I guess instructions were marked as frame-setup by accident, they are
restores as part of the epilog.
Differential Revision: https://reviews.llvm.org/D95783
DBG_VALUES placed between memory instructions would change
codegen. Skip over these and re-insert them after the bundle instead
of giving up on bundling.
This would assert with amdgpu-spill-sgpr-to-vgpr disabled when trying to
spill the FP.
Fixes: SWDEV-262704
Reviewed By: RamNalamothu
Differential Revision: https://reviews.llvm.org/D95768
AMDGPUTargetTransformInfo.h needs AMDGPUTargetMachine but relies on a
forward declaration of AMDGPUTargetMachine in AMDGPU.h. This patch
adds a forward declaration right in AMDGPUTargetTransformInfo.h.
While we are at it, this patch removes the one in
AMDGPU.h, where it is unnecessary.
Various *TargetStreamer.h need formatted_raw_ostream but rely on a
forward declaration of formatted_raw_ostream in MCStreamer.h. This
patch adds forward declarations right in *TargetStreamer.h.
While we are at it, this patch removes the one in MCStreamer.h, where
it is unnecessary.
SCC was not correctly preserved when entering WWM.
Current lit test was unable to detect this as entry block is
handled differently.
Additionally fix an issue where SCC was unnecessarily preserved
when exiting from WWM to Exact mode.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D95500
V_SET_INACTIVE is implemented with S_NOT which clobbers SCC.
Mark sure it is marked appropriately.
Reviewed By: piotr
Differential Revision: https://reviews.llvm.org/D95509
Look throught G_PTRTOINT and G_PTR_ADD nodes when looking for constant
offset for buffer stores. This also helps with merging of these instructions
later on.
Differential Revision: https://reviews.llvm.org/D95242
Before the patch it was possible to trigger a constant bus
violation when folding immediates into a shrunk instruction.
The patch adds a check to enforce the legality of the new operand.
Differential Revision: https://reviews.llvm.org/D95527
We cannot call LRM::unassign() if LRM::assign() was never called
before, these are symmetrical calls. There are two ways of
assigning a physical register to virtual, via LRM::assign() and
via VRM::assignVirt2Phys(). LRM::assign() will call the VRM to
assign the register and then update LiveIntervalUnion. Inline
spiller calls VRM directly and thus LiveIntervalUnion never gets
updated. A call to LRM::unassign() then asserts about inconsistent
liveness.
We have to note that not all callers of the InlineSpiller even
have LRM to pass, RegAllocPBQP does not have it, so we cannot
always pass LRM into the spiller.
The only way to get into that spiller LRE_DidCloneVirtReg() call
is from LiveRangeEdit::eliminateDeadDefs if we split an LI.
This patch refuses to reassign a LiveInterval created by a split
to workaround the problem. In fact we cannot reassign a spill
anyway as all registers of the needed class are occupied and we
are spilling.
Fixes: SWDEV-267996
Differential Revision: https://reviews.llvm.org/D95489
AMDGPUInstructionSelector.h needs TargetRegisterClass but relies on a
forward declaration of TargetRegisterClass in InstructionSelector.h.
This patch adds a forward declaration right in
AMDGPUInstructionSelector.h.
While we are at it, this patch removes the one in
InstructionSelector.h, where it is unnecessary.
Support for XNACK and SRAMECC is not static on some GPUs. We must be able
to differentiate between different scenarios for these dynamic subtarget
features.
The possible settings are:
- Unsupported: The GPU has no support for XNACK/SRAMECC.
- Any: Preference is unspecified. Use conservative settings that can run anywhere.
- Off: Request support for XNACK/SRAMECC Off
- On: Request support for XNACK/SRAMECC On
GCNSubtarget will track the four options based on the following criteria. If
the subtarget does not support XNACK/SRAMECC we say the setting is
"Unsupported". If no subtarget features for XNACK/SRAMECC are requested we
must support "Any" mode. If the subtarget features XNACK/SRAMECC exist in the
feature string when initializing the subtarget, the settings are "On/Off".
The defaults are updated to be conservatively correct, meaning if no setting
for XNACK or SRAMECC is explicitly requested, defaults will be used which
generate code that can be run anywhere. This corresponds to the "Any" setting.
Differential Revision: https://reviews.llvm.org/D85882
If a function has stack objects, and a call, we require an FP. If we
did not initially have any stack objects, and only introduced them
during PrologEpilogInserter for CSR VGPR spills, SILowerSGPRSpills
would end up spilling the FP register as if it were a normal
register. This would result in an assert in a debug build, or
redundant handling of the FP register in a release build.
Try to predict that we will have an FP later, although this is ugly.
HasModifiers should be true if at least one modifier is used.
This should make the use of this field bit more consistent.
Differential Revision: https://reviews.llvm.org/D94795
AMDGPULegalizerInfo.h needs MachineIRBuilder but relies on a forward
declaration of MachineIRBuilder in LegalizerInfo.h. This patch adds a
forward declaration right in AMDGPULegalizerInfo.h.
While we are at it, this patch removes the one in LegalizerInfo.h,
where it is unnecessary.
Summary:
RPTracker::reset(MI) is a very expensive call when the number of virtual registers is huge.
We observed a long compilation time issue when RPT::reset() is called once for each cluster.
In this work, we call RPT.reset() only at the first seen cluster, and use advance() to get
the register pressure for the later clusters in the same basic block. This could effectively reduce the number
of the expensive calls and thus reduce the compile time.
Reviewers:
rampitec
Fixes:
SWDEV-239161
Differential Revision:
https://reviews.llvm.org/D95273
Frame-base materialization may insert vector instructions before EXEC is initialised.
Fix this by moving lowering of llvm.amdgcn.init.exec later in backend.
Also remove SI_INIT_EXEC_LO pseudo as this is not necessary.
Reviewed By: ruiling
Differential Revision: https://reviews.llvm.org/D94645
The only caller of this function is in the LocalStackSlotAllocation
and it creates base register of class returned by the target's
getPointerRegClass(). AMDGPU wants to use a different reg class
here so let materializeFrameBaseRegister to just create and return
whatever it wants.
Differential Revision: https://reviews.llvm.org/D95268
The legacy PM's EP_CGSCCOptimizerLate was only used under not-O0.
Fixes clang/test/CodeGenCXX/cxx0x-initializer-stdinitializerlist.cpp under the new PM.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D95250
Allow parsing generated mir with custom pseudo source value tokens.
Also rename pseudo source values to have more meaningful names.
Relands ba7dcd8542, which had memory leaks.
Differential Revision: https://reviews.llvm.org/D95215
During instruction selection, there is an inconsistency in choosing
the initial soffset value. With certain early passes, this value is
getting modified and that brought additional fixup during
eliminateFrameIndex to work for all cases. This whole transformation
looks trivial and can be handled better.
This patch clearly defines the initial value for soffset and keeps it
unchanged before eliminateFrameIndex. The initial value must be zero
for MUBUF with a frame index. The non-frame index MUBUF forms that
use a raw offset from SP will have the stack register for soffset.
During frame elimination, the soffset remains zero for entry functions
with zero dynamic allocas and no callsites, or else is updated to the
appropriate frame/stack register.
Also, did some code clean up and made all asserts around soffset
stricter to match.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D95071
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.
amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
some limit
2) It increases the threshold if there are pointers to private arrays(?)
These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.
This way we can remove the custom amdgpu-inline pass.
This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D94153
This pass is required to get correct codegen for image instructions with
the tfe or lwe bits set.
Differential Revision: https://reviews.llvm.org/D95132
Allow parsing generated mir with custom pseudo source value tokens.
Also rename pseudo source values to have more meaningful names.
Differential Revision: https://reviews.llvm.org/D94768
In case of indirect calls or address taken functions,
skip propagating any attributes to them. We just
propagate features to such functions.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D94585
If constants are hidden behind G_ANYEXT we can treat them same way as G_SEXT.
For that purpose we extend getConstantVRegValWithLookThrough with option
to handle G_ANYEXT same way as G_SEXT.
