1032 lines
42 KiB
C++
1032 lines
42 KiB
C++
//===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic and helpers to expose Linalg transforms as rewrite
|
|
// patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Affine/Utils.h"
|
|
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <type_traits>
|
|
|
|
#define DEBUG_TYPE "linalg-transforms"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transformations exposed as rewrite patterns.
|
|
//===----------------------------------------------------------------------===//
|
|
// Marker used as attribute name in generated Linalg rewriting transformations.
|
|
const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
|
|
"__internal_linalg_transform__";
|
|
|
|
mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
|
|
ArrayRef<Identifier> matchDisjunction, Optional<Identifier> replacement)
|
|
: matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
|
|
replacement(replacement) {}
|
|
|
|
mlir::linalg::LinalgTransformationFilter::LinalgTransformationFilter(
|
|
FilterFunction f, ArrayRef<Identifier> matchDisjunction,
|
|
Optional<Identifier> replacement)
|
|
: filters(),
|
|
matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
|
|
replacement(replacement) {
|
|
if (f)
|
|
filters.push_back(f);
|
|
}
|
|
|
|
LogicalResult mlir::linalg::LinalgTransformationFilter::checkAndNotify(
|
|
PatternRewriter &rewriter, Operation *op) const {
|
|
if (llvm::any_of(filters,
|
|
[&](const FilterFunction &f) { return failed(f(op)); }))
|
|
return failure();
|
|
|
|
auto attr = op->template getAttrOfType<StringAttr>(
|
|
LinalgTransforms::kLinalgTransformMarker);
|
|
|
|
if (!attr) {
|
|
// 1. Has no filter case and matchDisjunction is empty.
|
|
if (matchDisjunction.empty())
|
|
return success();
|
|
|
|
// 2. Has no filter but was expecting a filter.
|
|
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
|
|
diag << " does not have any filter from list: ";
|
|
interleaveComma(matchDisjunction, diag);
|
|
});
|
|
}
|
|
|
|
// 4. Match explicit filter.
|
|
for (auto filter : matchDisjunction)
|
|
if (attr.getValue() == filter)
|
|
return success();
|
|
|
|
// 5. Fail to match.
|
|
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
|
|
diag << " does not have any filter from list: ";
|
|
interleaveComma(matchDisjunction, diag);
|
|
});
|
|
}
|
|
|
|
void mlir::linalg::LinalgTransformationFilter::
|
|
replaceLinalgTransformationFilter(PatternRewriter &rewriter,
|
|
Operation *op) const {
|
|
if (replacement.hasValue())
|
|
op->setAttr(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getStringAttr(replacement.getValue().strref()));
|
|
else
|
|
op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getContext()));
|
|
}
|
|
|
|
LinalgTilingOptions &
|
|
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
|
|
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPointToStart(
|
|
&op->getParentOfType<FuncOp>().getBody().front());
|
|
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
|
|
Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
|
|
return v;
|
|
}));
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
/// Try to compute a static bounding box for `operand`
|
|
/// Return success if either:
|
|
/// 1. The operand is already statically shaped, `result` is left unchanged.
|
|
/// 2. The operand is (partially) dynamic, `result` is the result of a freshly
|
|
/// created PadTensorOp.
|
|
/// Return failure if the operand cannot be padded to a static shape.
|
|
static LogicalResult padOperandToSmallestStaticBoundingBox(
|
|
PatternRewriter &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand,
|
|
const PaddingValueComputationFunction &paddingFunc, Value &result) {
|
|
// Already static shape, no need to pad.
|
|
if (llvm::none_of(opToPad.getShape(opOperand), ShapedType::isDynamic))
|
|
return success();
|
|
auto sliceOp = opOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
|
|
// Not a slice op, cannot construct a static bounding box.
|
|
if (!sliceOp)
|
|
return failure();
|
|
SmallVector<int64_t> staticSizes;
|
|
staticSizes.reserve(opToPad.getRank(opOperand));
|
|
auto shapedOp = cast<OffsetSizeAndStrideOpInterface>(sliceOp.getOperation());
|
|
for (auto size : shapedOp.getMixedSizes()) {
|
|
auto indexAttr = size.is<Attribute>()
|
|
? size.get<Attribute>().dyn_cast<IntegerAttr>()
|
|
: linalg::getSmallestBoundingIndex(size.get<Value>());
|
|
// SmallestBoundingIndex must exist for all sizes.
|
|
// For now return an error if we can't find it.
|
|
if (!indexAttr)
|
|
return rewriter.notifyMatchFailure(
|
|
opToPad, "No constant bounding box can be found for padding");
|
|
staticSizes.push_back(indexAttr.getInt());
|
|
}
|
|
Value pad = paddingFunc(rewriter, *opOperand);
|
|
auto staticTensorType = RankedTensorType::get(
|
|
staticSizes, getElementTypeOrSelf(opOperand->get()));
|
|
result = linalg::PadTensorOp::createPadHighOp(
|
|
staticTensorType, opOperand->get(), pad, opToPad->getLoc(), rewriter);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
linalg::rewriteAsPaddedOp(PatternRewriter &rewriter, LinalgOp opToPad,
|
|
const PaddingValueComputationFunction &paddingFunc,
|
|
LinalgOp &paddedOp) {
|
|
Location loc = opToPad->getLoc();
|
|
|
|
// If the op is fully static, it does not need padding.
|
|
// TODO: there are cases where we may still want to pad to larger sizes.
