llvm-project/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp

95 lines
3.5 KiB
C++

//===- Bufferize.cpp - Bufferization for std ops --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements bufferization of std ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Bufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
namespace {
class BufferizeIndexCastOp : public OpConversionPattern<IndexCastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(IndexCastOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
IndexCastOp::Adaptor adaptor(operands);
auto tensorType = op.getType().cast<RankedTensorType>();
rewriter.replaceOpWithNewOp<IndexCastOp>(
op, adaptor.in(),
MemRefType::get(tensorType.getShape(), tensorType.getElementType()));
return success();
}
};
class BufferizeSelectOp : public OpConversionPattern<SelectOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(SelectOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!op.condition().getType().isa<IntegerType>())
return rewriter.notifyMatchFailure(op, "requires scalar condition");
SelectOp::Adaptor adaptor(operands);
rewriter.replaceOpWithNewOp<SelectOp>(
op, adaptor.condition(), adaptor.true_value(), adaptor.false_value());
return success();
}
};
} // namespace
void mlir::populateStdBufferizePatterns(BufferizeTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<BufferizeSelectOp, BufferizeIndexCastOp>(typeConverter,
patterns.getContext());
}
namespace {
struct StdBufferizePass : public StdBufferizeBase<StdBufferizePass> {
void runOnFunction() override {
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
target.addLegalDialect<scf::SCFDialect, StandardOpsDialect,
memref::MemRefDialect>();
populateStdBufferizePatterns(typeConverter, patterns);
// We only bufferize the case of tensor selected type and scalar condition,
// as that boils down to a select over memref descriptors (don't need to
// touch the data).
target.addDynamicallyLegalOp<IndexCastOp>(
[&](IndexCastOp op) { return typeConverter.isLegal(op.getType()); });
target.addDynamicallyLegalOp<SelectOp>([&](SelectOp op) {
return typeConverter.isLegal(op.getType()) ||
!op.condition().getType().isa<IntegerType>();
});
if (failed(
applyPartialConversion(getFunction(), target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createStdBufferizePass() {
return std::make_unique<StdBufferizePass>();
}