Summary:
`alloc_align` attribute takes parameter number, not the alignment itself,
so given **just** the attribute/function declaration we can't do any
sanity checking for said alignment.
However, at call site, given the actual `Expr` that is passed
into that parameter, we //might// be able to evaluate said `Expr`
as Integer Constant Expression, and perform the sanity checks.
But since there is no requirement for that argument to be an immediate,
we may fail, and that's okay.
However if we did evaluate, we should enforce the same constraints
as with `__builtin_assume_aligned()`/`__attribute__((assume_aligned(imm)))`:
said alignment is a power of two, and is not greater than our magic threshold
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72996
Summary:
For `__builtin_assume_aligned()`, we do validate that the alignment
is not greater than `536870912` (D68824), but we don't do that for
`__attribute__((assume_aligned(N)))` attribute.
I suspect we should.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72994
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
If local allocator was declared and used in the allocate clause, it was
not captured in inner region. It leads to a compiler crash, need to
capture the allocator declarator.
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)
The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.
The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.
This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.
Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72934
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
Add a simple cache for constraint satisfaction results. Whether or not this simple caching
would be permitted in final C++2a is currently being discussed but it is required for
acceptable performance so we use it in the meantime, with the possibility of adding some
cache invalidation mechanisms later.
Differential Revision: https://reviews.llvm.org/D72552
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
When Wrange-loop-analysis issues a diagnostic on a dependent type in a
template the diagnostic may not be valid for all instantiations. Therefore
the diagnostic is suppressed during the instantiation. Non dependent types
still issue a diagnostic.
The same can happen when using macros. Therefore the diagnostic is
disabled for macros.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44556
Differential Revision: https://reviews.llvm.org/D73007
Target regions have implicit outer region which may erroneously capture
some globals when it should not. It may lead to a compiler crash at the
compile time.
Summary:
Printing policy was not propogated to functiondecls when creating a
completion string which resulted in canonical template parameters like
`foo<type-parameter-0-0>`. This patch propogates printing policy to those as
well.
Fixes https://github.com/clangd/clangd/issues/76
Reviewers: ilya-biryukov
Subscribers: jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72715
a temporary.
We previously failed to materialize a temporary when performing an
implicit conversion to a reference type, resulting in our thinking the
argument was a value rather than a reference in some cases.
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
A TemplateIdAnnotation represents only a template-id, not a
nested-name-specifier plus a template-id. Don't make a redundant copy of
the CXXScopeSpec and store it on the template-id annotation.
This slightly improves error recovery by more properly handling the case
where we would form an invalid CXXScopeSpec while parsing a typename
specifier, instead of accidentally putting the token stream into a
broken "annot_template_id with a scope specifier, but with no preceding
annot_cxxscope token" state.
expanded by the deduced pack.
We recently started also deducing the arity of separately-expanded packs
that are merely mentioned within the pack in question, which is
incorrect.
If current kind of the translation unit is TU_Prefix and it is not
complete, cannot decide what to do with virtual members/table at that
time, need to delay it to later stages.
This is applied to the vector types defined in <arm_mve.h> for use
with the intrinsics for the ARM MVE vector architecture.
Its purpose is to inhibit lax vector conversions, but only in the
context of overload resolution of the MVE polymorphic intrinsic
functions. This solves an ambiguity problem with polymorphic MVE
intrinsics that take a vector and a scalar argument: the scalar
argument can often have the wrong integer type due to default integer
promotions or unsuffixed literals, and therefore, the type of the
vector argument should be considered trustworthy when resolving MVE
polymorphism.
As part of the same change, I've added the new attribute to the
declarations generated by the MveEmitter Tablegen backend (and
corrected a namespace issue with the other attribute while I was
there).
Reviewers: aaron.ballman, dmgreen
Reviewed By: aaron.ballman
Subscribers: kristof.beyls, JDevlieghere, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72518
list constructor when initializing from {}.
We would previously pick between calling an initializer list constructor
and calling a default constructor unstably in this situation, depending
on whether the inherited default constructor had already been used
elsewhere in the program.
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
Use cast<>/castAs<> instead of dyn_cast<>/getAs<> since the pointers are always dereferenced and cast<>/castAs<> will perform the null assertion for us.