|
|
assert(opToPad.hasTensorSemantics() &&
|
|
"expected operation to have tensor semantics");
|
|
if (!opToPad.hasDynamicShape())
|
|
return success();
|
|
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
// Set IP after op because we also take the dims of the original output.
|
|
rewriter.setInsertionPointAfter(opToPad);
|
|
// Make a copy of the shaped operands and update it.
|
|
SmallVector<Value> newOperands;
|
|
newOperands.reserve(opToPad.getNumInputsAndOutputs());
|
|
for (OpOperand *opOperand : opToPad.getInputAndOutputOperands()) {
|
|
Value paddedOperand;
|
|
// If padding was requested but the shape cannot be bounded statically then
|
|
// the pattern fails to apply.
|
|
if (failed(padOperandToSmallestStaticBoundingBox(
|
|
rewriter, opToPad, opOperand, paddingFunc, paddedOperand)))
|
|
return failure();
|
|
newOperands.push_back(paddedOperand ? paddedOperand : opOperand->get());
|
|
}
|
|
|
|
// Clone `opToPad` to operate on the statically padded shapes.
|
|
auto resultTensorTypes =
|
|
ValueRange(newOperands).take_back(opToPad.getNumOutputs()).getTypes();
|
|
paddedOp = opToPad.clone(rewriter, loc, resultTensorTypes, newOperands);
|
|
|
|
// Recover the slice out of the new static results. This keeps the original
|
|
// linalg op around because it uses the dims of the original results.
|
|
// This later folds away.
|
|
SmallVector<Value> paddedSubviewResults;
|
|
paddedSubviewResults.reserve(opToPad->getNumResults());
|
|
SetVector<Operation *> newUsersOfOpToPad;
|
|
for (auto it : llvm::zip(opToPad->getResults(), paddedOp->getResults())) {
|
|
auto rank = std::get<0>(it).getType().cast<RankedTensorType>().getRank();
|
|
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
|
|
auto sizes = llvm::to_vector<4>(llvm::map_range(
|
|
llvm::seq<unsigned>(0, rank), [&](unsigned d) -> OpFoldResult {
|
|
auto dimOp = rewriter.create<tensor::DimOp>(loc, std::get<0>(it), d);
|
|
newUsersOfOpToPad.insert(dimOp);
|
|
return dimOp.getResult();
|
|
}));
|
|
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
|
|
paddedSubviewResults.push_back(rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, std::get<1>(it), offsets, sizes, strides));
|
|
}
|
|
// Replace the transient `opToPad` locally, except for uses that we just
|
|
// created for the purpose of extracting the dims.
|
|
rewriter.replaceOpWithIf(opToPad, paddedSubviewResults, [&](OpOperand &opOp) {
|
|
return !newUsersOfOpToPad.contains(opOp.getOwner());
|
|
});
|
|
return success();
|
|
}
|
|
|
|
/// Linalg base tiling pattern.
|
|
mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
|
|
StringRef opName, MLIRContext *context, LinalgTilingOptions options,
|
|
LinalgTransformationFilter filter, PatternBenefit benefit)
|
|
: RewritePattern(opName, benefit, context), filter(filter),
|
|
options(options) {}
|
|
|
|
mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
|
|
MLIRContext *context, LinalgTilingOptions options,
|
|
LinalgTransformationFilter filter, PatternBenefit benefit)
|
|
: RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter),
|
|
options(options) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
|
|
Operation *op, PatternRewriter &rewriter, TiledLinalgOp &result) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(filter.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
|
|
Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
|
|
|
|
if (!res)
|
|
return failure();
|
|
|
|
// Setup RAII guard to return properly.
|
|
LinalgOp tiledOp = res->op;
|
|
auto guard = llvm::make_scope_exit([&]() {
|
|
// Return relevant information to derived pattern.
|
|
result = *res;
|
|
// Replace filter on both tiledOp and tiledAndPaddedOp, if necessary.
|
|
filter.replaceLinalgTransformationFilter(rewriter, tiledOp);
|
|
if (tiledOp != res->op)
|
|
filter.replaceLinalgTransformationFilter(rewriter, res->op);
|
|
});
|
|
|
|
// Consider padding on the fly only if the op has tensor semantics.
|
|
if (!options.paddingValueComputationFunction ||
|
|
!linalgOp.hasTensorSemantics())
|
|
return success();
|
|
|
|
// Try to pad on the fly by rewriting res->op as a padded op. If successful,
|
|
// `res.op` is rewritten in static form with padded operands.
|
|
LinalgOp paddedOp;
|
|
if (succeeded(rewriteAsPaddedOp(rewriter, res->op,
|
|
options.paddingValueComputationFunction,
|
|
paddedOp))) {
|
|
res->op = paddedOp;
|
|
// Do not perform replacement of `linalgOp`, let the derived patterns
|
|
// do this as they see fit, from the resulting TiledLinalgOp.
|
|
return success();
|
|
}
|
|
// Set so RAII guard does not propagate TiledLinalgOp to `result`.
