1179 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1179 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates allocas by either converting them into vectors or
 | 
						|
// by migrating them to local address space.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "GCNSubtarget.h"
 | 
						|
#include "Utils/AMDGPUBaseInfo.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/IntrinsicsAMDGPU.h"
 | 
						|
#include "llvm/IR/IntrinsicsR600.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "amdgpu-promote-alloca"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static cl::opt<bool> DisablePromoteAllocaToVector(
 | 
						|
  "disable-promote-alloca-to-vector",
 | 
						|
  cl::desc("Disable promote alloca to vector"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> DisablePromoteAllocaToLDS(
 | 
						|
  "disable-promote-alloca-to-lds",
 | 
						|
  cl::desc("Disable promote alloca to LDS"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<unsigned> PromoteAllocaToVectorLimit(
 | 
						|
  "amdgpu-promote-alloca-to-vector-limit",
 | 
						|
  cl::desc("Maximum byte size to consider promote alloca to vector"),
 | 
						|
  cl::init(0));
 | 
						|
 | 
						|
// FIXME: This can create globals so should be a module pass.
 | 
						|
class AMDGPUPromoteAlloca : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  AMDGPUPromoteAlloca() : FunctionPass(ID) {}
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
 | 
						|
 | 
						|
  bool handleAlloca(AllocaInst &I, bool SufficientLDS);
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class AMDGPUPromoteAllocaImpl {
 | 
						|
private:
 | 
						|
  const TargetMachine &TM;
 | 
						|
  Module *Mod = nullptr;
 | 
						|
  const DataLayout *DL = nullptr;
 | 
						|
 | 
						|
  // FIXME: This should be per-kernel.
 | 
						|
  uint32_t LocalMemLimit = 0;
 | 
						|
  uint32_t CurrentLocalMemUsage = 0;
 | 
						|
  unsigned MaxVGPRs;
 | 
						|
 | 
						|
  bool IsAMDGCN = false;
 | 
						|
  bool IsAMDHSA = false;
 | 
						|
 | 
						|
  std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
 | 
						|
  Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
 | 
						|
 | 
						|
  /// BaseAlloca is the alloca root the search started from.
 | 
						|
  /// Val may be that alloca or a recursive user of it.
 | 
						|
  bool collectUsesWithPtrTypes(Value *BaseAlloca,
 | 
						|
                               Value *Val,
 | 
						|
                               std::vector<Value*> &WorkList) const;
 | 
						|
 | 
						|
  /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
 | 
						|
  /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
 | 
						|
  /// Returns true if both operands are derived from the same alloca. Val should
 | 
						|
  /// be the same value as one of the input operands of UseInst.
 | 
						|
  bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
 | 
						|
                                       Instruction *UseInst,
 | 
						|
                                       int OpIdx0, int OpIdx1) const;
 | 
						|
 | 
						|
  /// Check whether we have enough local memory for promotion.
 | 
						|
  bool hasSufficientLocalMem(const Function &F);
 | 
						|
 | 
						|
  bool handleAlloca(AllocaInst &I, bool SufficientLDS);
 | 
						|
 | 
						|
public:
 | 
						|
  AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
 | 
						|
  bool run(Function &F);
 | 
						|
};
 | 
						|
 | 
						|
class AMDGPUPromoteAllocaToVector : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  StringRef getPassName() const override {
 | 
						|
    return "AMDGPU Promote Alloca to vector";
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char AMDGPUPromoteAlloca::ID = 0;
 | 
						|
char AMDGPUPromoteAllocaToVector::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
 | 
						|
                      "AMDGPU promote alloca to vector or LDS", false, false)
 | 
						|
// Move LDS uses from functions to kernels before promote alloca for accurate
 | 
						|
// estimation of LDS available
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
 | 
						|
INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
 | 
						|
                    "AMDGPU promote alloca to vector or LDS", false, false)
 | 
						|
 | 
						|
INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
 | 
						|
                "AMDGPU promote alloca to vector", false, false)
 | 
						|
 | 
						|
char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
 | 
						|
char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
 | 
						|
 | 
						|
bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | 
						|
    return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
 | 
						|
                                               FunctionAnalysisManager &AM) {
 | 
						|
  bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
 | 
						|
  if (Changed) {
 | 
						|
    PreservedAnalyses PA;
 | 
						|
    PA.preserveSet<CFGAnalyses>();
 | 
						|
    return PA;
 | 
						|
  }
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUPromoteAllocaImpl::run(Function &F) {
 | 
						|
  Mod = F.getParent();
 | 
						|
  DL = &Mod->getDataLayout();
 | 
						|
 | 
						|
  const Triple &TT = TM.getTargetTriple();
 | 
						|
  IsAMDGCN = TT.getArch() == Triple::amdgcn;
 | 
						|
  IsAMDHSA = TT.getOS() == Triple::AMDHSA;
 | 
						|
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
 | 
						|
  if (!ST.isPromoteAllocaEnabled())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IsAMDGCN) {
 | 
						|
    const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
 | 
						|
    MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
 | 
						|
    // A non-entry function has only 32 caller preserved registers.