Differential Revision: https://reviews.llvm.org/D92219
With tfe on there can be a vgpr write to vdata+1.
Add tablegen support for 5 register vdata store.
This is required for 4 register vdata store with tfe.
Differential Revision: https://reviews.llvm.org/D94960
Rename the *_gfx9_gfx10 ttmp registers to *_gfx9plus for simplicity,
and use the corresponding isGFX9Plus predicate to decide when to use
them instead of the old *_vi versions.
Differential Revision: https://reviews.llvm.org/D94975
This fixes double printing of insertion debug messages in the
legalizer.
Try to cleanup usage of observers. Currently the use of observers is
pretty hard to follow and it's not clear what is responsible for
them. Observers are referenced in 3 places:
1. In the MachineFunction
2. In the MachineIRBuilder
3. In the LegalizerHelper
The observers in the MachineFunction and MachineIRBuilder are both
called only on insertions, and are redundant with each other. The
source of the double printing was the same observer was added to both
the MachineFunction, and the MachineIRBuilder. One of these references
needs to be removed. Arguably observers in general should be fully
removed from one or the other, but it may be useful to have a local
observer in the MachineIRBuilder that is not added to the function's
observers. Alternatively, the wrapper observer could manage a local
observer in one place.
The LegalizerHelper only ever calls the observer on changing/changed
instructions, and never insertions. Logically these are two different
types of observers, for changes and for insertions.
Additionally, some places used the GISelObserverWrapper when they only
needed a single observer they could use directly.
Setting the observer in the LegalizerHelper constructor is not
flexible enough if the LegalizerHelper is constructed anywhere outside
the one used by the legalizer. AMDGPU calls the LegalizerHelper in
RegBankSelect, and needs to use a local observer to apply the regbank
to newly created instructions. Currently it accomplishes this by
constructing a local MachineIRBuilder. I'm trying to move the
MachineIRBuilder to be owned/maintained by the RegBankSelect pass
itself, but the locally constructed LegalizerHelper would reset the
observer.
Mips also has a special case use of the LegalizationArtifactCombiner
in applyMappingImpl; I think we do need to run the artifact combiner
during RegBankSelect, but in a more consistent way outside of
applyMappingImpl.
Add pseudo instruction to allow early termination of pixel shader
anywhere based on the value of SCC. The intention is to use this
when a mask of live lanes is updated, e.g. live lanes in WQM pass.
This facilitates early termination of shaders even when EXEC is
incomplete, e.g. in non-uniform control flow.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D88777
Previously, instructions which could be
expressed as VOP3 in addition to another
encoding had a _e64 suffix on the tablegen
record name, while those
only available as VOP3 did not. With this
patch, all VOP3s will have the _e64 suffix.
The assembly does not change, only the mir.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D94341
Change-Id: Ia8ec8890d47f8f94bbbdac43745b4e9dd2b03423
This seems to only have overridden cold handling, which we probably
shouldn't do. As far as I can tell the wrapper library functions are
still inlined as appropriate.
In ST mode, flat scratch instructions have neither an sgpr nor a vgpr
for the address. This lead to an assertion when inserting hard clauses.
Differential Revision: https://reviews.llvm.org/D94406
VOP3 and VOP DPP subroutines to generate input
operands and asm strings were essentially copy
pasted several times. They are deduplicated to
reduce the maintenance burden and allow faster
development.
Reviewed By: dp
Differential Revision: https://reviews.llvm.org/D94102
Change-Id: I76225eed3c33239d9573351e0c8a0abfad0146ea
We are checking the unsafe-fp-math for sqrt but not for fpow, which behaves inconsistent.
As the direction is to remove this global option, we need to remove the unsafe-fp-math
check for sqrt and update the test with afn fast-math flags.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D93891
Treat a non-atomic volatile load and store as a relaxed atomic at
system scope for the address spaces accessed. This will ensure all
relevant caches will be bypassed.
A volatile atomic is not changed and still only bypasses caches upto
the level specified by the SyncScope operand.
Differential Revision: https://reviews.llvm.org/D94214
The loop index was shadowing the container name.
It seems that we can just not use a for-range loop here since there is
an induction variable anyway.
Differential Revision: https://reviews.llvm.org/D94254
There are various hacks working around limitations in
handleAssignments, and the logical split between different parts isn't
correct. Start separating the type legalization to satisfy going
through the DAG infrastructure from the code required to split into
register types. The type splitting should be moved to generic code.
If the return values can't be lowered to registers
SelectionDAG performs the sret demotion. This patch
contains the basic implementation for the same in
the GlobalISel pipeline.
Furthermore, targets should bring relevant changes
during lowerFormalArguments, lowerReturn and
lowerCall to make use of this feature.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92953
Summary:
This is to avoid unnecessary analysis since amdgpu.noclobber is only used for globals.
Reviewers:
arsenm
Fixes:
SWDEV-239161
Differential Revision:
https://reviews.llvm.org/D94107
It was removed in GFX10 GPUs, but LLVM could
generate it.
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D94020
Change-Id: Id1c716d71313edcfb768b2b175a6789ef9b01f3c
Convert it to v_fma_legacy_f32 if it is profitable to do so, just like
other mac instructions that are converted to their mad equivalents.
Differential Revision: https://reviews.llvm.org/D94010
An AMDGPUAA class already existed that was supposed to work with the new
PM, but it wasn't tested and was a bit broken.
Fix up the existing classes to have the right keys/parameters.
Wire up AMDGPUAA inside AMDGPUTargetMachine.
Add it to the list of alias analyses for the "default" AAManager since
in adjustPassManager() amdgpu-aa is added into the pipeline at the
beginning.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93914
The legacy PM doesn't run EP_ModuleOptimizerEarly on -O0, so skip
running it here when given O0.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93886
There is a number of transforms in SimplifyCFG that take DomTree out of
DomTreeUpdater, and do updates manually. Until they are fixed,
user passes are unable to claim that PDT is preserved.
Note that the default for SimplifyCFG is still not to preserve DomTree,
so this is still effectively NFC.
This is a (last big?) part of the patch series to make SimplifyCFG
preserve DomTree. Currently, it still does not actually preserve it,
even thought it is pretty much fully updated to preserve it.
Once the default is flipped, a valid DomTree must be passed into
simplifyCFG, which means that whatever pass calls simplifyCFG,
should also be smart about DomTree's.
As far as i can see from `check-llvm` with default flipped,
this is the last LLVM test batch (other than bugpoint tests)
that needed fixes to not break with default flipped.
The changes here are boringly identical to the ones i did
over 42+ times/commits recently already,
so while AMDGPU is outside of my normal ecosystem,
i'm going to go for post-commit review here,
like in all the other 42+ changes.
Note that while the pass is taught to preserve {,Post}DomTree,
it still doesn't do that by default, because simplifycfg
still doesn't do that by default, and flipping default
in this pass will implicitly flip the default for simplifycfg.
That will happen, but not right now.
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
And add it to the AMDGPU opt pipeline.
This is a function pass instead of a module pass (like the legacy pass)
because it's getting added to a CGSCCPassManager, and you can't put a
module pass in a CGSCCPassManager.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93885
And add to AMDGPU opt pipeline.
Don't pin an opt run to the legacy PM when -enable-new-pm=1 if these
passes (or passes introduced in https://reviews.llvm.org/D93863) are in
the list of passes.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93875
And add them to the pipeline via
AMDGPUTargetMachine::registerPassBuilderCallbacks(), which mirrors
AMDGPUTargetMachine::adjustPassManager().
These passes can't be unconditionally added to PassRegistry.def since
they are only present when the AMDGPU backend is enabled. And there are
no target-specific headers in llvm/include, so parsing these pass names
must occur somewhere in the AMDGPU directory. I decided the best place
was inside the TargetMachine, since the PassBuilder invokes
TargetMachine::registerPassBuilderCallbacks() anyway. If we come up with
a cleaner solution for target-specific passes in the future that's fine,
but there aren't too many target-specific IR passes living in
target-specific directories so it shouldn't be too bad to change in the
future.