|
|
return failure();
|
|
}
|
|
|
|
static ValueRange getTiledOpResult(TiledLinalgOp tiledOp) {
|
|
if (tiledOp.loops.empty())
|
|
return tiledOp.op.getOperation()->getResults();
|
|
return tiledOp.loops.front()->getResults();
|
|
}
|
|
|
|
static ValueRange
|
|
getTiledAndFusedOpResult(TiledAndFusedLinalgOps tiledAndFusedOp) {
|
|
if (tiledAndFusedOp.fusedLoops.empty())
|
|
return tiledAndFusedOp.op.getOperation()->getResults();
|
|
return tiledAndFusedOp.fusedLoops.front()->getResults();
|
|
}
|
|
|
|
mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
|
|
StringRef opName, MLIRContext *context,
|
|
const LinalgDependenceGraph &dependenceGraph,
|
|
LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
|
|
LinalgTransformationFilter filter, LinalgTransformationFilter fusedOpMarker,
|
|
LinalgTransformationFilter originalOpMarker, PatternBenefit benefit)
|
|
: RewritePattern(opName, benefit, context, {}),
|
|
dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
|
|
fusionOptions(fusionOptions), filter(filter),
|
|
fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
// TODO: remove hasIndexSemantics check once index ops are supported.
|
|
if (!linalgOp || linalgOp.hasIndexSemantics())
|
|
return failure();
|
|
if (failed(filter.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
|
|
DenseSet<Operation *> producers;
|
|
producers.insert(linalgOp);
|
|
for (auto dependence : dependenceGraph.getDependentOperationsInto(linalgOp)) {
|
|
Optional<unsigned> operandNumber = dependence.getIndexingOpViewOperandNum();
|
|
// When looking at dependences into, indexingOp is always OpOperand. We
|
|
// could assert, but continue if this is not the case.
|
|
if (!operandNumber)
|
|
continue;
|
|
if (!fusionOptions.indicesToFuse.count(operandNumber.getValue()))
|
|
continue;
|
|
if (isa<LinalgOp>(dependence.getDependentOp()))
|
|
producers.insert(dependence.getDependentOp());
|
|
}
|
|
|
|
SmallVector<LinalgOp, 1> fusionOps;
|
|
for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
|
|
++it) {
|
|
auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
|
|
if (producerLinalgOp && producers.count(producerLinalgOp))
|
|
fusionOps.push_back(producerLinalgOp);
|
|
}
|
|
fusionOps.push_back(linalgOp);
|
|
|
|
SmallVector<Value, 4> tileSizes =
|
|
tilingOptions.tileSizeComputationFunction(rewriter, op);
|
|
LinalgTilingOptions instanceTilingOptions = tilingOptions;
|
|
instanceTilingOptions.setTileSizes(tileSizes);
|
|
Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
|
|
rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
|
|
if (!tiledAndFusedOps)
|
|
return failure();
|
|
|
|
// Tile the unfused loops;
|
|
SmallVector<Value, 4> unfusedLoopTileSizes;
|
|
Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0);
|
|
for (auto tileSize : enumerate(tileSizes)) {
|
|
if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
|
|
unfusedLoopTileSizes.push_back(zero);
|
|
else
|
|
unfusedLoopTileSizes.push_back(tileSize.value());
|
|
}
|
|
// Tile the loop only if there is a non-zero tile size.
|
|
if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
|
|
unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
|
|
if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
|
|
if (auto cst = val.getDefiningOp<ConstantIndexOp>())
|
|
return cst.getValue() != 0;
|
|
return true;
|
|
})) {
|
|
LinalgTilingOptions unfusedTilingOptions = tilingOptions;
|
|
unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
|
|
Optional<TiledLinalgOp> unfusedTiledOp =
|
|
tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
|
|
if (!unfusedTiledOp)
|
|
return failure();
|
|
rewriter.replaceOp(tiledAndFusedOps->op,
|
|
getTiledOpResult(unfusedTiledOp.getValue()));
|
|
tiledAndFusedOps->op = unfusedTiledOp->op;
|
|
}
|
|
op->replaceAllUsesWith(getTiledAndFusedOpResult(tiledAndFusedOps.getValue()));
|
|
|
|
filter.replaceLinalgTransformationFilter(rewriter,
|
|
tiledAndFusedOps->op.getOperation());
|
|
for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
|
|
fusedOpMarker.replaceLinalgTransformationFilter(rewriter,
|
|
fusedOp.getOperation());
|
|
}
|
|
for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
|
|
originalOpMarker.replaceLinalgTransformationFilter(
|
|
rewriter, origProducerOp.getOperation());
|
|
}
|
|
rewriter.updateRootInPlace(op, [&]() {
|
|
originalOpMarker.replaceLinalgTransformationFilter(rewriter, op);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
/// Linalg generic interchange pattern.
|
|
mlir::linalg::GenericOpInterchangePattern::GenericOpInterchangePattern(
|
|
MLIRContext *context, ArrayRef<unsigned> interchangeVector,
|
|
LinalgTransformationFilter filter, PatternBenefit benefit)
|
|
: OpRewritePattern(context, benefit), filter(filter),
|
|
interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
|
|
|
|
LogicalResult mlir::linalg::GenericOpInterchangePattern::matchAndRewrite(
|
|
GenericOp genericOp, PatternRewriter &rewriter) const {
|
|
if (failed(filter.checkAndNotify(rewriter, genericOp)))
|
|
return failure();
|
|
if (failed(interchangeGenericOpPrecondition(genericOp, interchangeVector)))
|
|
return failure();
|
|
|
|
// TODO: figure out how this interplays with named ops. In particular this
|
|
// should break the named op property.
|
|
rewriter.updateRootInPlace(genericOp, [&]() {
|
|
interchangeGenericOp(rewriter, genericOp, interchangeVector);
|
|
// New filter if specified.
