_pred_t p);
T __arm_vcx2q_m(int coproc, T inactive, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3q_m(int coproc, T inactive, U n, V m, uint32_t imm, mve_pred_t p);
T __arm_vcx1qa_m(int coproc, T acc, uint32_t imm, mve_pred_t p);
T __arm_vcx2qa_m(int coproc, T acc, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3qa_m(int coproc, T acc, U n, V m, uint32_t imm, mve_pred_t p);
The intrinsics are not part of the released ACLE spec, but internally at
Arm we have reached consensus to add them to the next ACLE release.
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76610
Move ARM ConstantIsland and LowOverheadLopps passes later in the pipeline
such that they will be run after the upcoming Machine Outlining pass.
Differential Revision: https://reviews.llvm.org/D76065
This pass can handle all the optimization
opportunities found just before code emission.
Presently it includes the handling of vcc branch
optimization that was handled earlier in SIInsertSkips.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D76712
A spilled load of an immediate can use MVHI/MVGHI instead.
A compare of a spilled register against an immediate can use CHSI/CGHSI.
A logical compare can use CLFHSI/CLGHSI.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D76055
Add a target flag for instructions that reduce into one, or more,
scalar reg(s), including variants of:
- VADDV
- VABAV
- VMINV/VMAXV
- VMLADAV
Differential Revision: https://reviews.llvm.org/D76683
to remap object file paths (but no source paths) before
processing. This is meant to be used for Clang objects where the
module cache location was remapped using ``-fdebug-prefix-map``; to
help dsymutil find the Clang module cache.
<rdar://problem/55685132>
Differential Revision: https://reviews.llvm.org/D76391
For some operations, the type is unimportant and only the number of
bits matters. For example I don't want to treat <4 x s8> as a legal
type, but I also don't want to decompose loads of this into smaller
pieces to get legal register types.
On AMDGPU in SelectionDAG, we legalize a number of operations (most
notably load and store) by coercing all types to vectors of i32. For
GlobalISel, I'm trying very hard to avoid doing this for every type,
but I don't think this strategy can be completely avoided. I'm trying
to avoid bitcasts for any legitimately legal type we can operate on,
since the intervening bitcasts have proven to be a hassle.
For loads, I think I can get away without ever casting the result
type, and handling any arbitrary bitwidth during selection (I will
eventually want new tablegen support to help with this, rather than
having to add every possible type as legal). The unmerge required to
do anything with the value should expand to the expected shifts. This
is trickier for stores, since it would now require handling a wide
array of truncates during selection which I don't want.
Future potentially interesting case are for vector indexing, where
sub-dword type should be indexed in s32 pieces.
On Darwin these need to be selected into a function call for the TLS
address lookup. As a result, they can't be moved below a physreg write,
which happens in call sequences. In the long term, we should have some
mechanism in the localizer to prevent localizing into target-specific
atomic instruction sequences.
rdar://60056248
Differential Revision: https://reviews.llvm.org/D76652
This patch integrates operand bundle llvm.assumes [0] with the
Attributor. Most IRAttributes will now look at uses of the associated
value and if there are llvm.assume operand bundle uses with the right
tag we will check if they are in the must-be-executed-context (around
the context instruction). Droppable users, which is currently only
llvm::assume, are handled special in some places now as well.
[0] http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D74888
These intrinsics take a v4i32/v4f32 input and are supposed to
broadcast elements 0 and 1. Instead the autoupgrade code was
broadcasting elements 0, 1, 2, and 3.
I could fix the autoupgrade, but since its been broken for years
it seemed better just to steer anyone still trying to use it away
completely.
This reverts commit 4e0fe038f4. Re-lands
65b21282c7.
After landing 5ff5ddd0ad to add int3 into
trailing unreachable blocks, we can now remove these extra stack
adjustments without confusing the Win64 unwinder. See
https://llvm.org/45064#c4 or X86AvoidTrailingCall.cpp for a full
explanation.