Reviewed By: ychen, arsenm
Differential Revision: https://reviews.llvm.org/D93863
Basic block containing "if" not necessarily dominates block that is the "false" target for the if.
That "false" target block may have another predecessor besides the "if" block. IR value corresponding to the Exec mask is generated by the
si_if intrinsic and then used by the end_cf intrinsic. In this case IR verifier complains that 'Def does not dominate all uses'.
This change split the edge between the "if" block and "false" target block to make it dominated by the "if" block.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D91435
Currently, the compiler crashes in instruction selection of global
load/stores in gfx600 due to the lack of FLAT instructions. This patch
fix the crash by selecting MUBUF instructions for global load/stores
in gfx600.
Authored-by: Praveen Velliengiri <Praveen.Velliengiri@amd.com>
Reviewed by: t-tye
Differential revision: https://reviews.llvm.org/D92483
If we happen to extract a non-dword subreg that breaks the
logic of the function and it may shrink the dmask because
it does not recognize the use of a lane(s).
This bug is next to impossible to trigger with the current
lowering in the BE, but it breaks in one of my future patches.
Differential Revision: https://reviews.llvm.org/D93782
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.
It does not seem to fold offsets but this is not specific
to the flat scratch as getPtrBaseWithConstantOffset() does
not return the split for these tests unlike its SDag
counterpart.
Differential Revision: https://reviews.llvm.org/D93670
Adjust SITargetLowering::allowsMisalignedMemoryAccessesImpl for
unaligned flat scratch support. Mostly needed for global isel.
Differential Revision: https://reviews.llvm.org/D93669
... so just ensure that we pass DomTreeUpdater it into it.
Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
Calling Instruction::copyFastMathFlags() assumes the caller is
FPMathOperator. Avoid calling the function for instructions
that are not instances of FPMathOperator.
I think the global_load/store_dword_addtid instructions support
switching off the scalar address.
Add assembler and disassembler support for this.
Differential Revision: https://reviews.llvm.org/D93288
- Clarify documentation on initializing scratch.
- Rename compute_pgm_rsrc2 field for enabling scratch from
ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET to
ENABLE_PRIVATE_SEGMENT to match hardware definition.
Differential Revision: https://reviews.llvm.org/D93271
Summary:
If a store defines (must alias) a load, it clobbers the load.
Fixes: SWDEV-258915
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D92951
- Once an instruction is simplified, foldable candidates from it should
be invalidated or skipped as the operand index is no longer valid.
Differential Revision: https://reviews.llvm.org/D93174
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.
This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.
However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.
The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.
Differential Revision: https://reviews.llvm.org/D92059
We have this subtarget feature so it makes sense to use it here. This is
NFC because it's always defined by default on GFX8+.
Differential Revision: https://reviews.llvm.org/D93202
These parameters set a default value of 0, so I believe they
should include a 0 suffix. This allows for versions which do not
set a default value in future.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D93187
Both ds_read_b128 and ds_read2_b64 are valid for 128bit 16-byte aligned
loads but the one that will be selected is determined either by the order in
tablegen or by the AddedComplexity attribute. Currently ds_read_b128 has
priority.
While ds_read2_b64 has lower alignment requirements, we cannot always
restrict ds_read_b128 to 16-byte alignment because of unaligned-access-mode
option. This was causing ds_read_b128 to be selected for 8-byte aligned
loads regardles of chosen access mode.
To resolve this we use two patterns for selecting ds_read_b128. One
requires alignment of 16-byte and the other requires
unaligned-access-mode option.
Same goes for ds_write2_b64 and ds_write_b128.
Differential Revision: https://reviews.llvm.org/D92767
Avoids spurious newlines showing up in the output when emitting assembly
via MC.
Reviewed By: MaskRay, arsenm
Differential Revision: https://reviews.llvm.org/D92690
Revert part of https://reviews.llvm.org/D92084 to make it simpler to
start consuming the EndOfStatement token within AMDGPU's
ParseInstruction in a future patch. This also brings us back to what
every other target currently does.
A future change to move the position back to the end of the statement
would likely need to audit all of the AMDGPUOperand SMLoc ranges, and
determine the SMLoc for the last character of the last operand.
Reviewed By: dp
Differential Revision: https://reviews.llvm.org/D92960
It is possible for copies or spills to be inserted in the middle of indirect
addressing sequences which use VGPR indexing. Spills to accvgprs could be
effected by the indexing mode.
Add new pseudo instructions that are expanded after register allocation to avoid
the problematic spill or copy placement.
Differential Revision: https://reviews.llvm.org/D91048
Mubuf rtn atomics use GLC_1 thus default value for glc operand
should be -1, see https://reviews.llvm.org/D90730.
This allows us to report error when rtn atomic requires glc=1
but does not have glc operand in input.
Differential Revision: https://reviews.llvm.org/D92654
This patch replaces the attribute `unsigned VF` in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.
Differential Revision: https://reviews.llvm.org/D91532
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
It's more future-proof to use isGFX10Plus from the start, on the
assumption that future architectures will be based on current
architectures.
Also make use of the existing isGFX9Plus in a few places.
Differential Revision: https://reviews.llvm.org/D92092
Add .shader_functions to pal metadata, which contains the stack frame
size for all non-entry-point functions.
Differential Revision: https://reviews.llvm.org/D90036
This is used to mark transcendental instructions that execute on a
separate pipeline from the normal VALU pipeline.
Differential Revision: https://reviews.llvm.org/D92042
Also use DataLayout to get type size. Relying on the IR type size is
also pretty broken here, since this won't perfectly capture how types
are legalized.
This will ensure that passes that add new global variables will create them
in address space 1 once the passes have been updated to no longer default
to the implicit address space zero.
This also changes AutoUpgrade.cpp to add -G1 to the DataLayout if it wasn't
already to present to ensure bitcode backwards compatibility.
Reviewed by: arsenm
Differential Revision: https://reviews.llvm.org/D84345
Extract the scratch offset from the scratch buffer descriptor that is
stored in the global table.
Differential Revision: https://reviews.llvm.org/D91701
When constructing a MemoryLocation by hand, require that a
LocationSize is explicitly specified. D91649 will split up
LocationSize::unknown() into two different states, and callers
should make an explicit choice regarding the kind of MemoryLocation
they want to have.
2c196bbc6b asserted that
`SmallVector::push_back` doesn't invalidate the parameter when it needs
to grow. Do the same for `resize`, `append`, `assign`, `insert`, and
`emplace_back`.
Differential Revision: https://reviews.llvm.org/D91744
We have workarounds for two different cases where vccz can get out of
sync with the value in vcc. This fixes them in two ways:
1. Fix the case where the def of vcc was in a previous basic block, by
pessimistically assuming that vccz might be incorrect at a basic block
boundary.
2. Fix the handling of pre-existing waitcnt instructions by calling
generateWaitcntInstBefore before examining ScoreBrackets to determine
whether there's an outstanding smem read operation.
Differential Revision: https://reviews.llvm.org/D91636
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
- In certain cases, a generic pointer could be assumed as a pointer to
the global memory space or other spaces. With a dedicated target hook
to query that address space from a given value, infer-address-space
pass could infer and propagate that to all its users.
Differential Revision: https://reviews.llvm.org/D91121
When the load value is folded into the sin/cos operation, the
AMDGPU library calls simplifier could still mark the function
as unmodified. Instead ensure if there is an early return,
return whether the load was folded into the sin/cos call.
Authored by MJDSys
Differential Revision: https://reviews.llvm.org/D91401
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Also fix a similar issue in SIInsertWaitcnts, but I don't think that fix
has any effect in practice.
Differential Revision: https://reviews.llvm.org/D91290
These are opsel opcodes with op_sel actually being ignored.
As a such op_sel_hi needs to be set to default 1 even though
these bits are ignored. This is compatibility change.
Differential Revision: https://reviews.llvm.org/D91202
If the source of S_MOV_{B32,B64}_term is an immediate then it
cannot be lowered to a COPY.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90451
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
Fix a crash when SCC is defined until end of block and mode change
must be inserted in SCC live region.