|
|
filter.replaceLinalgTransformationFilter(rewriter, genericOp);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
|
|
StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
|
|
LinalgTransformationFilter filter, PatternBenefit benefit)
|
|
: RewritePattern(opName, benefit, context, {}), filter(filter),
|
|
options(options) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
if (failed(filter.checkAndNotify(rewriter, op)))
|
|
return failure();
|
|
if (failed(promoteSubviewsPrecondition(op, options)))
|
|
return failure();
|
|
|
|
// TODO: We cannot use root update here. This pattern is creating other ops,
|
|
// so if the promotion fails, those need to be cleaned up, which doesnt seem
|
|
// to be happening here. So to fail properly, we should be cloning the op and
|
|
// deleting the previous op. This needs more investigation.
|
|
rewriter.startRootUpdate(op);
|
|
Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
|
|
if (!promotedOp) {
|
|
rewriter.cancelRootUpdate(op);
|
|
return op->emitError("subview promotion failed");
|
|
}
|
|
rewriter.finalizeRootUpdate(op);
|
|
filter.replaceLinalgTransformationFilter(rewriter, op);
|
|
return success();
|
|
}
|
|
|
|
mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
|
|
MLIRContext *context, LinalgTransformationFilter filter,
|
|
PatternBenefit benefit)
|
|
: RewritePattern(MatchAnyOpTypeTag(), benefit, context), filter(filter) {}
|
|
|
|
mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
|
|
StringRef opName, MLIRContext *context, LinalgTransformationFilter filter,
|
|
PatternBenefit benefit)
|
|
: RewritePattern(opName, benefit, context, {}), filter(filter) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(filter.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
SmallVector<Value> newResults;
|
|
if (failed(vectorizeLinalgOp(rewriter, op, newResults)))
|
|
return failure();
|
|
if (!newResults.empty())
|
|
rewriter.replaceOp(op, newResults);
|
|
else
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::linalg::applyStagedPatterns(
|
|
Operation *op, ArrayRef<FrozenRewritePatternSet> stage1Patterns,
|
|
const FrozenRewritePatternSet &stage2Patterns,
|
|
function_ref<LogicalResult(Operation *)> stage3Lambda) {
|
|
unsigned iteration = 0;
|
|
(void)iteration;
|
|
for (const auto &patterns : stage1Patterns) {
|
|
LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
|
|
<< *op);
|
|
if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
|
|
LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
|
|
return failure();
|
|
}
|
|
LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
|
|
<< *op);
|
|
if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
|
|
LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
|
|
return failure();
|
|
}
|
|
LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
|
|
<< *op);
|
|
if (stage3Lambda) {
|
|
if (failed(stage3Lambda(op)))
|
|
return failure();
|
|
LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
|
|
<< *op);
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Traverse the `dims` and substitute known min or max expressions returned by
|
|
/// the lambda |getMinMaxExpr|.
|
|
static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims,
|
|
SmallVectorImpl<Value> &symbols,
|
|
GetMinMaxExprFn getMinMaxExpr) {
|
|
auto exprs = llvm::to_vector<4>(map.getResults());
|
|
for (AffineExpr &expr : exprs) {
|
|
bool substituted = true;
|
|
while (substituted) {
|
|
substituted = false;
|
|
for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
|
|
Value dim = dims[dimIdx];
|
|
auto minMax = getMinMaxExpr(dim, dims, symbols);
|
|
if (!minMax)
|
|
continue;
|
|
AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
|
|
LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
|
|
LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
|
|
// Substitute occurrences of `dimExpr` by either the min expression or
|
|
// the max expression depending on whether the value is used with a
|
|
// positive or negative coefficient.
|
|
AffineExpr substitutedExpr =
|
|
substWithMin(expr, dimExpr, minMax->first, minMax->second);
|
|
LLVM_DEBUG(DBGS() << "After: " << substitutedExpr << "\n");
|
|
substituted = (substitutedExpr != expr);
|
|
expr = substitutedExpr;
|
|
}
|
|
}
|
|
|
|
// Cleanup and simplify the results.
|
|
// This needs to happen outside of the loop iterating on dims.size() since
|
|
// it modifies dims.
|
|
SmallVector<Value, 4> operands(dims.begin(), dims.end());
|
|
operands.append(symbols.begin(), symbols.end());
|
|
auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
|
|
exprs.front().getContext());
|
|
|
|
LLVM_DEBUG({
|
|
DBGS() << "Map to simplify: " << map << "\n";
|
|
DBGS() << "Operands:\n";
|
|
for (Value v : operands)
|
|
DBGS() << v << "\n";
|
|
});
|
|
|
|
// Pull in affine.apply operations and compose them fully into the
|
|
// result.
|
|
fullyComposeAffineMapAndOperands(&map, &operands);
|
|
canonicalizeMapAndOperands(&map, &operands);
|
|
map = simplifyAffineMap(map);
|
|
// Assign the results.
|
|
exprs.assign(map.getResults().begin(), map.getResults().end());
|
|
dims.assign(operands.begin(), operands.begin() + map.getNumDims());
|
|
symbols.assign(operands.begin() + map.getNumDims(), operands.end());
|
|
|
|
LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
|
|
}
|
|
|
|
assert(!exprs.empty() && "Unexpected empty exprs");
|
|
return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
|
|
}
|
|
|
|
/// Traverse the dims of the AffineMap of `affineMinOp` and substitute
|
|
/// dimensions with known range by new expressions involving the min or max
|
|
/// expression:
|
|
/// - If the AffineDimExpr mapped to a known value has a positive sign, it
|
|
/// is replaced by the min expression.