We currently treat noexcept(not-convertible-to-bool) as 'none', which
results in the typeloc info being a different size, and causing an
assert later on in the process. In order to make recovery less
destructive, replace this with noexcept(false) and a constructed 'false'
expression.
Bug Report: https://bugs.llvm.org/show_bug.cgi?id=44514
Differential Revision: https://reviews.llvm.org/D72621
GCC supports the conditional operator on VectorTypes that acts as a
'select' in C++ mode. This patch implements the support. Types are
converted as closely to GCC's behavior as possible, though in a few
places consistency with our existing vector type support was preferred.
Note that this implementation is different from the OpenCL version in a
number of ways, so it unfortunately required a different implementation.
First, the SEMA rules and promotion rules are significantly different.
Secondly, GCC implements COND[i] != 0 ? LHS[i] : RHS[i] (where i is in
the range 0- VectorSize, for each element). In OpenCL, the condition is
COND[i] < 0 ? LHS[i]: RHS[i].
In the process of implementing this, it was also required to make the
expression COND ? LHS : RHS type dependent if COND is type dependent,
since the type is now dependent on the condition. For example:
T ? 1 : 2;
Is not typically type dependent, since the result can be deduced from
the operands. HOWEVER, if T is a VectorType now, it could change this
to a 'select' (basically a swizzle with a non-constant mask) with the 1
and 2 being promoted to vectors themselves.
While this is a change, it is NOT a standards incompatible change. Based
on my (and D. Gregor's, at the time of writing the code) reading of the
standard, the expression is supposed to be type dependent if ANY
sub-expression is type dependent.
Differential Revision: https://reviews.llvm.org/D71463
No longer generate a diagnostic when a small trivially copyable type is
used without a reference. Before the test looked for a POD type and had no
size restriction. Since the range-based for loop is only available in
C++11 and POD types are trivially copyable in C++11 it's not required to
test for a POD type.
Since copying a large object will be expensive its size has been
restricted. 64 bytes is a common size of a cache line and if the object is
aligned the copy will be cheap. No performance impact testing has been
done.
Differential Revision: https://reviews.llvm.org/D72212
D41910 introduced a recursive visitor to MarkUsedTemplateParameters, but
disregarded the 'Depth' parameter, and had incorrect assertions. This fixes
the visitor and removes the assertions.
type computation, in preparation for P0388R4, which adds another few
cases here.
We now properly handle forming multi-level composite pointer types
involving nested Objective-C pointer types (as is consistent with
including them as part of the notion of 'similar types' on which this
rule is based). We no longer lose non-CVR qualifiers on nested pointer
types.
This feature is generic. Make it applicable for AArch64 and X86 because
the backend has only implemented NOP insertion for AArch64 and X86.
Reviewed By: nickdesaulniers, aaron.ballman
Differential Revision: https://reviews.llvm.org/D72221
Summary:
Avoid using the `nocf_check` attribute with Control Flow Guard. Instead, use a
new `"guard_nocf"` function attribute to indicate that checks should not be
added on indirect calls within that function. Add support for
`__declspec(guard(nocf))` following the same syntax as MSVC.
Reviewers: rnk, dmajor, pcc, hans, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aaron.ballman, tomrittervg, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72167
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba9,
reverted in commit d8018233d1, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is
because the function you wanted to call is 'explicit', so explicitly say
if that's the case.
It would be nice to rank the explicit candidates higher in the
diagnostic if an implicit conversion sequence exists for their
arguments, but unfortunately we can't determine that without potentially
triggering non-immediate-context errors that we're not permitted to
produce.
This change introduces three new builtins (which work on both pointers
and integers) that can be used instead of common bitwise arithmetic:
__builtin_align_up(x, alignment), __builtin_align_down(x, alignment) and
__builtin_is_aligned(x, alignment).
I originally added these builtins to the CHERI fork of LLVM a few years ago
to handle the slightly different C semantics that we use for CHERI [1].
Until recently these builtins (or sequences of other builtins) were
required to generate correct code. I have since made changes to the default
C semantics so that they are no longer strictly necessary (but using them
does generate slightly more efficient code). However, based on our experience
using them in various projects over the past few years, I believe that adding
these builtins to clang would be useful.