Reviewed By: mceier
Differential Revision: https://reviews.llvm.org/D90997
Treat any identifier as a potential exp target and diagnose them all the
same way as "invalid exp target"s.
Differential Revision: https://reviews.llvm.org/D90947
Removed "implicit def VCC" from declarations of AMDGPU VOPC instructions since they do not implicitly write to VCC in SDWA mode.
Differential Revision: https://reviews.llvm.org/D89168
This change adds a real glc operand to the return atomic
instead of just string " glc" in the middle of the asm
string.
Improves asm parser diagnostics.
Differential Revision: https://reviews.llvm.org/D90730
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
Pseudo-registers allow different register encodings
between gpu generations. Make sure we resolve the
pseudo regs to real regs whenever we get their
hardware encoding.
Using the correct encodings revealed a register
bank conflict and an unnecessary write dependency.
Tests have been updated to match.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D90721
Change-Id: I73c154cd24aecc820993b50bebaf4df97a5710ca
The insertion of waterfall loops splits the current basic block into
three blocks. So the basic block that we iterate over must be updated.
This failed assert(!NodePtr->isKnownSentinel()) in ilist_iterator for
divergent calls in branches before.
Differential Revision: https://reviews.llvm.org/D90596
Previously, the default value for ieee mode was
- on for compute kernels and compute shaders,
- off for all shaders except compute shaders.
This commit changes the default to be
- on for compute kernels,
- off for shaders.
This aligns the default value with the settings that are actually in
use. To my knowledge, all users of shader calling conventions (mesa and
llpc) disable the ieee mode by default.
Differential Revision: https://reviews.llvm.org/D89388
This differentiates the Ryzen 4000/4300/4500/4700 series APUs that were
previously included in gfx909.
Differential Revision: https://reviews.llvm.org/D90419
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
These instructions use a scaled offset. We were wrongly selecting them
even when the required offset was not a multiple of the scale factor.
Differential Revision: https://reviews.llvm.org/D90607
Change match/apply functions into methods of new target specific combiner
helper class. Use reference to MachineIRBuilder from helper instead of
constructing new MachineIRBuilder each time new instruction needs to made.
Allows correct tracking of newly created instructions.
Differential Revision: https://reviews.llvm.org/D90623
It should be enabled only when the load alignment is at least 8-byte.
Fixes: SWDEV-256824
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D90404
Detailed description: This change addresses the refactoring adviced by foad. It also contain the fix for the case when getNextNode is null if the successor block is the last in MachineFunction.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D90314
By setting up the AsmStrings correctly we can remove some special cases
from AMDGPUInstPrinter::printOffset.
Differential Revision: https://reviews.llvm.org/D90307
This reverts r227987 "R600/SI: Determine target-specific encoding of READLANE and WRITELANE early v2".
All the codegen changes are caused by the post-RA scheduler no longer
treating readlane/writelane as scheduling barriers due to having
unmodelled side effects. (The pseudos are hasSideEffects = 0, but the
real instructions are hasSideEffects = ? which TableGen conservatively
treats as 1.)
Differential Revision: https://reviews.llvm.org/D90401
Reset the tracked emitted instructions when starting scheduling on a new
region.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D90347
V_DIV_SCALE_F32/F64 are VOP3B encoded so they can't use the ABS src
modifier, but they can still use NEG and the usual output modifiers.
This partially reverts 3b99f12a4e "AMDGPU: Remove modifiers from v_div_scale_*".
Differential Revision: https://reviews.llvm.org/D90296
SIPreAllocateWWMRegs was being inserted after RegisterCoalescer
but this pass does not exist during FastAlloc so pre-allocation
pass was never being run.
Insert pre-allocation after TwoAddressInstructionPass instead.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D90236
I do not exactly like the use of a negative predicate to
enable instructions' support. Change HasNoMadMacF32Insts
with HasFmaLegacy32.
Differential Revision: https://reviews.llvm.org/D90250
- Add an internal option `-amdgpu-use-aa-in-codegen` to enable or
disable this feature. By Default, it's enabled.
Differential Revision: https://reviews.llvm.org/D89320
Exec mask manipulation inserted by SIWholeQuadMode barriers to
instruction scheduling. Move the entire pass after the machine
instruction scheduler and make changes so pass is correct for
non-SSA operation. These changes should leave the pass still
usable pre-scheduler, although tests have be updated to reflect
post-scheduler results.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D88081
The support is disabled by default. So far there is instruction
selection, spilling, and frame elimination. It also changes SP
from unswizzled to swizzled as used by flat scratch instructions,
so it cannot be mixed with MUBUF stack access.
At the very least missing:
- GlobalISel;
- Some optimizations in frame elimination in between vector
and scalar ALU;
- It shall finally allow to always materialize frame index
as an SGPR, but that is not implemented and frame elimination
cannot handle it yet;
- Unaligned and/or multidword flat scratch shall work, but it
is legalized now for MUBUF;
- Operand folding cannot optimize FI like with MUBUF yet;
- It will need scaling the value of the SP/FP in the DWARF
expression to recover the unswizzled scratch address;
Differential Revision: https://reviews.llvm.org/D89170
If no pal metadata is given, default to the msgpack format instead of
the legacy metadata. This makes tests better readable.
Differential Revision: https://reviews.llvm.org/D90035
We use an absolute address for stack objects and
it would be necessary to have a constant 0 for soffset field.
Fixes: SWDEV-228562
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D89234
1. Throughput and codesize costs estimations was separated and updated.
2. Updated fdiv cost estimation for different cases.
3. Added scalarization processing for types that are treated as !isSimple() to
improve codesize estimation in getArithmeticInstrCost() and
getArithmeticInstrCost(). The code was borrowed from TCK_RecipThroughput path
of base implementation.
Next step is unify scalarization part in base class that is currently works for
TCK_RecipThroughput path only.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89973
This does not change anything at the moment, but needed for
D89170. In that change I am probing a physical SGPR to see if
it is legal. RC is SReg_32, but DRC for scratch instructions
is SReg_32_XEXEC_HI and test fails.
That is sufficient just to check if DRC contains a register
here in case of physreg. Physregs also do not use subregs
so the subreg handling below is irrelevant for these.
Differential Revision: https://reviews.llvm.org/D90064
I was wrong in thinking that MRI.use_instructions return unique instructions and mislead Jay in his previous patch D64393.
First loop counted more instructions than it was in reality and the second loop went beyond the basic block with that counter.
I used Jay's previous code that relied on MRI.use_operands to constrain the number of instructions to check among.
modifiesRegister is inlined to reduce the number of passes over instruction operands and added assert on BB end boundary.
Differential Revision: https://reviews.llvm.org/D89386
This follows on from D89558 which added the new intrinsic and D88955
which added similar combines for llvm.amdgcn.fmul.legacy.
Differential Revision: https://reviews.llvm.org/D90028
Add new loop metadata amdgpu.loop.unroll.threshold to allow the initial AMDGPU
specific unroll threshold value to be specified on a loop by loop basis.
The intention is to be able to to allow more nuanced hints, e.g. specifying a
low threshold value to indicate that a loop may be unrolled if cheap enough
rather than using the all or nothing llvm.loop.unroll.disable metadata.
Differential Revision: https://reviews.llvm.org/D84779
This commit marks i16 MULH as expand in AMDGPU backend,
which is necessary after the refactoring in D80485.
Differential Revision: https://reviews.llvm.org/D89965
- Make the SIMemoryLegalizer insertAcquire function be in the same
order for each target to be consistent.
Differential Revision: https://reviews.llvm.org/D89880
1. Fixed liveness issue with implicit kills.
2. Fixed potential problem with an indirect mov.
Fixes: SWDEV-256848
Differential Revision: https://reviews.llvm.org/D89599
We use the Real vs Pseudo instruction abstraction for other
types of instructions to facilitate changes in opcode
between gpu generations.