|
|
/// - If the AffineDimExpr mapped to a known value has a negative sign, it is
|
|
/// replaced by the max expression.
|
|
/// All known values are iteratively replaced.
|
|
/// This is used as an intermediate step in computing bounding boxes and
|
|
/// canonicalize AffineMinOps. All dim and symbol operands are assumed to have
|
|
/// positive values (positive orthant assumptions).
|
|
/// Return a new AffineMap, dims and symbols that have been canonicalized and
|
|
/// simplified.
|
|
AffineMapAndOperands
|
|
mlir::linalg::substituteMin(AffineMinOp affineMinOp,
|
|
GetMinMaxExprFn getMinMaxExpr) {
|
|
AffineMapAndOperands res{affineMinOp.getAffineMap(),
|
|
SmallVector<Value>(affineMinOp.getDimOperands()),
|
|
SmallVector<Value>(affineMinOp.getSymbolOperands())};
|
|
res.map = substitute(affineMinOp.getAffineMap(), res.dims, res.symbols,
|
|
getMinMaxExpr);
|
|
return res;
|
|
}
|
|
|
|
LogicalResult AffineMinRangeCanonicalizationPattern::matchAndRewrite(
|
|
AffineMinOp minOp, PatternRewriter &rewriter) const {
|
|
LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
|
|
<< "\n");
|
|
|
|
auto affineMapAndOperands = substituteMin(minOp, getMinMaxFn);
|
|
AffineMap map = affineMapAndOperands.map;
|
|
|
|
LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
|
|
|
|
// Check whether any of the expressions, when subtracted from all other
|
|
// expressions, produces only >= 0 constants. If so, it is the min.
|
|
for (auto e : minOp.getAffineMap().getResults()) {
|
|
LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
|
|
if (!e.isSymbolicOrConstant())
|
|
continue;
|
|
|
|
auto isNonPositive = [](AffineExpr e) {
|
|
if (auto cst = e.dyn_cast<AffineConstantExpr>())
|
|
return cst.getValue() < 0;
|
|
return true;
|
|
};
|
|
|
|
// Build the subMap and check everything is statically known to be
|
|
// positive.
|
|
SmallVector<AffineExpr, 4> subExprs;
|
|
subExprs.reserve(map.getNumResults());
|
|
for (auto ee : map.getResults())
|
|
subExprs.push_back(ee - e);
|
|
MLIRContext *ctx = minOp.getContext();
|
|
AffineMap subMap = simplifyAffineMap(
|
|
AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
|
|
LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
|
|
if (llvm::any_of(subMap.getResults(), isNonPositive))
|
|
continue;
|
|
|
|
// Static min found.
|
|
if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
|
|
} else {
|
|
auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
|
|
SmallVector<Value> resultOperands = affineMapAndOperands.dims;
|
|
llvm::append_range(resultOperands, affineMapAndOperands.symbols);
|
|
canonicalizeMapAndOperands(&resultMap, &resultOperands);
|
|
resultMap = simplifyAffineMap(resultMap);
|
|
rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
|
|
resultOperands);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
static SmallVector<StringRef> getNParallelLoopsAttrs(unsigned nParallelLoops) {
|
|
return SmallVector<StringRef>(nParallelLoops, getParallelIteratorTypeName());
|
|
}
|
|
|
|
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp (to initialize
|
|
/// with pad_val) and GenericOp (to copy contents).
|
|
LogicalResult PadTensorOpTransformationPattern::matchAndRewrite(
|
|
linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
|
|
|
|
auto inputShapedType = padOp.source().getType().cast<ShapedType>();
|
|
auto resultShapedType = padOp.result().getType().cast<ShapedType>();
|
|
|
|
// Bail on non-static shapes.
|
|
if (!inputShapedType.hasStaticShape())
|
|
return failure();
|
|
if (!resultShapedType.hasStaticShape())
|
|
return failure();
|
|
|
|
// Only support padding with a constant for now, i.e. either:
|
|
// 1. A BBarg from a different block.
|
|
// 2. A value defined outside of the current block.
|
|
Block &block = padOp.region().front();
|
|
auto yieldOp = cast<YieldOp>(block.getTerminator());
|
|
assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
|
|
Value padValue = yieldOp.values().front();
|
|
Operation *definingOp = padValue.getDefiningOp();
|
|
if (definingOp && definingOp->getBlock() == &block)
|
|
return failure();
|
|
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
|
|
return failure();
|
|
|
|
// Create tensor with the padded shape
|
|
Location loc = padOp.getLoc();
|
|
SmallVector<Value> indices(resultShapedType.getRank(),
|
|
rewriter.create<ConstantIndexOp>(loc, 0));
|
|
Value initTensor = rewriter.create<InitTensorOp>(
|
|
loc, resultShapedType.getShape(), resultShapedType.getElementType());
|
|
|
|
// Initialize tensor with the pad value
|
|
Value tmpTensor =
|
|
rewriter.create<linalg::FillOp>(loc, padValue, initTensor).result();
|
|
|
|
// Copy original contents into new tensor
|
|
// Uses linalg.generic, but could be done with tensor.insert_slice
|
|
SmallVector<AffineExpr, 4> outputExprs;
|
|
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
|
|
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
|
|
padOp.static_low()[i].cast<IntegerAttr>().getInt());
|
|
}
|
|
|
|
SmallVector<AffineMap, 2> transferMaps = {
|
|
rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
|
|
AffineMap::get(resultShapedType.getRank(),
|
|
/*symbolCount=*/0, outputExprs, rewriter.getContext())};
|
|
|
|
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
|
|
padOp, resultShapedType, padOp.source(), tmpTensor, transferMaps,
|
|
getNParallelLoopsAttrs(resultShapedType.getRank()),
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
|
|
nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Filling `dest` using FillOp constant padding value if possible.