These builtins have the following benefit over bit-manipulation and casts
via uintptr_t:
- The named builtins clearly convey the semantics of the operation. While
checking alignment using __builtin_is_aligned(x, 16) versus
((x & 15) == 0) is probably not a huge win in readably, I personally find
__builtin_align_up(x, N) a lot easier to read than (x+(N-1))&~(N-1).
- They preserve the type of the argument (including const qualifiers). When
using casts via uintptr_t, it is easy to cast to the wrong type or strip
qualifiers such as const.
- If the alignment argument is a constant value, clang can check that it is
a power-of-two and within the range of the type. Since the semantics of
these builtins is well defined compared to arbitrary bit-manipulation,
it is possible to add a UBSAN checker that the run-time value is a valid
power-of-two. I intend to add this as a follow-up to this change.
- The builtins avoids int-to-pointer casts both in C and LLVM IR.
In the future (i.e. once most optimizations handle it), we could use the new
llvm.ptrmask intrinsic to avoid the ptrtoint instruction that would normally
be generated.
- They can be used to round up/down to the next aligned value for both
integers and pointers without requiring two separate macros.
- In many projects the alignment operations are already wrapped in macros (e.g.
roundup2 and rounddown2 in FreeBSD), so by replacing the macro implementation
with a builtin call, we get improved diagnostics for many call-sites while
only having to change a few lines.
- Finally, the builtins also emit assume_aligned metadata when used on pointers.
This can improve code generation compared to the uintptr_t casts.
[1] In our CHERI compiler we have compilation mode where all pointers are
implemented as capabilities (essentially unforgeable 128-bit fat pointers).
In our original model, casts from uintptr_t (which is a 128-bit capability)
to an integer value returned the "offset" of the capability (i.e. the
difference between the virtual address and the base of the allocation).
This causes problems for cases such as checking the alignment: for example, the
expression `if ((uintptr_t)ptr & 63) == 0` is generally used to check if the
pointer is aligned to a multiple of 64 bytes. The problem with offsets is that
any pointer to the beginning of an allocation will have an offset of zero, so
this check always succeeds in that case (even if the address is not correctly
aligned). The same issues also exist when aligning up or down. Using the
alignment builtins ensures that the address is used instead of the offset. While
I have since changed the default C semantics to return the address instead of
the offset when casting, this offset compilation mode can still be used by
passing a command-line flag.
Reviewers: rsmith, aaron.ballman, theraven, fhahn, lebedev.ri, nlopes, aqjune
Reviewed By: aaron.ballman, lebedev.ri
Differential Revision: https://reviews.llvm.org/D71499
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
It turns out it is useful to be able to define the deref type as void.
In case we have a type erased owner, we want to express that the pointee
can be basically any type. It should not be unnatural to have a void
deref type as we already familiar with "pointers to void".
Differential Revision: https://reviews.llvm.org/D72097
declare simd.
According to the standard, a list-item that appears in a linear clause without the ref modifier must be of integral or pointer type, or must be a reference to an integral or pointer type. Added check that this restriction is applied only to non-ref items.
pack expansion.
Previously, if all parameter / argument pairs for a pack expansion
deduction were non-deduced contexts, we would not deduce the arity of
the pack, and could end up deducing a different arity (leading to
failures during substitution) or defaulting to an arity of 0 (leading to
bad diagnostics about passing the wrong number of arguments to a
variadic function). Instead, we now always deduce the arity for all
involved packs any time we deduce a pack expansion.
This will result in less substitution happening in some cases, which
could avoid non-SFINAEable errors, and should generally improve the
quality of diagnostics when passing initializer lists to variadic
functions.
The OpenMP specification disallows having zero-length array
sections in the depend clause (OpenMP 5.0 2.17.11).
Differential Revision: https://reviews.llvm.org/D71969
Summary: `getListOfPossibleValues()` formatted incorrectly when there is only one value, emitting something like `expected 'conditional' or in OpenMP clause 'lastprivate'`.
Reviewers: jdoerfert, ABataev
Reviewed By: jdoerfert
Subscribers: guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71884
The Wrange-loop-analyses warns if a copy is made. Suppress this warning when
a temporary is bound to a rvalue reference.