Fixes PR45064.
Record the address of a tail-calling branch instruction within its call
site entry using DW_AT_call_pc. This allows a debugger to determine the
address to use when creating aritificial frames.
This creates an extra attribute + relocation at tail call sites, which
constitute 3-5% of all call sites in xnu/clang respectively.
rdar://60307600
Differential Revision: https://reviews.llvm.org/D76336
Summary:
DivRemPairs is unsound with respect to undef values.
```
// bb1:
// %rem = srem %x, %y
// bb2:
// %div = sdiv %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// %mul = mul %div, %y
// %rem = sub %x, %mul
```
If X can be undef, X should be frozen first.
For example, let's assume that Y = 1 & X = undef:
```
%div = sdiv undef, 1 // %div = undef
%rem = srem undef, 1 // %rem = 0
=>
%div = sdiv undef, 1 // %div = undef
%mul = mul %div, 1 // %mul = undef
%rem = sub %x, %mul // %rem = undef - undef = undef
```
http://volta.cs.utah.edu:8080/z/m7Xrx5
Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
but %rem in tgt can be one of many integer values.
This resolves https://bugs.llvm.org/show_bug.cgi?id=42619 .
This miscompilation disappears if undef value is removed, but it may take a while.
DivRemPair happens pretty late during the optimization pipeline, so this optimization seemed as a good candidate to fix without major regression using freeze than other broken optimizations.
Reviewers: spatel, lebedev.ri, george.burgess.iv
Reviewed By: spatel
Subscribers: wuzish, regehr, nlopes, nemanjai, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76483
This adds a simple fold to combine VMOVrh load to a integer load.
Similar to what is already performed for BITCAST, but needs to account
for the types being of different sizes, creating an zero extending load.
Differential Revision: https://reviews.llvm.org/D76485
The current implementation collects all Preds/Succs of a Dep of kind Output, creating a long chain and subsequently a schedule with an unnecessarily large II.
Was this done on purpose for a reason I'm missing?
Reviewed By: bcahoon
Differential Revision: https://reviews.llvm.org/D75424
Summary:
The directory_count and file_name_count fields are (section 6.2.4 of
DWARF5 spec) supposed to be uleb128s, not bytes. This bug meant that it
was not possible to correctly parse headers with more than 128 files or
directories.
I've found this bug by code inspection, though the limit is so small
someone would have run into it for real sooner or later. I've verified
that the producer side handles many files correctly, and that we are
able to parse such files after this fix.
Reviewers: dblaikie, jhenderson
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76498
The initial implementation just delegates to APInt's implementation of
XOR for single element ranges and conservatively returns the full set
otherwise.
Reviewers: nikic, spatel, lebedev.ri
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D76453
We deliberately split stores of the form
store(truncate(larger-than-legal-type)) into two stores, allowing each
store to perform part of the truncate for free.
There are times however where it makes more sense to use VMOVN to
de-interlace the results back into a single vector, and store that in
one go. This adds a check for that situation, not splitting the store if
it looks like a VMOVN can be more useful.
Differential Revision: https://reviews.llvm.org/D76511
Modify ValidateLiveOuts to track 'FalseLaneZeros' more precisely,
including checks on specific operations that can generate non-zeros
from zero values, e.g VMVN. We can then check that any instructions
that retain some information in their output register (all narrowing
instructions) that they only use and def registers that always have
zeros in their falsely predicated bytes, whether or not tail
predication happens.
Most of the logic remains the same, just the names of the data
structures and helpers have been renamed to reflect the change in
logic. The key change, apart from the opcode checkers, is that the
FalseZeros set now strictly contains only instructions which will
always generate zeros, and not instructions that could also have
their false bytes masked away later.
Differential Revision: https://reviews.llvm.org/D76235
Add a flag, 'RetainsPreviousHalfElement', for operations that operate
on top/bottom halves of their input and only write to half of their
destination, leaving the other half to retain its previous value.