|
|
/// Otherwise, generate a tensor::GenerateOp.
|
|
Value GeneralizePadTensorOpPattern::createFillOrGenerateOp(
|
|
PatternRewriter &rewriter, PadTensorOp padOp, Value dest,
|
|
const SmallVector<Value> &dynSizes) const {
|
|
auto padValue = padOp.getConstantPaddingValue();
|
|
if (padValue)
|
|
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
|
|
|
|
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
|
|
auto generateOp = rewriter.create<tensor::GenerateOp>(
|
|
padOp.getLoc(), padOp.getResultType(), dynSizes);
|
|
// Copy region to new op.
|
|
BlockAndValueMapping bvm;
|
|
padOp.region().cloneInto(&generateOp.getRegion(), bvm);
|
|
// Rewrite linalg::YieldOp to tensor::YieldOp.
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
auto yieldOp =
|
|
dyn_cast<linalg::YieldOp>(generateOp.getRegion().front().getTerminator());
|
|
assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator");
|
|
assert(yieldOp.values().size() == 1);
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
rewriter.replaceOpWithNewOp<tensor::YieldOp>(yieldOp, yieldOp.values()[0]);
|
|
return generateOp;
|
|
}
|
|
|
|
LogicalResult
|
|
GeneralizePadTensorOpPattern::matchAndRewrite(PadTensorOp padOp,
|
|
PatternRewriter &rewriter) const {
|
|
// Given an OpFoldResult, return an index-typed value.
|
|
auto getIdxValue = [&](OpFoldResult ofr) {
|
|
if (auto val = ofr.dyn_cast<Value>())
|
|
return val;
|
|
return rewriter
|
|
.create<ConstantIndexOp>(
|
|
padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
|
|
.getResult();
|
|
};
|
|
|
|
auto resultType = padOp.getResultType();
|
|
// Compute size of InitTensorOp. Any combination of static/dynamic is
|
|
// supported.
|
|
SmallVector<Value> dynSizes;
|
|
SmallVector<int64_t> staticSizes;
|
|
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
|
|
if (resultType.isDynamicDim(dim)) {
|
|
auto srcSize = rewriter.createOrFold<tensor::DimOp>(padOp.getLoc(),
|
|
padOp.source(), dim);
|
|
// Add low and high padding value.
|
|
auto plusLow = rewriter.createOrFold<AddIOp>(
|
|
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
|
|
auto plusHigh = rewriter.createOrFold<AddIOp>(
|
|
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
|
|
dynSizes.push_back(plusHigh);
|
|
}
|
|
staticSizes.push_back(resultType.getDimSize(dim));
|
|
}
|
|
|
|
// Init tensor and fill it with padding.
|
|
Value init = rewriter.create<InitTensorOp>(
|
|
padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType());
|
|
Value fill = createFillOrGenerateOp(rewriter, padOp, init, dynSizes);
|
|
|
|
// Try optimize the copy of source.
|
|
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
|
|
return success();
|
|
|
|
// PadTensorOps cannot be optimized. Generate a InsertSliceOp instead
|
|
// for copying the PadOp source.
|
|
auto sourceType = padOp.getSourceType();
|
|
// Compute size of source of PadTensorOp.
|
|
SmallVector<OpFoldResult> srcSizes;
|
|
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
|
|
if (sourceType.isDynamicDim(dim)) {
|
|
srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
|
|
padOp.getLoc(), padOp.source(), dim));
|
|
} else {
|
|
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
|
|
}
|
|
}
|
|
// Strides of InsertSliceOp are all 1.
|
|
SmallVector<OpFoldResult> strides(sourceType.getRank(),
|
|
rewriter.getIndexAttr(1));
|
|
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
|
|
padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Given an OpFoldResult, return a Value. If the OpFoldResult is an Attribute,
|
|
/// it must be of type Integer.
|
|
static Value asValue(OpBuilder &builder, Location loc, OpFoldResult ofr) {
|
|
if (auto val = ofr.dyn_cast<Value>())
|
|
return val;
|
|
auto intVal = getConstantIntValue(ofr);
|
|
assert(intVal && "expected Value or IntegerAttr");
|
|
return builder.create<ConstantIndexOp>(loc, *intVal);
|
|
}
|
|
|
|
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
|
|
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
|
|
auto padOp = sliceOp.source().getDefiningOp<PadTensorOp>();
|
|
if (!padOp)
|
|
return failure();
|
|
// Only unit stride supported.
|
|
if (!sliceOp.hasUnitStride())
|
|
return failure();
|
|
// Only constant padding value supported.
|
|
Value padValue = padOp.getConstantPaddingValue();
|
|
if (!padValue)
|
|
return failure();
|
|
|
|
// Helper variables and functions for various arithmetic operations. These are
|
|
// used extensively for computing new offset/length and padding values.