 | 
						|
    // Do not promote alloca which will force spilling.
 | 
						|
    if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
 | 
						|
      MaxVGPRs = std::min(MaxVGPRs, 32u);
 | 
						|
  } else {
 | 
						|
    MaxVGPRs = 128;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SufficientLDS = hasSufficientLocalMem(F);
 | 
						|
  bool Changed = false;
 | 
						|
  BasicBlock &EntryBB = *F.begin();
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 16> Allocas;
 | 
						|
  for (Instruction &I : EntryBB) {
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
 | 
						|
      Allocas.push_back(AI);
 | 
						|
  }
 | 
						|
 | 
						|
  for (AllocaInst *AI : Allocas) {
 | 
						|
    if (handleAlloca(*AI, SufficientLDS))
 | 
						|
      Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<Value *, Value *>
 | 
						|
AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
 | 
						|
  Function &F = *Builder.GetInsertBlock()->getParent();
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
 | 
						|
 | 
						|
  if (!IsAMDHSA) {
 | 
						|
    Function *LocalSizeYFn
 | 
						|
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
 | 
						|
    Function *LocalSizeZFn
 | 
						|
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
 | 
						|
 | 
						|
    CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
 | 
						|
    CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
 | 
						|
 | 
						|
    ST.makeLIDRangeMetadata(LocalSizeY);
 | 
						|
    ST.makeLIDRangeMetadata(LocalSizeZ);
 | 
						|
 | 
						|
    return std::make_pair(LocalSizeY, LocalSizeZ);
 | 
						|
  }
 | 
						|
 | 
						|
  // We must read the size out of the dispatch pointer.
 | 
						|
  assert(IsAMDGCN);
 | 
						|
 | 
						|
  // We are indexing into this struct, and want to extract the workgroup_size_*
 | 
						|
  // fields.
 | 
						|
  //
 | 
						|
  //   typedef struct hsa_kernel_dispatch_packet_s {
 | 
						|
  //     uint16_t header;
 | 
						|
  //     uint16_t setup;
 | 
						|
  //     uint16_t workgroup_size_x ;
 | 
						|
  //     uint16_t workgroup_size_y;
 | 
						|
  //     uint16_t workgroup_size_z;
 | 
						|
  //     uint16_t reserved0;
 | 
						|
  //     uint32_t grid_size_x ;
 | 
						|
  //     uint32_t grid_size_y ;
 | 
						|
  //     uint32_t grid_size_z;
 | 
						|
  //
 | 
						|
  //     uint32_t private_segment_size;
 | 
						|
  //     uint32_t group_segment_size;
 | 
						|
  //     uint64_t kernel_object;
 | 
						|
  //
 | 
						|
  // #ifdef HSA_LARGE_MODEL
 | 
						|
  //     void *kernarg_address;
 | 
						|
  // #elif defined HSA_LITTLE_ENDIAN
 | 
						|
  //     void *kernarg_address;
 | 
						|
  //     uint32_t reserved1;
 | 
						|
  // #else
 | 
						|
  //     uint32_t reserved1;
 | 
						|
  //     void *kernarg_address;
 | 
						|
  // #endif
 | 
						|
  //     uint64_t reserved2;
 | 
						|
  //     hsa_signal_t completion_signal; // uint64_t wrapper
 | 
						|
  //   } hsa_kernel_dispatch_packet_t
 | 
						|
  //
 | 
						|
  Function *DispatchPtrFn
 | 
						|
    = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
 | 
						|
 | 
						|
  CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
 | 
						|
  DispatchPtr->addRetAttr(Attribute::NoAlias);
 | 
						|
  DispatchPtr->addRetAttr(Attribute::NonNull);
 | 
						|
  F.removeFnAttr("amdgpu-no-dispatch-ptr");
 | 
						|
 | 
						|
  // Size of the dispatch packet struct.