While fixing this issue also found a copy-paste error in test6, which is also
fixed.
Differential Revision: https://reviews.llvm.org/D71806
Summary:
Amend MS offset operator implementation, to more closely fit with its MS counterpart:
1. InlineAsm: evaluate non-local source entities to their (address) location
2. Provide a mean with which one may acquire the address of an assembly label via MS syntax, rather than yielding a memory reference (i.e. "offset asm_label" and "$asm_label" should be synonymous
3. address PR32530
Based on http://llvm.org/D37461
Fix broken test where the break appears unrelated.
- Set up appropriate memory-input rewrites for variable references.
- Intel-dialect assembly printing now correctly handles addresses by adding "offset".
- Pass offsets as immediate operands (using "r" constraint for offsets of locals).
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71436
msvc allows a subsequent declaration of a uuid attribute on a
struct/class. Mirror this behavior in clang-cl.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71439
This reverts commit de21704ba9.
Regressed/causes this to error due to ambiguity:
void f(const int * const &);
void f(int *);
int main() {
int * x;
f(x);
}
(in case it's important - the original case where this turned up was a
member function overload in a class template with, essentially:
f(const T1&)
f(T2*)
(where T1 == X const *, T2 == X))
It's not super clear to me if this ^ is expected behavior, in which case
I'm sorry about the revert & happy to look into ways to fix the original
code.
Add printing of __private address space to TypePrinter to allow
it appears in diagnostics and AST dumps as all other language
addr spaces.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71272
This removes the OpenMPProcBindClauseKind enum in favor of
llvm::omp::ProcBindKind which lives in OpenMPConstants.h and was
introduced in D70109.
No change in behavior is expected.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D70289
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch moves some of the code from CodeGen to create an
appropriate feature map that we can pass to the function.
Differential Revision: https://reviews.llvm.org/D68627
Summary:
Basic codegen for the declarations marked as nontemporal. Also, if the
base declaration in the member expression is marked as nontemporal,
lvalue for member decl access inherits nonteporal flag from the base
lvalue.
Reviewers: rjmccall, hfinkel, jdoerfert
Subscribers: guansong, arphaman, caomhin, kkwli0, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71708
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing another crash (added regression test).
Differential Revision: https://reviews.llvm.org/D41910
Commit d77ae1552f
("[DebugInfo] Support to emit debugInfo for extern variables")
added deebugInfo for extern variables for BPF target.
The commit is reverted by 891e25b02d
as the committed tests using %clang instead of %clang_cc1 causing
test failed in certain scenarios as reported by Reid Kleckner.
This patch fixed the tests by using %clang_cc1.
Differential Revision: https://reviews.llvm.org/D71818
The current handling of the operators ||, && and ?: has a number of false
positive and false negative. The issues for operator || and && are:
1. We need to add sequencing regions for the LHS and RHS as is done for the
comma operator. Not doing so causes false positives in expressions like
`((a++, false) || (a++, false))` (from PR39779, see PR22197 for another
example).
2. In the current implementation when the evaluation of the LHS fails, the RHS
is added to a worklist to be processed later. This results in false negatives
in expressions like `(a && a++) + a`.
Fix these issues by introducing sequencing regions for the LHS and RHS, and by
not deferring the visitation of the RHS.
The issues with the ternary operator ?: are similar, with the added twist that
we should not warn on expressions like `(x ? y += 1 : y += 2)` since exactly
one of the 2nd and 3rd expression is going to be evaluated, but we should still
warn on expressions like `(x ? y += 1 : y += 2) = y`.
Differential Revision: https://reviews.llvm.org/D57747
Reviewed By: rsmith
NFCs factored out of the following patches:
- Change all of the `Expr *` to `const Expr *` in SequenceChecker for
const-correctness. SequenceChecker should not modify AST nodes.
- Add some comments.
- clang-format
Differential Revision: https://reviews.llvm.org/D57659
Reviewed By: xbolva00
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Re-commit after fixing some crashes and warnings.
Differential Revision: https://reviews.llvm.org/D41910
These annotations will be used in an upcomming static analyzer check
that finds handle leaks, use after releases, and double releases.