This patch introduces that abstraction to SOPC and SOPP.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89738
Change-Id: I59d53c2c7058b49d05b60350f4062a9b542d3138
Fixes being overly conservative with the register counts in called
functions. This should try to do a conservative range merge, but for
now just clone.
Also fix not being able to functionally run the pass standalone.
Some instructions may be removable through processes such as IfConversion,
however DefinesPredicate can not be made aware of when this should be considered.
This parameter allows DefinesPredicate to distinguish these removable instructions
on a per-call basis, allowing for more fine-grained control from processes like
ifConversion.
Renames DefinesPredicate to ClobbersPredicate, to better reflect it's purpose
Differential Revision: https://reviews.llvm.org/D88494
Passes that are run after the post-RA scheduler may insert instructions like
waitcnt which eliminate the need for certain noops. After this patch the
scheduler is still aware of possible latency from hazards but noops will
not be inserted until the dedicated hazard recognizer pass is run.
Depends on D89753.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D89754
If a target can encode multiple wait-states into a noop allow emitting such
instructions directly.
Reviewed By: rampitec, dmgreen
Differential Revision: https://reviews.llvm.org/D89753
Change waitcnt insertion to check the memory operand tokens to see if
flat memory operations access VMEM in the same way it does to check if
accessing LDS. This avoids adding waitcnt for counters for address
spaces that are not accessed.
In addition, only generate the pessimistic waitcnt 0 if a flat memory
operation appears to access both VMEM and LDS.
This benefits flat memory operations that explicitly specify the
address space as GLOBAL or LOCAL.
Differential Revision: https://reviews.llvm.org/D89618
Remove getAllVGPR32() interface and update the SGPR spill code to use
a proper method to get the relevant VGPR registers list.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D89806
- In general, a generic point may alias to pointers in all other address
spaces. However, for certain cases enforced by the programming model,
we may found a generic point won't alias to pointers to local objects.
* When a generic pointer is loaded from the constant address space, it
could only be a pointer to the GLOBAL or CONSTANT address space.
Thus, it won't alias to pointers to the PRIVATE or LOCAL address
space.
* When a generic pointer is passed as a kernel argument, it also could
only be a pointer to the GLOBAL or CONSTANT address space. Thus, it
also won't alias to pointers to the PRIVATE or LOCAL address space.
Differential Revision: https://reviews.llvm.org/D89525
Remove immediate operand from SI_ELSE which indicates if EXEC has
been modified. Instead always emit code that handles EXEC and
remove unnecessary instructions during pre-RA optimisation.
This facilitates passes (i.e. SIWholeQuadMode) adding exec mask
manipulation post control flow lowering, and pre control flow
lower passes do not need to be aware of SI_ELSE handling.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D89644
Remove duplicate code and move things around to make it easier to
add additional optimisations to the pass.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89619
GFX10 enables third addressing mode for flat scratch instructions,
an ST mode. In that mode both register operands are omitted and
only swizzled offset is used in addition to flat_scratch base.
Differential Revision: https://reviews.llvm.org/D89501
These were introduced in r279902 on the grounds that using separate
MUL_U24/MUL_I24 and MULHI_U24/MULHI_I24 nodes would introduce multiple
uses of the operands, which would prevent SimplifyDemandedBits from
simplifying the operands.
This has since been fixed by D24672 "AMDGPU/SI: Use new SimplifyDemandedBits helper for multi-use operations"
No functional change intended. At least it has no effect on lit tests.
Differential Revision: https://reviews.llvm.org/D89706
S_CMP_LG_U64 was added in gfx8 and is guarded by hasScalarCompareEq64().
Rewrite S_CMP_LG_U64 to S_OR_B32 + S_CMP_LG_U32 for targets that
do not support 64-bit scalar compare.
Differential Revision: https://reviews.llvm.org/D89536
If instructions were removed in peephole passes after the hazard recognizer was
run it is possible that new hazards could be introduced.
Fixes: SWDEV-253090
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D89077
This would end up killing part of the result super-register, resulting
in a verifier error on a later use of the overlapping registers. We
could add kills of any non-aliasing registers, but we should be moving
away from relying on kill flags.
removeMBBifRedundant normally tries to keep predecessors fallthrough when removing redundant MBB.
It has to change MBBs layout to keep the new successor to immediately follow the predecessor of removed MBB.
It only may be allowed in case the new successor itself has no successors to which it fall through.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89397
This does unfortunately end up with extra waitcnts getting inserted
that were avoided before. Ideally we would avoid the spills of these
undef components in the first place.
Generate the minimal set of s_mov instructions required when
expanding a SGPR copy operation in copyPhysReg.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D89187
In most of lib/Target we know that we are not dealing with scalable
types so it's perfectly fine to replace TypeSize comparison operators
with their fixed width equivalents, making use of getFixedSize()
and so on.
Differential Revision: https://reviews.llvm.org/D89101
Generate (at runtime) the table used to drive getSubRegFromChannel,
base on AMDGPUSubRegIdxRanges from TableGen data.
The is a step closer to it being staticly generated by TableGen and
allows getSubRegFromChannel handle all bitwidths in the mean time.
Reviewed By: rampitec, arsenm, foad
Differential Revision: https://reviews.llvm.org/D89217
This instruction was introduced in GFX10.3, reusing the opcode of
v_mac_legacy_f32 from GFX10.1.
Differential Revision: https://reviews.llvm.org/D89247
Implement computeKnownBitsForTargetInstr for G_AMDGPU_BUFFER_LOAD_UBYTE
and G_AMDGPU_BUFFER_LOAD_USHORT. This allows generic combines to remove
some unnecessary G_ANDs.
Differential Revision: https://reviews.llvm.org/D89316
This can fix an asan failure like below.
==15856==ERROR: AddressSanitizer: use-after-poison on address ...
READ of size 8 at 0x6210001a3cb0 thread T0
#0 llvm::MachineInstr::getParent()
#1 llvm::LiveVariables::VarInfo::findKill()
#2 TwoAddressInstructionPass::rescheduleMIBelowKill()
#3 TwoAddressInstructionPass::tryInstructionTransform()
#4 TwoAddressInstructionPass::runOnMachineFunction()
We need to update the Kills if we replace instructions. The Kills
may be later accessed within TwoAddressInstruction pass.
Differential Revision: https://reviews.llvm.org/D89092
The change starts from LiveRangeMatrix and also checks the users of the
APIs are typed accordingly.
Differential Revision: https://reviews.llvm.org/D89145
Extend loadSRsrcFromVGPR to allow moving a range of instructions into
the loop. The call instruction is surrounded by copies into physical
registers which should be part of the waterfall loop.
Differential Revision: https://reviews.llvm.org/D88291
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
Following on from D88890, this makes the newly added patterns
conditional on NoFP32Denormals. mad/mac f32 instructions always flush
denormals regardless of the MODE register setting, and I believe the
legacy variants do the same.
Differential Revision: https://reviews.llvm.org/D89123
Note that all subtargets up to GFX10.1 have v_mad_legacy_f32, but GFX8/9
lack v_mac_legacy_f32. GFX10.3 has no mad/mac f32 instructions at all.
Differential Revision: https://reviews.llvm.org/D88890
ExpandUnalignedLoad/Store can sometimes produce unnecessary copies to
temporary stack slot. We should prefer splitting vectors if possible.
Differential Revision: https://reviews.llvm.org/D88882
Summary:
This implements a workaround for a hardware bug in gfx8 and gfx9,
where register usage is not estimated correctly for image_store and
image_gather4 instructions when D16 is used.
Change-Id: I4e30744da6796acac53a9b5ad37ac1c2035c8899
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81172
Previously we wrote multi-byte values out as-is from host memory. Use
the `emitIntN` helpers in `MCStreamer` to produce a valid descriptor
irrespective of the host endianness.
Reviewed By: arsenm, rochauha
Differential Revision: https://reviews.llvm.org/D88858
Introduce a utility function to make it more
convenient to write code that is the same on
the GFX9 and GFX10 subtargets.
Use isGFX9Plus in the AsmParser for AMDGPU.