 | 
						|
  DispatchPtr->addDereferenceableRetAttr(64);
 | 
						|
 | 
						|
  Type *I32Ty = Type::getInt32Ty(Mod->getContext());
 | 
						|
  Value *CastDispatchPtr = Builder.CreateBitCast(
 | 
						|
    DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
 | 
						|
 | 
						|
  // We could do a single 64-bit load here, but it's likely that the basic
 | 
						|
  // 32-bit and extract sequence is already present, and it is probably easier
 | 
						|
  // to CSE this. The loads should be mergeable later anyway.
 | 
						|
  Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
 | 
						|
  LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
 | 
						|
 | 
						|
  Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
 | 
						|
  LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
 | 
						|
 | 
						|
  MDNode *MD = MDNode::get(Mod->getContext(), None);
 | 
						|
  LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
 | 
						|
  LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
 | 
						|
  ST.makeLIDRangeMetadata(LoadZU);
 | 
						|
 | 
						|
  // Extract y component. Upper half of LoadZU should be zero already.
 | 
						|
  Value *Y = Builder.CreateLShr(LoadXY, 16);
 | 
						|
 | 
						|
  return std::make_pair(Y, LoadZU);
 | 
						|
}
 | 
						|
 | 
						|
Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
 | 
						|
                                              unsigned N) {
 | 
						|
  Function *F = Builder.GetInsertBlock()->getParent();
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
 | 
						|
  Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
 | 
						|
  StringRef AttrName;
 | 
						|
 | 
						|
  switch (N) {
 | 
						|
  case 0:
 | 
						|
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
 | 
						|
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
 | 
						|
    AttrName = "amdgpu-no-workitem-id-x";
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
 | 
						|
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
 | 
						|
    AttrName = "amdgpu-no-workitem-id-y";
 | 
						|
    break;
 | 
						|
 | 
						|
  case 2:
 | 
						|
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
 | 
						|
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
 | 
						|
    AttrName = "amdgpu-no-workitem-id-z";
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("invalid dimension");
 | 
						|
  }
 | 
						|
 | 
						|
  Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
 | 
						|
  CallInst *CI = Builder.CreateCall(WorkitemIdFn);
 | 
						|
  ST.makeLIDRangeMetadata(CI);
 | 
						|
  F->removeFnAttr(AttrName);
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
 | 
						|
  return FixedVectorType::get(ArrayTy->getElementType(),
 | 
						|
                              ArrayTy->getNumElements());
 | 
						|
}
 | 
						|
 | 
						|
static Value *stripBitcasts(Value *V) {
 | 
						|
  while (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    if (I->getOpcode() != Instruction::BitCast)
 | 
						|
      break;
 | 
						|
    V = I->getOperand(0);
 | 
						|
  }
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
static Value *
 | 
						|
calculateVectorIndex(Value *Ptr,
 | 
						|
                     const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
 | 
						|
  if (!GEP)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto I = GEPIdx.find(GEP);
 | 
						|
  return I == GEPIdx.end() ? nullptr : I->second;
 | 
						|
}
 | 
						|
 | 
						|
static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
 | 
						|
  // FIXME we only support simple cases
 | 
						|
  if (GEP->getNumOperands() != 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
 | 
						|
  if (!I0 || !I0->isZero())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return GEP->getOperand(2);
 | 
						|
}
 | 
						|
 | 
						|
// Not an instruction handled below to turn into a vector.
 | 
						|
//
 | 
						|
// TODO: Check isTriviallyVectorizable for calls and handle other
 | 
						|
// instructions.
 | 
						|
static bool canVectorizeInst(Instruction *Inst, User *User,
 | 
						|
                             const DataLayout &DL) {
 | 
						|
  switch (Inst->getOpcode()) {
 | 
						|
  case Instruction::Load: {
 | 
						|
    // Currently only handle the case where the Pointer Operand is a GEP.
 | 
						|
    // Also we could not vectorize volatile or atomic loads.
 | 
						|
    LoadInst *LI = cast<LoadInst>(Inst);
 | 
						|
    if (isa<AllocaInst>(User) &&
 | 
						|
        LI->getPointerOperandType() == User->getType() &&
 | 
						|
        isa<VectorType>(LI->getType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
 | 
						|
    if (!PtrInst)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
 | 
						|
            PtrInst->getOpcode() == Instruction::BitCast) &&
 | 
						|
           LI->isSimple();
 | 
						|
  }
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return true;
 | 
						|
  case Instruction::Store: {
 | 
						|
    // Must be the stored pointer operand, not a stored value, plus
 | 
						|
    // since it should be canonical form, the User should be a GEP.