Differential Revision: https://reviews.llvm.org/D76608
coroutine frame
Currently we move all allocas into the frame when build coroutine frame in
CoroSplit pass. However, this can be relaxed.
Since CoroSplit pass run after Inline pass, we can use lifetime intrinsic to
do such analysis: If the scope of lifetime intrinsic is not across any suspend
point, rather than move the allocas to frame, we can just move them to entry bb
of corresponding function. This reduce the frame size.
More importantly, this also avoid data race in multithread environment.
Consider one inline function by coroutine: it starts a thread which access
local variables, while after inline the movement of allocs to frame also access
them. cause data race.
Differential Revision: https://reviews.llvm.org/D75664
PR35760 shows an example program which, when compiled with `clang -O0`
or gcc at any optimization level, prints '0'. However, llvm transforms
the program in a way that causes it to print '1'.
Fix the issue by having `AllUsesOfValueWillTrapIfNull` return false when
analyzing a load from a global which is used by an `icmp`. This special
case was untested [0] so this is just deleting dead code.
An alternative fix might be to change the GlobalStatus analysis for the
global to report "Stored" instead of "StoredOnce". However, "StoredOnce"
is appropriate when only one value other than the initializer is stored
to the global.
[0]
http://lab.llvm.org:8080/coverage/coverage-reports/coverage/Users/buildslave/jenkins/workspace/coverage/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp.html#L662
Differential Revision: https://reviews.llvm.org/D76645
The algorithm supports both assigning a fixed offset to a field prior to
layout and allowing fields to have sizes that aren't multiples of their
required alignments. This means that the well-known algorithm of sorting
by decreasing alignment isn't always good enough. Still, we start with
that, and only if that leaves padding around do we fall back on a greedy
padding-minimizing algorithm.
There is no known efficient algorithm for producing a guaranteed-minimal
layout in all cases. In fact, allowing arbitrary fixed-offset fields means
there's a straightforward reduction from bin-packing, making this NP-hard.
But as usual with such problems, we can still efficiently produce adequate
solutions to the cases that matter most to us.
I intend to use this in coroutine frame layout, where the retcon lowerings
very badly want to minimize total space usage, and where the switch lowering
can indeed produce a header with interior padding if the promise field is
highly-aligned. But it may be useful in a much wider variety of situations.
When we find something like this:
```
%a:_(s32) = G_SOMETHING ...
...
%select:_(s32) = G_SELECT %cond(s1), %a, %a
```
We can remove the select and just replace it entirely with `%a` because it's
always going to result in `%a`.
Same if we have
```
%select:_(s32) = G_SELECT %cond(s1), %a, %b
```
where we can deduce that `%a == %b`.
This implements the following cases:
- `%select:_(s32) = G_SELECT %cond(s1), %a, %a` -> `%a`
- `%select:_(s32) = G_SELECT %cond(s1), %a, %some_copy_from_a` -> `%a`
- `%select:_(s32) = G_SELECT %cond(s1), %a, %b` -> `%a` when `%a` and `%b`
are defined by identical instructions
This gives a few minor code size improvements on CTMark at -O3 for AArch64.
Differential Revision: https://reviews.llvm.org/D76523
An analysis of real world code turned up a number of patterns with BUILD_VECTOR
of nodes resulting from operations on extracted vector elements for which we
produce poor code. This addresses those cases. No attempt is made for
completeness as that would entail a large amount of work for something that
there is no evidence of in real code.
Differential revision: https://reviews.llvm.org/D72660
The e500 core has a silicon bug that triggers an illegal instruction
program trap on any sync other than msync. Other cores will typically
ignore illegal sync types, and the documentation even implies that the
'illegal' bits are ignored.
Address this hardware deficiency by only using msync, like the PPC440.
Differential Revision: https://reviews.llvm.org/D76614
Summary:
When building a large Xcode project with multiple module dependencies, and mixed Objective-C & Swift, I observed a large number of clang processes stalling at zero CPU for 30+ seconds throughout the build. This was especially prevalent on my 18-core iMac Pro.