Differential Revision: https://reviews.llvm.org/D70469
Because the name of a direct method must be agreed upon by the caller
and the implementation, certain bad practices that one can get away with
when using dynamism are fatal with direct methods.
To avoid really weird and unscruttable linker error, tighten the
front-end error reporting.
Rule 1:
Direct methods can only have at most one declaration in an @interface
container. Any redeclaration is strictly forbidden.
Today some amount of redeclaration is tolerated between the main
interface and categories for dynamic methods, but we can't have that.
Rule 2:
Direct method implementations can only be declared in a matching
@interface container: when implemented in the primary @implementation
then the declaration must be in the primary @interface or an
extension, and when implemented in a category, the declaration must be
in the @interface for the same category.
Also fix another issue with ObjCMethod::getCanonicalDecl(): when an
implementation lives in the primary @interface, then its canonical
declaration can be in any extension, even when it's not an accessor.
Add Sema tests to cover the new errors, and CG tests to beef up testing
around function names for categories and extensions.
Radar-Id: <rdar://problem/58054563>
Differential Revision: https://reviews.llvm.org/D71694
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
implementing the resolution of CWG2352.
No functionality change, except that we now convert the referent of a
reference binding to the underlying type of the reference in more cases;
we used to happen to preserve the type sugar from the referent if the
only type change was in the cv-qualifiers.
This exposed a bug in how we generate code for trivial assignment
operators: if the type sugar (particularly the may_alias attribute)
got lost during reference binding, we'd use the "wrong" TBAA information
for the load during the assignment.
Added support for constraint satisfaction checking and partial ordering of constraints in constrained partial specialization and function template overloads.
Phabricator: D41910
Summary:
This adds parsing of the qualifiers __ptr32, __ptr64, __sptr, and __uptr and
lowers them to the corresponding address space pointer for 32-bit and 64-bit pointers.
(32/64-bit pointers added in https://reviews.llvm.org/D69639)
A large part of this patch is making these pointers ignore the address space
when doing things like overloading and casting.
https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, rsmith
Subscribers: jholewinski, jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71039
Provide a mechanism to attach OpenCL extension information to builtin
functions, so that their use can be restricted according to the
extension(s) the builtin is part of.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D71476
The FP-classification builtins (__builtin_isfinite, etc) use variadic
packs in the definition file to mean an overload set. Because of that,
floats were converted to doubles, which is incorrect. There WAS a patch
to remove the cast after the fact.
THis patch switches these builtins to just be custom type checking,
calls the implicit conversions for the integer members, and makes sure
the correct L->R casts are put into place, then does type checking like
normal.
A future direction (that wouldn't be NFC) would consider making
conversions for the floating point parameter legal.
Note: The initial patch for this missed that certain systems need to
still convert half to float, since they dont' support that type.
C-style cast) to an enumeration type.
We previously forgot to check this, and happened to get away with it
(with bad diagnostics) only because we misclassified incomplete
enumeration types as not being unscoped enumeration types. This also
fixes the misclassification.
This covers:
* usual arithmetic conversions (comparisons, arithmetic, conditionals)
between different enumeration types
* usual arithmetic conversions between enums and floating-point types
* comparisons between two operands of array type
The deprecation warnings are on-by-default (in C++20 compilations); it
seems likely that these forms will become ill-formed in C++23, so
warning on them now by default seems wise.
For the first two bullets, off-by-default warnings were also added for
all the cases where we didn't already have warnings (covering language
modes prior to C++20). These warnings are in subgroups of the existing
-Wenum-conversion (except that the first case is not warned on if either
enumeration type is anonymous, consistent with our existing
-Wenum-conversion warnings).
This change updates the clang front end to add symbols to llvm.used
when they have explicit export_name attribute.
Differential Revision: https://reviews.llvm.org/D71493
Summary:
In https://reviews.llvm.org/D62550 @rsmith pointed out that there are
many situations in which a coroutine body statement may be
transformed/rebuilt as part of a template instantiation, and my naive
check whether the coroutine was a generic lambda was insufficient.
This is indeed true, as I've learned by reading more of the
TreeTransform code. Most transformations are written in a way that
doesn't assume the resulting types are not dependent types. So the
assertion in 'TransformCoroutineBodyStmt', that the promise type must no
longer be dependent, is out of place.