 | 
						|
    // Also we could not vectorize volatile or atomic stores.
 | 
						|
    StoreInst *SI = cast<StoreInst>(Inst);
 | 
						|
    if (isa<AllocaInst>(User) &&
 | 
						|
        SI->getPointerOperandType() == User->getType() &&
 | 
						|
        isa<VectorType>(SI->getValueOperand()->getType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Instruction *UserInst = dyn_cast<Instruction>(User);
 | 
						|
    if (!UserInst)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return (SI->getPointerOperand() == User) &&
 | 
						|
           (UserInst->getOpcode() == Instruction::GetElementPtr ||
 | 
						|
            UserInst->getOpcode() == Instruction::BitCast) &&
 | 
						|
           SI->isSimple();
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
 | 
						|
                                     unsigned MaxVGPRs) {
 | 
						|
 | 
						|
  if (DisablePromoteAllocaToVector) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *AllocaTy = Alloca->getAllocatedType();
 | 
						|
  auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
 | 
						|
  if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
 | 
						|
    if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
 | 
						|
        ArrayTy->getNumElements() > 0)
 | 
						|
      VectorTy = arrayTypeToVecType(ArrayTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Use up to 1/4 of available register budget for vectorization.
 | 
						|
  unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
 | 
						|
                                              : (MaxVGPRs * 32);
 | 
						|
 | 
						|
  if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
 | 
						|
                      << MaxVGPRs << " registers available\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
 | 
						|
 | 
						|
  // FIXME: There is no reason why we can't support larger arrays, we
 | 
						|
  // are just being conservative for now.
 | 
						|
  // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
 | 
						|
  // could also be promoted but we don't currently handle this case
 | 
						|
  if (!VectorTy || VectorTy->getNumElements() > 16 ||
 | 
						|
      VectorTy->getNumElements() < 2) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
 | 
						|
  std::vector<Value *> WorkList;
 | 
						|
  SmallVector<User *, 8> Users(Alloca->users());
 | 
						|
  SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
 | 
						|
  Type *VecEltTy = VectorTy->getElementType();
 | 
						|
  while (!Users.empty()) {
 | 
						|
    User *AllocaUser = Users.pop_back_val();
 | 
						|
    User *UseUser = UseUsers.pop_back_val();
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
 | 
						|
 | 
						|
    GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
 | 
						|
    if (!GEP) {
 | 
						|
      if (!canVectorizeInst(Inst, UseUser, DL))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (Inst->getOpcode() == Instruction::BitCast) {
 | 
						|
        Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
 | 
						|
        Type *ToTy = Inst->getType()->getPointerElementType();
 | 
						|
        if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
 | 
						|
            DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
 | 
						|
          continue;
 | 
						|
 | 
						|
        for (User *CastUser : Inst->users()) {
 | 
						|
          if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
 | 
						|
            continue;
 | 
						|
          Users.push_back(CastUser);
 | 
						|
          UseUsers.push_back(Inst);
 | 
						|
        }
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      WorkList.push_back(AllocaUser);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Index = GEPToVectorIndex(GEP);
 | 
						|
 | 
						|
    // If we can't compute a vector index from this GEP, then we can't
 | 
						|
    // promote this alloca to vector.