After some sampling, the major cause appears to be the lock file implementation for precompiled modules in the module cache. When the lock is heavily contended by multiple clang processes, the exponential backoff runs in lockstep, with some of the processes sleeping for 30+ seconds in order to acquire the file lock.
In the attached patch, I implemented a more aggressive polling mechanism that limits the sleep interval to a max of 500ms, and randomizes the wait time. I preserved a limited form of exponential backoff. I also updated the code to use cross-platform timing, thread sleep, and random number capabilities available in C++11.
On iMac Pro (2.3 GHz Intel Xeon W, 18 core):
Xcode 11.1 bundled clang:
502.2 seconds (average of 5 runs)
Custom clang build with LockFileManager patch applied:
276.6 seconds (average of 5 runs)
This is a 1.82x speedup for this use case.
On MacBook Pro (4 core 3.1GHz Intel i7):
Xcode 11.1 bundled clang:
539.4 seconds (average of 2 runs)
Custom clang build with LockFileManager patch applied:
509.5 seconds (average of 2 runs)
As expected, machines with fewer cores benefit less from this change.
```
Call graph:
2992 Thread_393602 DispatchQueue_1: com.apple.main-thread (serial)
2992 start (in libdyld.dylib) + 1 [0x7fff6a1683d5]
2992 main (in clang) + 297 [0x1097a1059]
2992 driver_main(int, char const**) (in clang) + 2803 [0x1097a5513]
2992 cc1_main(llvm::ArrayRef<char const*>, char const*, void*) (in clang) + 1608 [0x1097a7cc8]
2992 clang::ExecuteCompilerInvocation(clang::CompilerInstance*) (in clang) + 3299 [0x1097dace3]
2992 clang::CompilerInstance::ExecuteAction(clang::FrontendAction&) (in clang) + 509 [0x1097dcc1d]
2992 clang::FrontendAction::Execute() (in clang) + 42 [0x109818b3a]
2992 clang::ParseAST(clang::Sema&, bool, bool) (in clang) + 185 [0x10981b369]
2992 clang::Parser::ParseFirstTopLevelDecl(clang::OpaquePtr<clang::DeclGroupRef>&) (in clang) + 37 [0x10983e9b5]
2992 clang::Parser::ParseTopLevelDecl(clang::OpaquePtr<clang::DeclGroupRef>&) (in clang) + 141 [0x10983ecfd]
2992 clang::Parser::ParseExternalDeclaration(clang::Parser::ParsedAttributesWithRange&, clang::ParsingDeclSpec*) (in clang) + 695 [0x10983f3b7]
2992 clang::Parser::ParseObjCAtDirectives(clang::Parser::ParsedAttributesWithRange&) (in clang) + 637 [0x10a9be9bd]
2992 clang::Parser::ParseModuleImport(clang::SourceLocation) (in clang) + 170 [0x10c4841ba]
2992 clang::Parser::ParseModuleName(clang::SourceLocation, llvm::SmallVectorImpl<std::__1::pair<clang::IdentifierInfo*, clang::SourceLocation> >&, bool) (in clang) + 503 [0x10c485267]
2992 clang::Preprocessor::Lex(clang::Token&) (in clang) + 316 [0x1098285cc]
2992 clang::Preprocessor::LexAfterModuleImport(clang::Token&) (in clang) + 690 [0x10cc7af62]
2992 clang::CompilerInstance::loadModule(clang::SourceLocation, llvm::ArrayRef<std::__1::pair<clang::IdentifierInfo*, clang::SourceLocation> >, clang::Module::NameVisibilityKind, bool) (in clang) + 7989 [0x10bba6535]
2992 compileAndLoadModule(clang::CompilerInstance&, clang::SourceLocation, clang::SourceLocation, clang::Module*, llvm::StringRef) (in clang) + 296 [0x10bba8318]
2992 llvm::LockFileManager::waitForUnlock() (in clang) + 91 [0x10b6953ab]
2992 nanosleep (in libsystem_c.dylib) + 199 [0x7fff6a22c914]
2992 __semwait_signal (in libsystem_kernel.dylib) + 10 [0x7fff6a2a0f32]
```
Differential Revision: https://reviews.llvm.org/D69575
There seems to be a small benefit to the legalized sequence for v2f16
round with packed instructions, so allow vectorizing it by reducing
the cost.