This patch removes the assertion, spruces up some code comments, and
adds a test that would have failed with my naive check from
https://reviews.llvm.org/D62550.
Reviewers: GorNishanov, rsmith, lewissbaker
Reviewed By: rsmith
Subscribers: junparser, EricWF, rsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70579
This reverts commit b1e542f302.
The original 'hack' didn't chop out fp-16 to double conversions, so
systems that use FP16ConversionIntrinsics end up in IR-CodeGen with an
i16 type isntead of a float type (like PPC64-BE). The bots noticed
this.
Reverting until I figure out how to fix this
The FP-classification builtins (__builtin_isfinite, etc) use variadic
packs in the definition file to mean an overload set. Because of that,
floats were converted to doubles, which is incorrect. There WAS a patch
to remove the cast after the fact.
THis patch switches these builtins to just be custom type checking,
calls the implicit conversions for the integer members, and makes sure
the correct L->R casts are put into place, then does type checking like
normal.
A future direction (that wouldn't be NFC) would consider making
conversions for the floating point parameter legal.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause if false, the non-vectorized version of the
loop must be executed.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause if false, the non-vectorized version of the
loop must be executed.
This requires us to essentially fully form the body of the defaulted
comparison, but from an unevaluated context. Naively this would require
generating the function definition twice; instead, we ensure that the
function body is implicitly defined before performing the check, and
walk the actual body where possible.
conservatively assuming they always can.
Also fix cases where we would not consider the computation of a VLA type
when determining whether an expression can throw. We don't yet properly
determine whether a VLA can throw, but no longer incorrectly claim it
can never throw.
function as referenced, not before.
No functionality change intended. This is groundwork for computing the
exception specification of a defaulted comparison, for which we'd like
to use the implicit body where possible.
Summary:
We currently have some very basic LLVM-style RTTI support in the ExternalASTSource class hierarchy
based on the `SemaSource` bool( to discriminate it form the ExternalSemaSource). As ExternalASTSource
is supposed to be subclassed we should have extendable LLVM-style RTTI in this class hierarchy to make life easier
for projects building on top of Clang.
Most notably the current RTTI implementation forces LLDB to implement RTTI for its
own ExternalASTSource class (ClangExternalASTSourceCommon) by keeping a global set of
ExternalASTSources that are known to be ClangExternalASTSourceCommon. Projects
using Clang currently have to dosimilar workarounds to get RTTI support for their subclasses.
This patch turns this into full-fledged LLVM-style RTTI based on a static `ID` variable similar to
other LLVM class hierarchies. Also removes the friend declaration from ExternalASTSource to
its child class that was only used to grant access to the `SemaSource` member.
Reviewers: aprantl, dblaikie, rjmccall
Reviewed By: aprantl
Subscribers: riccibruno, labath, lhames, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71397
Copy the block to the heap before passing it to the callee in case the
block escapes in the callee.
rdar://problem/55683462
Differential Revision: https://reviews.llvm.org/D71431
In looking into some other code, I came across this issue where a
float converted to a gcc integer vector via a splat causes it to miss
the float-to-integral cast, which causes some REALLY strange codegen
bugs.
The AST looked like:
`-ImplicitCastExpr <col:13>
'gcc_int_2':'__attribute__((__vector_size__(2 * sizeof(int)))) int' <VectorSplat>
`-ImplicitCastExpr <col:13> 'float' <LValueToRValue>
`-DeclRefExpr <col:13> 'float' lvalue ParmVar
0x556f16a5dc90 'f' 'float'
Despite the type of the VectorSplat cast as printed, it ended up
becoming a vector of float, which caused non-matching instructions. For
example, IntVector + a float constant resulted in:
add <2 x i32> %8, <2 x float> <float 3.000000e+00, float 3.000000e+00>
This patch corrects the conversion so that the float is first converted
to an integral, THEN splatted.
Allow sending address spaces into diagnostics to simplify and improve
error reporting. Improved wording of diagnostics for address spaces
in overloading.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71111
This warning is supposed to be suppressed when the
constructor/destructor are non-trivial, since it might be a RAII type.