 | 
						|
    if (!Index) {
 | 
						|
      LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
 | 
						|
                        << '\n');
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    GEPVectorIdx[GEP] = Index;
 | 
						|
    Users.append(GEP->user_begin(), GEP->user_end());
 | 
						|
    UseUsers.append(GEP->getNumUses(), GEP);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
 | 
						|
                    << *VectorTy << '\n');
 | 
						|
 | 
						|
  for (Value *V : WorkList) {
 | 
						|
    Instruction *Inst = cast<Instruction>(V);
 | 
						|
    IRBuilder<> Builder(Inst);
 | 
						|
    switch (Inst->getOpcode()) {
 | 
						|
    case Instruction::Load: {
 | 
						|
      if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
 | 
						|
        break;
 | 
						|
 | 
						|
      Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
 | 
						|
      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
 | 
						|
      if (!Index)
 | 
						|
        break;
 | 
						|
 | 
						|
      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
 | 
						|
      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
 | 
						|
      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
 | 
						|
      Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
 | 
						|
      if (Inst->getType() != VecEltTy)
 | 
						|
        ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
 | 
						|
      Inst->replaceAllUsesWith(ExtractElement);
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Store: {
 | 
						|
      StoreInst *SI = cast<StoreInst>(Inst);
 | 
						|
      if (SI->getValueOperand()->getType() == AllocaTy ||
 | 
						|
          SI->getValueOperand()->getType()->isVectorTy())
 | 
						|
        break;
 | 
						|
 | 
						|
      Value *Ptr = SI->getPointerOperand();
 | 
						|
      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
 | 
						|
      if (!Index)
 | 
						|
        break;
 | 
						|
 | 
						|
      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
 | 
						|
      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
 | 
						|
      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
 | 
						|
      Value *Elt = SI->getValueOperand();
 | 
						|
      if (Elt->getType() != VecEltTy)
 | 
						|
        Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
 | 
						|
      Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
 | 
						|
      Builder.CreateStore(NewVecValue, BitCast);
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Inconsistency in instructions promotable to vector");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCallPromotable(CallInst *CI) {
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | 
						|
  if (!II)
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  case Intrinsic::memcpy:
 | 
						|
  case Intrinsic::memmove:
 | 
						|
  case Intrinsic::memset:
 | 
						|
  case Intrinsic::lifetime_start:
 | 
						|
  case Intrinsic::lifetime_end:
 | 
						|
  case Intrinsic::invariant_start:
 | 
						|
  case Intrinsic::invariant_end:
 | 
						|
  case Intrinsic::launder_invariant_group:
 | 
						|
  case Intrinsic::strip_invariant_group:
 | 
						|
  case Intrinsic::objectsize:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
 | 
						|
    Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
 | 
						|
    int OpIdx1) const {
 | 
						|
  // Figure out which operand is the one we might not be promoting.
 | 
						|
  Value *OtherOp = Inst->getOperand(OpIdx0);
 | 
						|
  if (Val == OtherOp)
 | 
						|
    OtherOp = Inst->getOperand(OpIdx1);
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(OtherOp))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Value *OtherObj = getUnderlyingObject(OtherOp);
 | 
						|
  if (!isa<AllocaInst>(OtherObj))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: We should be able to replace undefs with the right pointer type.
 | 
						|
 | 
						|
  // TODO: If we know the other base object is another promotable
 | 
						|
  // alloca, not necessarily this alloca, we can do this. The
 | 
						|
  // important part is both must have the same address space at
 | 
						|
  // the end.
 | 
						|
  if (OtherObj != BaseAlloca) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Found a binary instruction with another alloca object\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
 | 
						|
    Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
 | 
						|
 | 
						|
  for (User *User : Val->users()) {
 | 
						|
    if (is_contained(WorkList, User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(User)) {
 | 
						|
      if (!isCallPromotable(CI))
 | 
						|
        return false;
 | 
						|
 | 
						|
      WorkList.push_back(User);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *UseInst = cast<Instruction>(User);
 | 
						|
    if (UseInst->getOpcode() == Instruction::PtrToInt)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
 | 
						|
      if (LI->isVolatile())
 | 
						|
        return false;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
 | 
						|
      if (SI->isVolatile())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Reject if the stored value is not the pointer operand.
 | 
						|
      if (SI->getPointerOperand() != Val)
 | 
						|
        return false;
 | 
						|
    } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
 | 
						|
      if (RMW->isVolatile())
 | 
						|
        return false;
 | 
						|
    } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
 | 
						|
      if (CAS->isVolatile())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only promote a select if we know that the other select operand
 | 
						|
    // is from another pointer that will also be promoted.
 | 
						|
    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
 | 
						|
      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // May need to rewrite constant operands.
 | 
						|
      WorkList.push_back(ICmp);
 | 
						|
    }
 | 
						|
 | 
						|
    if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
 | 
						|
      // Give up if the pointer may be captured.
 | 
						|
      if (PointerMayBeCaptured(UseInst, true, true))
 | 
						|
        return false;
 | 
						|
      // Don't collect the users of this.
 | 
						|
      WorkList.push_back(User);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not promote vector/aggregate type instructions. It is hard to track
 | 
						|
    // their users.
 | 
						|
    if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!User->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
 | 
						|
      // Be conservative if an address could be computed outside the bounds of
 | 
						|
      // the alloca.
 | 
						|
      if (!GEP->isInBounds())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only promote a select if we know that the other select operand is from
 | 
						|
    // another pointer that will also be promoted.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
 | 
						|
      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Repeat for phis.
 | 
						|
    if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
 | 
						|
      // TODO: Handle more complex cases. We should be able to replace loops
 | 
						|
      // over arrays.