|
|
Location loc = sliceOp.getLoc();
|
|
AffineExpr dim0, dim1;
|
|
bindDims(rewriter.getContext(), dim0, dim1);
|
|
// Add two integers.
|
|
auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
|
|
auto add = [&](Value v1, Value v2) {
|
|
return rewriter.createOrFold<AffineApplyOp>(loc, addMap,
|
|
ValueRange{v1, v2});
|
|
};
|
|
// Subtract two integers.
|
|
auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
|
|
auto sub = [&](Value v1, Value v2) {
|
|
return rewriter.createOrFold<AffineApplyOp>(loc, subMap,
|
|
ValueRange{v1, v2});
|
|
};
|
|
// Take the minimum of two integers.
|
|
auto idMap = AffineMap::getMultiDimIdentityMap(2, rewriter.getContext());
|
|
auto min = [&](Value v1, Value v2) {
|
|
return rewriter.createOrFold<AffineMinOp>(loc, idMap, ValueRange{v1, v2});
|
|
};
|
|
// Take the maximum of two integers.
|
|
auto max = [&](Value v1, Value v2) {
|
|
return rewriter.createOrFold<AffineMaxOp>(loc, idMap, ValueRange{v1, v2});
|
|
};
|
|
// Zero index-typed integer.
|
|
auto zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
|
|
// Helper function for filling static/dynamic low/high padding indices vectors
|
|
// of PadTensorOp.
|
|
auto appendIndex = [&](Value val, SmallVector<Value> &dynIndices,
|
|
SmallVector<int64_t> &staticIndices) {
|
|
if (auto constInt = getConstantIntValue(val)) {
|
|
staticIndices.push_back(*constInt);
|
|
} else {
|
|
staticIndices.push_back(ShapedType::kDynamicSize);
|
|
dynIndices.push_back(val);
|
|
}
|
|
};
|
|
|
|
// Compute new offsets, lengths, low padding, high padding.
|
|
SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
|
|
SmallVector<Value> newLows, newHighs;
|
|
SmallVector<int64_t> staticNewLows, staticNewHighs;
|
|
// Set to true if the original data source is not read at all.
|
|
bool hasZeroLen = false;
|
|
// Same as hasZeroLen, but for dynamic dimension sizes. This condition
|
|
// is true if the original data source turns out to be unused at runtime.
|
|
Value dynHasZeroLenCond;
|
|
|
|
int64_t rank = padOp.getSourceType().getRank();
|
|
for (unsigned dim = 0; dim < rank; ++dim) {
|
|
auto low = asValue(rewriter, loc, padOp.getMixedLowPad()[dim]);
|
|
bool hasLowPad = getConstantIntValue(low) != static_cast<int64_t>(0);
|
|
auto high = asValue(rewriter, loc, padOp.getMixedHighPad()[dim]);
|
|
bool hasHighPad = getConstantIntValue(high) != static_cast<int64_t>(0);
|
|
auto offset = asValue(rewriter, loc, sliceOp.getMixedOffsets()[dim]);
|
|
auto length = asValue(rewriter, loc, sliceOp.getMixedSizes()[dim]);
|
|
auto srcSize =
|
|
rewriter.createOrFold<tensor::DimOp>(loc, padOp.source(), dim);
|
|
|
|
// The new amount of low padding is `low - offset`. Except for the case
|
|
// where none of the low padding is read. In that case, the new amount of
|
|
// low padding is zero.
|
|
//
|
|
// Optimization: If low = 0, then newLow = 0.
|
|
Value newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
|
|
appendIndex(newLow, newLows, staticNewLows);
|
|
|
|
// Start reading the data from position `offset - low`. Since the original
|
|
// read may have started in the low padding zone, this value could be
|
|
// negative. Therefore, start reading from:
|
|
//
|
|
// max(offset - low, 0)
|
|
//
|
|
// The original read could also have started in the high padding zone.
|
|
// In that case, set the offset to the end of source tensor. The new
|
|
// ExtractSliceOp length will be zero in that case. (Effectively reading no
|
|
// data from the source.)
|
|
//
|
|
// Optimization: If low = 0, then the formula can be simplified.
|
|
Value newOffset = hasLowPad ? min(max(sub(offset, low), zero), srcSize)
|
|
: min(offset, srcSize);
|
|
newOffsets.push_back(getAsOpFoldResult(newOffset));
|
|
|
|
// The original ExtractSliceOp was reading until position `offset + length`.
|
|
// Therefore, the corresponding position within the source tensor is:
|
|
//
|
|
// offset + length - low
|
|
//
|
|
// In case the original ExtractSliceOp stopped reading within the low
|
|
// padding zone, this value can be negative. In that case, the end position
|
|
// of the read should be zero. (Similar to newOffset.)
|
|
//
|
|
// The original read could also have stopped in the high padding zone.
|
|
// In that case, set the end positition of the read should be the end of the
|
|
// source tensor. (Similar to newOffset.)
|
|
//
|
|
// endLoc = min(max(offset - low + length, 0), srcSize)
|
|
//
|
|
// The new ExtractSliceOp length is `endLoc - newOffset`.
|
|
//
|
|
// Optimization: If low = 0, then the formula can be simplified.