An unintended side effect is vectorization of f32 round also
happens. The current FMA logic seems off to me, and isn't checking for
packed instructions.
Since intrinsics can now specify when an argument is required to be
constant, it is now OK to replace arguments with variables if they
aren't. This means intrinsics must now be accurately marked with
immarg.
I think we can save the MRI argument from these since it's in
GISelKnownBits already, but currently not accessible.
Implementation deferred to avoid dependency on other patches.
Two one-use checks were added with rGfdcb27105537,
but only the first one is necessary to limit an
increase in instruction count. The second transform
only creates one instruction, so it is always a
reasonable canonicalization/optimization.
Validation of the found runtime library functions declarations types
(return and argument types) with the expected types.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76058
Otherwise, the Win64 unwinder considers direct branches to such empty
trailing BBs to be a branch out of the function. It treats such a branch
as a tail call, which can only be part of an epilogue. If the unwinder
misclassifies such a branch as part of the epilogue, it will fail to
unwind the stack further. This can lead to bad stack traces, or failure
to handle exceptions properly. This is described in
https://llvm.org/PR45064#c4, and by the comment at the top of the
X86AvoidTrailingCallPass.cpp file.
It should be safe to insert int3 for such blocks. An empty trailing BB
that reaches this pass is pretty much guaranteed to be unreachable. If
a program executed such a block, it would fall off the end of the
function.
Most of the complexity in this patch comes from threading through the
"EHFuncletEntry" boolean on the MIRParser and registering the pass so we
can stop and start codegen around it. I used an MIR test because we
should teach LLVM to optimize away these branches as a follow-up.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D76531
We special cased must-tail calls all over the place because they cannot
be modified as other calls can be. However, we already centralized the
modification API so we can centralize the handling as well. This
simplifies the code and allows to remove must-tail calls completely.
Summary:
Add new generic MIR opcodes G_SADDSAT etc. Add support in IRTranslator
for translating the saturating add/subtract intrinsics to the new
opcodes.
Reviewers: aemerson, dsanders, paquette, arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, volkan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76600
Implement the DWARF register mapping described in llvm/docs/AMDGPUUsage.rst.
This enables generating appropriate DWARF register numbers for wave64 and
wave32 modes.
We have some long-standing missing shuffle optimizations that could
use this transform via VectorCombine now:
https://bugs.llvm.org/show_bug.cgi?id=35454
(and we still don't get that case in the backend either)
This function is apparently templated because there's existing code
in IR that treats mask values as unsigned and backend code that
treats masks values as signed.
The mask values are not endian-dependent (as shown by the existing
bitcast transform from DAGCombiner).
Differential Revision: https://reviews.llvm.org/D76508
Replace single-lane (W... form) vector "multiply and add" and "multiply and
subtract" instructions with equivalent floating point instructions whenever
possible in SystemZShortenInst.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D76370
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
When decided whether to generate a post-inc load/store, look at the
other memory nodes that use the same base address and, if any proceed
the current node, then don't do the combine.
The change only seems to be affecting the Arm backend, which I was
surprised at, but it appears to fix a lot of our issues around MVE
masked load/stores having to store a temporary address after an early
post-increment on a shared base address.
Differential Revision: https://reviews.llvm.org/D75847
Extract the decision to combine into a post-inc address into a
couple of functions to make the logic more clear and re-usable.