 | 
						|
      switch (Phi->getNumIncomingValues()) {
 | 
						|
      case 1:
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
 | 
						|
          return false;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    WorkList.push_back(User);
 | 
						|
    if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
 | 
						|
 | 
						|
  FunctionType *FTy = F.getFunctionType();
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
 | 
						|
 | 
						|
  // If the function has any arguments in the local address space, then it's
 | 
						|
  // possible these arguments require the entire local memory space, so
 | 
						|
  // we cannot use local memory in the pass.
 | 
						|
  for (Type *ParamTy : FTy->params()) {
 | 
						|
    PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
 | 
						|
    if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
 | 
						|
      LocalMemLimit = 0;
 | 
						|
      LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
 | 
						|
                           "local memory disabled.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LocalMemLimit = ST.getLocalMemorySize();
 | 
						|
  if (LocalMemLimit == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<const Constant *, 16> Stack;
 | 
						|
  SmallPtrSet<const Constant *, 8> VisitedConstants;
 | 
						|
  SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
 | 
						|
 | 
						|
  auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
 | 
						|
    for (const User *U : Val->users()) {
 | 
						|
      if (const Instruction *Use = dyn_cast<Instruction>(U)) {
 | 
						|
        if (Use->getParent()->getParent() == &F)
 | 
						|
          return true;
 | 
						|
      } else {
 | 
						|
        const Constant *C = cast<Constant>(U);
 | 
						|
        if (VisitedConstants.insert(C).second)
 | 
						|
          Stack.push_back(C);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  for (GlobalVariable &GV : Mod->globals()) {
 | 
						|
    if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (visitUsers(&GV, &GV)) {
 | 
						|
      UsedLDS.insert(&GV);
 | 
						|
      Stack.clear();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For any ConstantExpr uses, we need to recursively search the users until
 | 
						|
    // we see a function.
 | 
						|
    while (!Stack.empty()) {
 | 
						|
      const Constant *C = Stack.pop_back_val();
 | 
						|
      if (visitUsers(&GV, C)) {
 | 
						|
        UsedLDS.insert(&GV);
 | 
						|
        Stack.clear();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const DataLayout &DL = Mod->getDataLayout();
 | 
						|
  SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
 | 
						|
  AllocatedSizes.reserve(UsedLDS.size());
 | 
						|
 | 
						|
  for (const GlobalVariable *GV : UsedLDS) {
 | 
						|
    Align Alignment =
 | 
						|
        DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
 | 
						|
    uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
 | 
						|
 | 
						|
    // HIP uses an extern unsized array in local address space for dynamically
 | 
						|
    // allocated shared memory.  In that case, we have to disable the promotion.
 | 
						|
    if (GV->hasExternalLinkage() && AllocSize == 0) {
 | 
						|
      LocalMemLimit = 0;
 | 
						|
      LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
 | 
						|
                           "local memory. Promoting to local memory "
 | 
						|
                           "disabled.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    AllocatedSizes.emplace_back(AllocSize, Alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort to try to estimate the worst case alignment padding
 | 
						|
  //
 | 
						|
  // FIXME: We should really do something to fix the addresses to a more optimal
 | 
						|
  // value instead
 | 
						|
  llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
 | 
						|
                                std::pair<uint64_t, Align> RHS) {
 | 
						|
    return LHS.second < RHS.second;
 | 
						|
  });
 | 
						|
 | 
						|
  // Check how much local memory is being used by global objects
 | 
						|
  CurrentLocalMemUsage = 0;
 | 
						|
 | 
						|
  // FIXME: Try to account for padding here. The real padding and address is
 | 
						|
  // currently determined from the inverse order of uses in the function when
 | 
						|
  // legalizing, which could also potentially change. We try to estimate the
 | 
						|
  // worst case here, but we probably should fix the addresses earlier.
 | 
						|
  for (auto Alloc : AllocatedSizes) {
 | 
						|
    CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
 | 
						|
    CurrentLocalMemUsage += Alloc.first;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
 | 
						|
                                                          F);
 | 
						|
 | 
						|
  // Restrict local memory usage so that we don't drastically reduce occupancy,
 | 
						|
  // unless it is already significantly reduced.
 | 
						|
 | 
						|
  // TODO: Have some sort of hint or other heuristics to guess occupancy based
 | 
						|
  // on other factors..
 | 
						|
  unsigned OccupancyHint = ST.getWavesPerEU(F).second;
 | 
						|
  if (OccupancyHint == 0)
 | 
						|
    OccupancyHint = 7;
 | 
						|
 | 
						|
  // Clamp to max value.