|
|
Value endLoc = hasLowPad
|
|
? min(max(add(sub(offset, low), length), zero), srcSize)
|
|
: min(add(offset, length), srcSize);
|
|
Value newLength = sub(endLoc, newOffset);
|
|
newLengths.push_back(getAsOpFoldResult(newLength));
|
|
|
|
// Check if newLength is zero. In that case, no SubTensorOp should be
|
|
// executed.
|
|
if (auto newLengthInt = getConstantIntValue(newLength)) {
|
|
hasZeroLen |= *newLengthInt == 0;
|
|
} else {
|
|
Value check = rewriter.create<CmpIOp>(
|
|
loc, CmpIPredicate::eq, newLength, zero);
|
|
dynHasZeroLenCond =
|
|
dynHasZeroLenCond
|
|
? rewriter.create<OrOp>(loc, check, dynHasZeroLenCond)
|
|
: check;
|
|
}
|
|
|
|
// The amount of high padding is simply the number of elements remaining,
|
|
// so that the result has the same length as the original ExtractSliceOp.
|
|
// As an optimization, if the original high padding is zero, then the new
|
|
// high padding must also be zero.
|
|
Value newHigh = hasHighPad ? sub(sub(length, newLength), newLow) : zero;
|
|
appendIndex(newHigh, newHighs, staticNewHighs);
|
|
|
|
// Only unit stride supported.
|
|
newStrides.push_back(rewriter.getIndexAttr(1));
|
|
}
|
|
|
|
// Insert cast to ensure that types match. (May be folded away.)
|
|
auto castResult = [&](Value val) -> Value {
|
|
auto castOp = rewriter.create<tensor::CastOp>(loc, sliceOp.getType(), val);
|
|
return castOp;
|
|
};
|
|
|
|
// In cases where the original data source is unused: Emit a GenerateOp and
|
|
// do not generate a SliceOp. (The result shape of the SliceOp would
|
|
// have a dimension of size 0, the semantics of which is unclear.)
|
|
auto createGenerateOp = [&]() {
|
|
// The shape of the GenerateOp is the same as the existing SliceOp.
|
|
RankedTensorType type = sliceOp.getType();
|
|
SmallVector<Value> dynDims;
|
|
for (unsigned i = 0; i < type.getRank(); ++i) {
|
|
if (type.isDynamicDim(i))
|
|
dynDims.push_back(asValue(rewriter, loc, sliceOp.getMixedSizes()[i]));
|
|
}
|
|
|
|
// Create GenerateOp.
|
|
auto generateOp = rewriter.create<tensor::GenerateOp>(loc, type, dynDims);
|
|
|
|
// Copy region to new op.
|
|
BlockAndValueMapping bvm;
|
|
padOp.region().cloneInto(&generateOp.getRegion(), bvm);
|
|
// Rewrite linalg::YieldOp to tensor::YieldOp.
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
auto yieldOp = dyn_cast<linalg::YieldOp>(
|
|
generateOp.getRegion().front().getTerminator());
|
|
assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator");
|
|
assert(yieldOp.values().size() == 1);
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
rewriter.replaceOpWithNewOp<tensor::YieldOp>(
|
|
yieldOp, yieldOp.values()[0]);
|
|
}
|
|
|
|
return castResult(generateOp);
|
|
};
|
|
|
|
// Emit a SliceOp and a PadTensorOp. Should not be used in cases where
|
|
// the result shape of the new SliceOp has a zero dimension.
|
|
auto createPadTensorOfSubTensor = [&]() {
|
|
// Create pad_tensor(subtensor(x)).
|
|
auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, padOp.source(), newOffsets, newLengths, newStrides);
|
|
auto newPadTensorOp = rewriter.create<PadTensorOp>(
|
|
loc, newSliceOp, staticNewLows, staticNewHighs, newLows, newHighs);
|
|
|
|
// Copy region to new PadTensorOp.
|
|
BlockAndValueMapping bvm;
|
|
padOp.region().cloneInto(&newPadTensorOp.getRegion(), bvm);
|
|
|
|
// Cast result and return.
|
|
return castResult(newPadTensorOp);
|
|
};
|
|
|
|
// Rewrite subtensor(pad_tensor(x)) into a GenerateOp it is statically known
|
|
// that the original data source x is not used.
|
|
if (hasZeroLen) {
|
|
rewriter.replaceOp(sliceOp, createGenerateOp());
|
|
return success();
|
|
}
|
|
|
|
// If there are dynamic dimensions: Generate an scf.if check to avoid creating
|
|
// SliceOps with result dimensions of size 0 at runtime.
|
|
if (dynHasZeroLenCond) {
|
|
auto result = rewriter.create<scf::IfOp>(
|
|
loc, sliceOp.getType(), dynHasZeroLenCond,
|
|
/*thenBuilder=*/
|
|
[&](OpBuilder &b, Location loc) {
|
|
b.create<scf::YieldOp>(loc, createGenerateOp());
|
|
},
|
|
/*elseBuilder=*/
|
|
[&](OpBuilder &b, Location loc) {
|
|
b.create<scf::YieldOp>(loc, createPadTensorOfSubTensor());
|
|
});
|
|
rewriter.replaceOp(sliceOp, result.getResult(0));
|
|
return success();
|
|
}
|
|
|
|
// All shapes are static and the data source is actually used. Rewrite into
|
|
// pad_tensor(subtensor(x)).
|
|
rewriter.replaceOp(sliceOp, createPadTensorOfSubTensor());
|
|
return success();
|
|
}
|