Authored By: Joe_Nash
Differential Revision: https://reviews.llvm.org/D88908
uint8_t types are implicitly promoted to int, leading to a
unsigned-signed comparison.
Thanks for the heads-up @uabelho.
Differential Revision: https://reviews.llvm.org/D88876
Refactor exit block creation to a single call ensureEarlyExitBlock.
Add support for generating an early exit block which clears the
exec mask, but only add this instruction when required.
These changes are to facilitate adding more forms of early
termination for PS shaders in the near future.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D88775
Use tablegen generic tables to get the index of image intrinsic
arguments.
Before, the computation of which image intrinsic argument is at which
index was scattered in a few places, tablegen, the SDag instruction
selection and GlobalISel. This patch changes that, so only tablegen
contains code to compute indices and the ImageDimIntrinsicInfo table
provides these information.
Differential Revision: https://reviews.llvm.org/D86270
This tends to increase code size but more importantly it reduces vgpr
usage, and could avoid costly readfirstlanes if the result needs to be
in an sgpr.
Differential Revision: https://reviews.llvm.org/D88580
Convert to use new MachineBasicBlock splitAt function.
Place code in splitBlock function for reuse in future changes.
Should yield no functional change.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D88537
Allows the creation of real SOP1 instructions with
assembler mnemonics that differ from their
pseudo-instruction mnemonics. The default behavior
keeps the mnemonics matching.
Corrects a subtarget label typo in a comment.
Authored By: Joe_Nash
Differential Revision: https://reviews.llvm.org/D88708
Check if operand of mul is constant value of one for certain atomic
instructions in order to avoid making unnecessary instructions when
-amdgpu-atomic-optimizer is present.
Differential Revision: https://reviews.llvm.org/D88315
This tends to increase code size but more importantly it reduces vgpr
usage, and could avoid costly readfirstlanes if the result needs to be
in an sgpr.
Differential Revision: https://reviews.llvm.org/D88245
This fixes the declaration of AMDGPULegalizerInfo::legalizeBufferLoad to
match the definition. It is still confusing that that parameter order is
different from legalizeBufferStore.
https://bugs.llvm.org/show_bug.cgi?id=47535
v3f32 should not be expanded to v4f32. getresinfo with a dmask of 7
created an image sample with a v3f32 return value, which was bitcasted
to a v4f32 in constructRetValue.
Differential Revision: https://reviews.llvm.org/D88206
Fix the verifier so that overlapping SGPR operands are counted
independently. We cannot assume that overlapping SGPR accesses
only count as a single constant bus use.
The exception is implicit uses which do not add to constant bus
usage (only) when overlapping.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87748
This reverts commit ca907bfb57.
According to michel.daenzer,
> This completely broke the Mesa radeonsi driver on Navi 14. Xorg +
> xterm come up with major corruption & psychedelic colours.
When memory operations are outstanding on function calls, either the
caller or the callee can insert a waitcnt to ensure that all reads are
finished.
Calls need some time to be executed, so if the callee inserts the
waitcnt, filling the instruction buffer and waiting for memory will be
interleaved, hiding some latency. This comes at the cost of having a
waitcnt inside functions that may not be needed as no memory operations
are outstanding.
For function calls, this is already implemented. The same principal
applies to returns: If the caller inserts a waitcnt after the call, the
callee does not have to wait and the return and memory operation can be
run in parallel.
This commit implements waiting in the caller after returning from a
function call.
Differential Revision: https://reviews.llvm.org/D87674
Fix incorrect merges of m0 inits in loops.
It was assumed that if a clobbering instruction appears in
the same block as an init and the clobbering instruction
does not dominate the init then it does not interfere with
init.
This does not work in the presence of loops, where in this
scenario, the clobbering instruction does interfere with
the init in another iteration.
To fix this, do not check for block equality and defer the
decision to the predecessor check.
Differential Revision: https://reviews.llvm.org/D87882
It's simpler to do this at codegen time than to do ad-hoc constant
folding of machine instructions in SIFoldOperands.
Differential Revision: https://reviews.llvm.org/D88028
This reverts commit 0345d88de6.
Google internal backend uses EntrySU, we are looking into removing
dependency on it.
Differential Revision: https://reviews.llvm.org/D88018
Since 6524a7a2b9, this would sometimes
not emit the or to exec at the beginning of the block, where it really
has to be. If there is an instruction that defines one of the source
operands, split the block and turn the si_end_cf into a terminator.
This avoids regressions when regalloc fast is switched to inserting
reloads at the beginning of the block, instead of spills at the end of
the block.
In a future change, this should always split the block.
This reverts commit c3492a1aa1.
I think this is the wrong strategy and wrong place to do this
transform anyway. Also reverts follow up commit
7d593d0d69.
Alignment requirements for ds_read/write_b96/b128 for gfx9 and onward are
now the same as for other GCN subtargets. This way we can avoid any
unintentional use of these instructions on systems that do not support dword
alignment and instead require natural alignment.
This also makes 'SH_MEM_CONFIG.alignment_mode == STRICT' the default.
Differential Revision: https://reviews.llvm.org/D87821
- Need to lower COPY from SGPR to VGPR to a real instruction as the
standard COPY is used where the source and destination are from the
same register bank so that we potentially coalesc them together and
save one COPY. Considering that, backend optimizations, such as CSE,
won't handle them. However, the copy from SGPR to VGPR always needs
materializing to a native instruction, it should be lowered into a
real one before other backend optimizations.
Differential Revision: https://reviews.llvm.org/D87556
Instruction combining pass turns library rotl implementation to llvm.fshl.i16.
In the selection dag the intrinsic is turned to ISD::ROTL node that cannot be selected.
Need to expand it to shifts again.
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D87618
eliminateFrameIndex won't fix up the offset register when the direct
frame index reference is moved to a separate move instruction. Switch
the offset to a base 0 (which it probably should be to begin with).
WeakRefDirective should specify a directive to declare "a global as being a weak undefined symbol".
The directive used by AMDGPU was incorrect - ".weakref" was intended for other purposes.
The correct directive is ".weak" and it is already defined as default for ELF.
So the redefinition was removed.
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D87762
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
Fix lowering and instruction selection for v3x16 types
and enable InstCombine to emit them.
This patch only implements it for the selection dag.
GlobalISel tests in GlobalISel/llvm.amdgcn.image.load.1d.d16.ll and
GlobalISel/llvm.amdgcn.image.store.2d.d16.ll still don't work.
Differential Revision: https://reviews.llvm.org/D84420
Pre-gfx10 all MODE-setting instructions were S_SETREG_B32 which is
marked as having unmodeled side effects, which makes the machine
scheduler treat it as a barrier. Now that we have proper implicit $mode
operands we can use a no-side-effects S_SETREG_B32_mode pseudo instead
for setregs that only touch the FP MODE bits, to give the scheduler more
freedom.
Differential Revision: https://reviews.llvm.org/D87446
We have a single noret intrinsic an a lot of special handling
around it. Declare it just as any other but do not define rtn
instructions itself instead.
Differential Revision: https://reviews.llvm.org/D87719
GetElementPtrInst::Create returns a GetElementPtrInst* so we don't need to cast. Similarly IntegerType inherits from the Type base class.
Also, I've used auto* in a few places to cleanup the code.
Helps fix some clang-tidy warnings which saw the dyn_casts and warned that these can return null.
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
Clustering loads has caching benefits, but as far as I know there is no
advantage to clustering stores on any AMDGPU subtargets.
The disadvantage is that it tends to increase register pressure and
restricts scheduling freedom.
Differential Revision: https://reviews.llvm.org/D85530
Check for NoNaNsFPMath function attribute in isKnownNeverSNaN.
Function attributes are in held in 'TargetMachine.Options'.
Among other things, this allows selection of some patterns imported
in D87351 since G_FCANONICALIZE is not generated when isKnownNeverSNaN
returns true in lowerFMinNumMaxNum.
However we notice some incorrect results since function attributes are
not correctly written in TargetMachine.Options when next function is
processed. Take a look at @v_test_no_global_nnans_med3_f32_pat0_srcmod0,
it has "no-nans-fp-math"="false" but TargetMachine.Options still has it
set to true since first function in test file had this attribute set to
true. This will be fixed in D87511.