However, if the type has a trivial destructor and the constructor hasn't
been resolved (since it is called with dependent arguments), we were
still warning.
This patch suppresses the warning if the type could possibly have a
be a non-trivial constructor call. Note that this does not take the
arity of the constructors into consideration, so it might suppress
the warning in cases where it isn't possible to call a non-trivial
constructor.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause if false, the non-vectorized version of the
loop must be executed.
This is equivalent to the existing `import_name` and `import_module`
attributes which control the import names in the final wasm binary
produced by lld.
This maps the existing
This attribute currently requires a string rather than using the
symbol name for a couple of reasons:
1. Avoid confusion with static and dynamic linking which is
based on symbol name. Exporting a function from a wasm module using
this directive is orthogonal to both static and dynamic linking.
2. Avoids name mangling.
Differential Revision: https://reviews.llvm.org/D70520
directive.
Fixed capturing of the if condition if no modifer was specified in this
condition. Previously could capture it only in outer region and it could
lead to a compiler crash.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause if false, the non-vectorized version of the
loop must be executed.
This simplifies code where no extra details are required
Also don't write out detail when it is empty.
Differential Revision: https://reviews.llvm.org/D71347
classification.
We were accidentally treating invalid scope specs as being empty,
resulting in our trying to form an ADL-only call with a qualified
callee, which tripped up an assert later on.
variant directive.
If the function is used only in declare variant directive as a variant
function, it should not be marked as used to prevent emission of the
target-specific functions. Build the reference in the unevaluated
context.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause if false, the non-vectorized version of the
loop must be executed.
According to OpenMP 5.0, if clause can be used in for simd directive. If
condition in the if clause is false, the non-vectorized version of the
loop must be executed.
Extern variable usage in BPF is different from traditional
pure user space application. Recent discussion in linux bpf
mailing list has two use cases where debug info types are
required to use extern variables:
- extern types are required to have a suitable interface
in libbpf (bpf loader) to provide kernel config parameters
to bpf programs.
https://lore.kernel.org/bpf/CAEf4BzYCNo5GeVGMhp3fhysQ=_axAf=23PtwaZs-yAyafmXC9g@mail.gmail.com/T/#t
- extern types are required so kernel bpf verifier can
verify program which uses external functions more precisely.
This will make later link with actual external function no
need to reverify.
https://lore.kernel.org/bpf/87eez4odqp.fsf@toke.dk/T/#m8d5c3e87ffe7f2764e02d722cb0d8cbc136880ed
This patch added clang support to emit debuginfo for extern variables
with a TargetInfo hook to enable it. The debuginfo for the
extern variable is emitted only if that extern variable is
referenced in the current compilation unit.
Currently, only BPF target enables to generate debug info for
extern variables. The emission of such debuginfo is disabled for C++
at this moment since BPF only supports a subset of C language.
Emission with C++ can be enabled later if an appropriate use case
is identified.
-fstandalone-debug permits us to see more debuginfo with the cost
of bloated binary size. This patch did not add emission of extern
variable debug info with -fstandalone-debug. This can be
re-evaluated if there is a real need.
Differential Revision: https://reviews.llvm.org/D70696
Remove implicit conversion that promotes half to double
for the target that support fp16. If the target doesn't
support fp16, fp16 will be converted to fp16 intrinsic.
Summary:
The new OpenMPConstants.h is a location for all OpenMP related constants
(and helpers) to live.
This patch moves the directives there (the enum OpenMPDirectiveKind) and
rewires Clang to use the new location.
Initially part of D69785.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: jholewinski, ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69853
Summary:
It shouldn't promote half to double or any larger precision types for fp classification builtins.
Because fp classification builtins would get incorrect result with promoted argument.
For example, __builtin_isnormal with a subnormal half value should return false, but it is not.
That the subnormal half value is promoted to a normal double value.
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71049
function.
We need to perform unqualified lookups from the context of a defaulted
comparison, but not until we implicitly define the function, at which
point we can't do those lookups any more. So perform the lookup from the
end of the class containing the =default declaration and store the
lookup results on the defaulted function until we synthesize the body.
In the presence of modules, we can have multiple lookup results for the
same entity, and we need to re-check for completeness each time we
consider a type.