 | 
						|
  OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
 | 
						|
 | 
						|
  // Check the hint but ignore it if it's obviously wrong from the existing LDS
 | 
						|
  // usage.
 | 
						|
  MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
 | 
						|
 | 
						|
 | 
						|
  // Round up to the next tier of usage.
 | 
						|
  unsigned MaxSizeWithWaveCount
 | 
						|
    = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
 | 
						|
 | 
						|
  // Program is possibly broken by using more local mem than available.
 | 
						|
  if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LocalMemLimit = MaxSizeWithWaveCount;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
 | 
						|
                    << " bytes of LDS\n"
 | 
						|
                    << "  Rounding size to " << MaxSizeWithWaveCount
 | 
						|
                    << " with a maximum occupancy of " << MaxOccupancy << '\n'
 | 
						|
                    << " and " << (LocalMemLimit - CurrentLocalMemUsage)
 | 
						|
                    << " available for promotion\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Should try to pick the most likely to be profitable allocas first.
 | 
						|
bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
 | 
						|
  // Array allocations are probably not worth handling, since an allocation of
 | 
						|
  // the array type is the canonical form.
 | 
						|
  if (!I.isStaticAlloca() || I.isArrayAllocation())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = Mod->getDataLayout();
 | 
						|
  IRBuilder<> Builder(&I);
 | 
						|
 | 
						|
  // First try to replace the alloca with a vector
 | 
						|
  Type *AllocaTy = I.getAllocatedType();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
 | 
						|
 | 
						|
  if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
 | 
						|
    return true; // Promoted to vector.
 | 
						|
 | 
						|
  if (DisablePromoteAllocaToLDS)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Function &ContainingFunction = *I.getParent()->getParent();
 | 
						|
  CallingConv::ID CC = ContainingFunction.getCallingConv();
 | 
						|
 | 
						|
  // Don't promote the alloca to LDS for shader calling conventions as the work
 | 
						|
  // item ID intrinsics are not supported for these calling conventions.
 | 
						|
  // Furthermore not all LDS is available for some of the stages.
 | 
						|
  switch (CC) {
 | 
						|
  case CallingConv::AMDGPU_KERNEL:
 | 
						|
  case CallingConv::SPIR_KERNEL:
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << " promote alloca to LDS not supported with calling convention.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Not likely to have sufficient local memory for promotion.
 | 
						|
  if (!SufficientLDS)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
 | 
						|
  unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
 | 
						|
 | 
						|
  Align Alignment =
 | 
						|
      DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
 | 
						|
 | 
						|
  // FIXME: This computed padding is likely wrong since it depends on inverse
 | 
						|
  // usage order.
 | 
						|
  //
 | 
						|
  // FIXME: It is also possible that if we're allowed to use all of the memory
 | 
						|
  // could could end up using more than the maximum due to alignment padding.
 | 
						|
 | 
						|
  uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
 | 
						|
  uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
 | 
						|
  NewSize += AllocSize;
 | 
						|
 | 
						|
  if (NewSize > LocalMemLimit) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  " << AllocSize
 | 
						|
                      << " bytes of local memory not available to promote\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  CurrentLocalMemUsage = NewSize;
 | 
						|
 | 
						|
  std::vector<Value*> WorkList;
 | 
						|
 | 
						|
  if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
 | 
						|
    LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
 | 
						|
 | 
						|
  Function *F = I.getParent()->getParent();
 | 
						|
 | 
						|
  Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
 | 
						|
  GlobalVariable *GV = new GlobalVariable(
 | 
						|
      *Mod, GVTy, false, GlobalValue::InternalLinkage,
 | 
						|
      UndefValue::get(GVTy),
 | 
						|
      Twine(F->getName()) + Twine('.') + I.getName(),
 | 
						|
      nullptr,
 | 
						|
      GlobalVariable::NotThreadLocal,
 | 
						|
      AMDGPUAS::LOCAL_ADDRESS);
 | 
						|
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | 
						|
  GV->setAlignment(I.getAlign());
 | 
						|
 | 
						|
  Value *TCntY, *TCntZ;
 | 
						|
 | 
						|
  std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
 | 
						|
  Value *TIdX = getWorkitemID(Builder, 0);
 | 
						|
  Value *TIdY = getWorkitemID(Builder, 1);
 | 
						|
  Value *TIdZ = getWorkitemID(Builder, 2);
 | 
						|
 | 
						|
  Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