Differential Revision: https://reviews.llvm.org/D87456
Predicates with 'let PredicateCodeUsesOperands = 1' want to examine
matched operands. When we encounter predicate code that uses operands,
analyze its named operand arguments and create a map between argument
index and name. Later, when leaf node with name is encountered, emit
GIM_RecordNamedOperand that will store that operand at its argument
index in operand list. This operand list will be an argument to c++
code of the predicate.
Differential Revision: https://reviews.llvm.org/D87285
It was found some packed immediate operands (e.g. `<half 1.0, half 2.0>`) are
incorrectly processed so one of two packed values were lost.
Introduced new function to check immediate 32-bit operand can be folded.
Converted condition about current op_sel flags value to fall-through.
Fixes: SWDEV-247595
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87158
We weren't using this before, so none of the MachineFunction CFG edges had the
branch probability information added. As a result, block placement later in the
pipeline was flying blind.
This is enabled only with optimizations enabled like SelectionDAG.
Differential Revision: https://reviews.llvm.org/D86824
This combine previously tried to take sequences like:
%cond = G_ICMP pred, a, b
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and by inverting the compare predicate and swapping branch targets, delete the
G_BR and instead have a single conditional branch to the falsebb. Since in an
earlier patch we have a combine to fold not(icmp) into just an inverted icmp,
we don't need this combine to do as much. This patch instead generalizes the
combine by just looking for:
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and then inverting the condition using a not (xor). The xor can be folded away
in a separate combine. This change also lets us avoid some optimization code
in the IRTranslator.
I also think that deleting G_BRs in the combiner is unnecessary. That's
something that targets can decide to do at selection time and could simplify
generic code in future.
Differential Revision: https://reviews.llvm.org/D86664
Add subtarget feature check to avoid using ds_read/write_b96/128 with too
low alignment if a bug is present on that specific hardware.
Add this "feature" to GFX 10.1.1 as it is also affected.
Add global-isel test.
optimizeEndCF removes EXEC restoring instruction case this instruction is the only one except the branch to the single successor and that successor contains EXEC mask restoring instruction that was lowered from END_CF belonging to IF_ELSE.
As a result of such optimization we get the basic block with the only one instruction that is a branch to the single successor.
In case the control flow can reach such an empty block from S_CBRANCH_EXEZ/EXECNZ it might happen that spill/reload instructions that were inserted later by register allocator are placed under exec == 0 condition and never execute.
Removing empty block solves the problem.
This change require further work to re-implement LIS updates. Recently, LIS is always nullptr in this pass. To enable it we need another patch to fix many places across the codegen.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D86634
During the PEI pass, the dead TargetStackID::SGPRSpill spill slots
are not being removed while spilling the FP/BP to memory.
Fixes: SWDEV-250393
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87032
Previously SDNodeFlags::instersectWith(Flags) would do nothing if Flags was
in an undefined state, which is very bad given that this is the default when
getNode() is called without passing an explicit SDNodeFlags argument.
This meant that if an already existing and reused node had a flag which the
second caller to getNode() did not set, that flag would remain uncleared.
This was exposed by https://bugs.llvm.org/show_bug.cgi?id=47092, where an NSW
flag was incorrectly set on an add instruction (which did in fact overflow in
one of the two original contexts), so when SystemZElimCompare removed the
compare with 0 trusting that flag, wrong-code resulted.
There is more that needs to be done in this area as discussed here:
Differential Revision: https://reviews.llvm.org/D86871
Review: Ulrich Weigand, Sanjay Patel
- When an operand is changed into an immediate value or like, ensure their
target flags being cleared or set properly.
Differential Revision: https://reviews.llvm.org/D87109
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
Summary of changes:
- Changed parser to eliminate generation of excessive error messages;
- Corrected lit tests to match all expected error messages;
- Corrected lit tests to guard against unwanted extra messages (added option "--implicit-check-not=error:");
- Added missing checks and fixed some typos in tests.
See bug 46907: https://bugs.llvm.org/show_bug.cgi?id=46907
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D86940
The addend in a REL32 reloc needs to be adjusted to account for the
offset from the PC value returned by the s_getpc instruction to the
point where the reloc is applied. This was being done correctly for
(GOTPC)REL32_LO but not for (GOTPC)REL32_HI. This will only make a
difference if the target symbol happens to get loaded almost exactly
a multiple of 4G away from the relocated instructions.
Differential Revision: https://reviews.llvm.org/D86938
The implicit def of the super register would appear to kill any live
uses of components before the spill, and would be deleted by
MachineCopyPropagation. We need to add implicit uses of the super
register, similarly to what copyPhysReg does. VGPR tuples appear to be
correctly handled already. I need to double check the SGPR->memory
path.
There's a special case in hasAttribute for None when pImpl is null. If pImpl is not null we dispatch to pImpl->hasAttribute which will always return false for Attribute::None.
So if we just want to check for None its sufficient to just check that pImpl is null. Which can even be done inline.
This patch adds a helper for that case which I hope will speed up our getSubtargetImpl implementations.
Differential Revision: https://reviews.llvm.org/D86744
Intrinsic declarations use the default subtarget, but this should be
using the subtarget for the calling function. I haven't been able to
come up with a case where it matters though.
There is no justification for changing vcc_lo to vcc
when shrinking V_CNDMASK, and such a change could
later confuse live variable analysis.
Make sure the original register is preserved.
Differential Revision: https://reviews.llvm.org/D86541
This would assert with unaligned DS access enabled. The offset may not
be aligned. Theoretically the pattern predicate should check the
memory alignment, although it is possible to have the memory be
aligned but not the immediate offset.
In this case I would expect it to use ds_{read|write}_b64 with
unaligned access, but am not clear if there's a reason it doesn't.
If the condition output is negated, swap the branch targets. This is
similar to what SelectionDAG does for when SelectionDAGBuilder
decides to invert the condition and swap the branches.
This is leaving behind a dead constant def for some reason.
If a workgroup size is known to be not greater than wavefront size
the s_barrier instruction is not needed since all threads are guaranteed
to come to the same point at the same time.
This is the same optimization that was implemented for SelectionDAG in
D31731.
Differential Revision: https://reviews.llvm.org/D86609
Most notably, we were incorrectly reporting <3 x s16> as a legal type
for these. Make sure these aren't legal to help make progress on
fixing the artifact combiner and vector legalizer
rules. Unfortunately, this means spreading the -global-isel-abort=0
hack, although this doesn't change the legalizer result in any
situation.
This interferes with GlobalISel's much better handling of the
situation.
This should really be disable for GlobalISel. However, the fallback
only re-runs the selection passes, and doesn't go back and rerun any
codegen IR passes. I haven't come up with a good solution to this
problem.
Handle workitem intrinsics. There isn't really away to adequately test
this right now, since none of the known bits users are fine grained
enough to test the edge conditions. This triggers a number of
instances of the new 64-bit to 32-bit shift combine in the existing
tests.
shl ([sza]ext x, y) => zext (shl x, y).
Turns expensive 64 bit shifts into 32 bit if it does not overflow the
source type:
This is a port of an AMDGPU DAG combine added in
5fa289f0d8. InstCombine does this
already, but we need to do it again here to apply it to shifts
introduced for lowered getelementptrs. This will help matching
addressing modes that use 32-bit offsets in a future patch.
TableGen annoyingly assumes only a single match data operand, so
introduce a reusable struct. However, this still requires defining a
separate GIMatchData for every combine which is still annoying.
Adds a morally equivalent function to the existing
getShiftAmountTy. Without this, we would have to do try to repeatedly
query the legalizer info and guess at what type to use for the shift.
This is the slowest operation in the already slow pass.
Instead of sorting just put a stall list into an ordered
map.
Differential Revision: https://reviews.llvm.org/D86253
Do not break down local loads and stores so ds_read/write_b96/b128 in
ISelLowering can be selected on subtargets that support them and if align
requirements allow them.