Differential Revision: https://reviews.llvm.org/D76060
Summary:
Widening G_UNMERGE_VALUES to a type which is larger than the
original source type is the same as widening it to the same
type as the source type: in both cases, G_UNMERGE_VALUES has
to be replaced with bit arithmetic which. Although the arithmetic
itself is independent of whether the source type is smaller
or equal to the widen type, widening the source type to the
widen type should result in less artifacts being emitted,
since this is the type that the user explicitly requested.
Reviewers: arsenm, dsanders, aemerson, aditya_nandakumar
Reviewed By: arsenm, dsanders
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, volkan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76494
createPSADBW uses SplitsOpsAndApply so should be able to handle
any size.
Restrict the extract result type to i32 or i64 since that's what
we have coverage for today and probably matches what the
isSimple() check gave us before.
Differential Revision: https://reviews.llvm.org/D76560
This patch attempts to more accurately model the reduction of
power of 2 vectors of types we natively support. This takes into
account the narrowing of vectors that occur as we go from 512
bits to 256 bits, to 128 bits. It also takes into account the use
of wider elements in the shuffles for the first 2 steps of a
reduction from 128 bits. And uses a v8i16 shift for the final step
of vXi8 reduction.
The default implementation uses the legalized type for the arithmetic
for all levels. And uses the single source permute cost of the
legalized type for all levels. This penalizes things like
lack of v16i8 pshufb on pre-sse3 targets and the splitting and
joining that needs to be done for integer types on AVX1. We never
need v16i8 shuffle for a reduction and we only need split AVX1 ops
when type the type wide and needs to be split. I think we're still
over costing splits and joins for AVX1, but we're closer now.
I've also removed all pairwise special casing because I don't
think we ever want to generate that on X86. I've also adjusted
the add handling to more accurately account for any type splitting
that occurs before we reach a legal type.
Differential Revision: https://reviews.llvm.org/D76478
This directive inserts code to add $gp to the argument's register when
support for position independent code is enabled.
For example, this code:
.cpadd $4
expands to:
addu $4, $4, $gp
SplitsOpsAndApply will take care of any needed splitting correctly.
All that we need to check is that the vector element count is a
power of 2.
Differential Revision: https://reviews.llvm.org/D76558
D75801 removed the last and only user of this option, so we can
drop it now. The original idea behind this was to only run expensive
transforms under -O3, but apart from the one known bits transform,
this has never really taken off. I believe nowadays the recommendation
is to put expensive transforms in AggressiveInstCombine instead,
though that isn't terribly popular either :)
Differential Revision: https://reviews.llvm.org/D76540
For folding pattern `x-(fma y,z,u*v) -> (fma -y,z,(fma -u,v,x))`, if
`yz` is 1, `uv` is -1 and `x` is -0, sign of result would be changed.
Differential Revision: https://reviews.llvm.org/D76419
Summary:
Avoid blind cast from Operator to ExtractElementInst in
computeKnownBitsFromOperator. This resulted in some crashes
in downstream fuzzy testing. Instead we use getOperand directly
on the Operator when accessing the vector/index operands.
Haven't seen any problems with InsertElement and ShuffleVector,
but I believe those could be used in constant expressions as well.
So the same kind of fix as for ExtractElement was also applied for
InsertElement.
When it comes to ShuffleVector we now simply bail out if a dynamic
cast of the Operator to ShuffleVectorInst fails. I've got no
reproducer indicating problems for ShuffleVector, and a fix would be
slightly more complicated as getShuffleDemandedElts is involved.
Reviewers: RKSimon, nikic, spatel, efriedma
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76564
We need to insert into the Visited set at the same time we insert
into the worklist. Otherwise we may end up pushing the same
instruction to the worklist multiple times, and only adding it to
the visited set later.
We often widen xmm/ymm vectors to ymm/zmm by insertion into an undef base vector. By letting getTargetShuffleAndZeroables track the undef elts we can help avoid a lot of unnecessary cross-lane shuffles.
Fixes PR44694