Differential Revision: https://reviews.llvm.org/D84403
Fix local ds_read/write_b96/b128 so they can be selected if the alignment
allows. Otherwise, either pick appropriate ds_read2/write2 instructions or break
them down.
Differential Revision: https://reviews.llvm.org/D81638
Features UnalignedBufferAccess and UnalignedDSAccess are now used to determine
whether hardware supports such access.
UnalignedAccessMode should be used to enable them.
hasUnalignedBufferAccessEnabled() and hasUnalignedDSAccessEnabled() can be
now used to quickly check both.
Differential Revision: https://reviews.llvm.org/D84522
Adjust alignment requirements for ds_read/write_b96/b128.
GFX9 and onwards allow misaligned access for reads and writes but only if
SH_MEM_CONFIG.alignment_mode allows it.
UnalignedDSAccess is set on GCN subtargets from GFX9 onward to let us know if we
can relax alignment requirements.
UnalignedAccessMode acts similary to UnalignedBufferAccess for DS instructions
but only from GFX9 onward and is supposed to match alignment_mode. By default
alignment of 4 is required.
Differential Revision: https://reviews.llvm.org/D82788
Summary:
- HIP uses an unsized extern array `extern __shared__ T s[]` to declare
the dynamic shared memory, which size is not known at the
compile time.
Reviewers: arsenm, yaxunl, kpyzhov, b-sumner
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82496
Assuming this is used to split a memory access into smaller pieces,
the new access should still have the same aliasing properties as the
original memory access. As far as I can tell, this wasn't
intentionally dropped. It may be necessary to drop this if you are
moving the operand outside of the bounds of the original object in
such a way that it may alias another IR object, but I don't think any
of the existing users are doing this. Some of the uses widen into
unused alignment padding, which I think is OK.
Custom lower and widen odd sized loads up to the alignment. The
default set of legalization actions doesn't have a way to represent
this. This fixes naturally aligned <3 x s8> and <3 x s16> loads.
This also starts moving towards eliminating the buggy and
overcomplicated legalization rules for narrowing. All the memory size
changes should be done in the lower or custom action, not NarrowScalar
/ FewerElements. These currently have redundant and ambiguous code
with the lower action.
The SGPR spills happen in SILowerSGPRSpills() and allSGPRSpillsAreDead()
make sure there are no SGPR spills pending during PEI. But the FP/BP
spills happen during PEI and are exceptions.
Use actual frame indices of FP/BP in allSGPRSpillsAreDead() to
accommodate the exceptions.
Differential Revision: https://reviews.llvm.org/D86291
When sampling from images with coordinates that only have 16 bit
accuracy, convert the image intrinsic call to use a16 or g16.
This does only happen if the target hardware supports it.
An alternative would be to always apply this combination, independent of
the target hardware and extend 16 bit arguments to 32 bit arguments
during legalization. To me, this sounds like an unnecessary roundtrip
that could prevent some further InstCombine optimizations.
Differential Revision: https://reviews.llvm.org/D85887
The `UnrollMaxBlockToAnalyze` parameter is used at the stage when we have no
information about a loop body BB cost. In some cases, e.g. for simple loop
```
for(int i=0; i<32; ++i){
D = Arr2[i*8 + C1];
Arr1[i*64 + C2] += C3 * D;
Arr1[i*64 + C2 + 2048] += C4 * D;
}
```
current default parameter value is not enough to run deeper cost analyze so the
loop is not completely unrolled.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D86248
Previously we weren't adding the LegalizerInfo to the post-legalizer
combiner. Since that's fixed, we don't need to try to filter out the
one case that was breaking.
Summary:
When the resource descriptor is of vgpr, we need a waterfall loop
to read into a sgpr. In this patchm we generalized the implementation
to work for any regster class sizes, and extend the work to MIMG
instructions.
Fixes: SWDEV-223405
Reviewers:
arsenm, nhaehnle
Differential Revision:
https://reviews.llvm.org/D82603
Previously, it would successfully select and assert if not HSA or PAL
when expanding the pseudoinstruction. We don't need the
pseudoinstruction anymore since we know the total size after
legalization.
The code to determine the value size was overcomplicated and only
correct in the case where the result register already had a register
class assigned. We can always take the size directly from the
register's type.
The previous implementation was incorrect, and based off incorrect
instruction definitions. Unfortunately we can't match natural
addressing in a lot of cases due to the shift/scale applied in
getelementptrs. This relies on reducing the 64-bit shift to 32-bits.
We may have an SGPR->VGPR copy if a totally uniform pointer
calculation is used for a VGPR pointer operand.
Also hack around a bug in MUBUF matching which would incorrectly use
MUBUF for global when flat was requested. This should really be a
predicate on the parent pattern, but the DAG always checked this
manually inside the complex pattern.
If the same stream object is used for multiple compiles, the PAL metadata from eariler compilations will leak into later one. See https://github.com/GPUOpen-Drivers/llpc/issues/882 for how this is happening in LLPC.
No tests were added because multiple compiles will have to happen using the same pass manager, and I do not see a setup for that on the LLVM side. Let me know if there is a good way to test this.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D85667
This was always set to 0. Use a default value of 0 in this context to
satisfy the instruction definition patterns. We can't unconditionally
use SLC with a default value of 0 due to limitations in TableGen's
handling of defaulted operands when followed by non-default operands.
The VGPR component is a 32-bit offset, not 64-bits.
I'm not sure what the correct syntax is for this. This maintains the
vaddr position and leaves saddr in the end "off" position. This is
particularly terrible for stores, since the operand order is now <vgpr
offset>, <data>, <sgpr base>, splitting the pointer operands. I
suppose this is a logical consequence from the mistake of not putting
the data operand first. I'm not sure what sp3 does.
This was only used for matching the saddr addressing mode of global
instructions, but this was not implemented correctly. The instruction
definitions aren't even correct, and are defined as using a 64-bit
VGPR component. Eliminate this pass to enable correcting the
instruction definitions. A new matching implementation can work in
GlobalISel or relying on DAG divergence information for the base
address.
It did not process hazard for ds_permute because it does not
load or store even though it is DS.
Differential Revision: https://reviews.llvm.org/D86003
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
Unfortunately this ends up not working as expected on targets with
16-bit operations due to AMDGPUCodeGenPrepare's promotion of uniform
16-bit ops to i32.
The vector case annoyingly requires switching the checked opcode,
since constants for vectors aren't directly handled.
I also need to think more carefully about whether this is valid for i1.
PAL recently got support for multiple ELF sections and relocations,
therefore we can now use .rodata sections instead of forcing constants
into .text.
Differential Revision: https://reviews.llvm.org/D85895
If we need a scratch register for the spill don't use the same scratch
register that is being used for the MBUF offset.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D85772
SIPreEmitPeephole does not process all terminators, which means
it can fail to handle SI_RETURN_TO_EPILOG if immediately preceeded
by a branch to the early exit block.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D85872
From the code after the 'break', they are processing 64bit scalar and
vector bitcast. So I think the break-condition should be (cond1 || cond2)
This means we only execute following code if (64bit and dest-is-vector).
Also remove a previous fix which is not needed with this new fix.
(introduced in: 1349a04ef5)
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D85804
This mirrors the support for the equivalent extracts. This also
creates a huge mess that would be greatly improved if we had any bit
operation combines.
ISD::ATOMIC_STORE arbitrarily has the operands in the opposite order
from regular ISD::STORE, which always introduced an annoying
duplication of patterns to handle both cases. Since in GlobalISel
there's just the one G_STORE, we need to swap the operands to
correctly emit the type check for the pointer operand.
Some work started in 20aafa3156 to
migrate SelectionDAG to use ISD::STORE for atomics, but that work
seems to have stalled. Since this is the pretty much the last
operation which matters which isn't supported for AMDGPU, use this
compatibility hack to unblock declaring it functionally complete.
Not sure what's going on with the pending_phis AArch64 test. It seems
it didn't always use atomics, and I'm not sure what it was originally
testing matters anymore.
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220