 | 
						|
  Tmp0 = Builder.CreateMul(Tmp0, TIdX);
 | 
						|
  Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
 | 
						|
  Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
 | 
						|
  TID = Builder.CreateAdd(TID, TIdZ);
 | 
						|
 | 
						|
  Value *Indices[] = {
 | 
						|
    Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
 | 
						|
    TID
 | 
						|
  };
 | 
						|
 | 
						|
  Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
 | 
						|
  I.mutateType(Offset->getType());
 | 
						|
  I.replaceAllUsesWith(Offset);
 | 
						|
  I.eraseFromParent();
 | 
						|
 | 
						|
  SmallVector<IntrinsicInst *> DeferredIntrs;
 | 
						|
 | 
						|
  for (Value *V : WorkList) {
 | 
						|
    CallInst *Call = dyn_cast<CallInst>(V);
 | 
						|
    if (!Call) {
 | 
						|
      if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
 | 
						|
        Value *Src0 = CI->getOperand(0);
 | 
						|
        PointerType *NewTy = PointerType::getWithSamePointeeType(
 | 
						|
            cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
 | 
						|
 | 
						|
        if (isa<ConstantPointerNull>(CI->getOperand(0)))
 | 
						|
          CI->setOperand(0, ConstantPointerNull::get(NewTy));
 | 
						|
 | 
						|
        if (isa<ConstantPointerNull>(CI->getOperand(1)))
 | 
						|
          CI->setOperand(1, ConstantPointerNull::get(NewTy));
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // The operand's value should be corrected on its own and we don't want to
 | 
						|
      // touch the users.
 | 
						|
      if (isa<AddrSpaceCastInst>(V))
 | 
						|
        continue;
 | 
						|
 | 
						|
      PointerType *NewTy = PointerType::getWithSamePointeeType(
 | 
						|
          cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
 | 
						|
 | 
						|
      // FIXME: It doesn't really make sense to try to do this for all
 | 
						|
      // instructions.
 | 
						|
      V->mutateType(NewTy);
 | 
						|
 | 
						|
      // Adjust the types of any constant operands.
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | 
						|
        if (isa<ConstantPointerNull>(SI->getOperand(1)))
 | 
						|
          SI->setOperand(1, ConstantPointerNull::get(NewTy));
 | 
						|
 | 
						|
        if (isa<ConstantPointerNull>(SI->getOperand(2)))
 | 
						|
          SI->setOperand(2, ConstantPointerNull::get(NewTy));
 | 
						|
      } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
 | 
						|
        for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
 | 
						|
          if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
 | 
						|
            Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
 | 
						|
    Builder.SetInsertPoint(Intr);
 | 
						|
    switch (Intr->getIntrinsicID()) {
 | 
						|
    case Intrinsic::lifetime_start:
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
      // These intrinsics are for address space 0 only
 | 
						|
      Intr->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::memmove:
 | 
						|
      // These have 2 pointer operands. In case if second pointer also needs
 | 
						|
      // to be replaced we defer processing of these intrinsics until all
 | 
						|
      // other values are processed.
 | 
						|
      DeferredIntrs.push_back(Intr);
 | 
						|
      continue;
 | 
						|
    case Intrinsic::memset: {
 | 
						|
      MemSetInst *MemSet = cast<MemSetInst>(Intr);
 | 
						|
      Builder.CreateMemSet(
 | 
						|
          MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
 | 
						|
          MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
 | 
						|
      Intr->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case Intrinsic::invariant_start:
 | 
						|
    case Intrinsic::invariant_end:
 | 
						|
    case Intrinsic::launder_invariant_group:
 | 
						|
    case Intrinsic::strip_invariant_group:
 | 
						|
      Intr->eraseFromParent();
 | 
						|
      // FIXME: I think the invariant marker should still theoretically apply,
 | 
						|
      // but the intrinsics need to be changed to accept pointers with any
 | 
						|
      // address space.
 | 
						|
      continue;
 | 
						|
    case Intrinsic::objectsize: {
 | 
						|
      Value *Src = Intr->getOperand(0);
 | 
						|
      Function *ObjectSize = Intrinsic::getDeclaration(
 | 
						|
          Mod, Intrinsic::objectsize,
 | 
						|
          {Intr->getType(),
 | 
						|
           PointerType::getWithSamePointeeType(
 | 
						|
               cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
 | 
						|
 | 
						|
      CallInst *NewCall = Builder.CreateCall(
 | 
						|
          ObjectSize,
 | 
						|
          {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
 | 
						|
      Intr->replaceAllUsesWith(NewCall);
 | 
						|
      Intr->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      Intr->print(errs());
 | 
						|
      llvm_unreachable("Don't know how to promote alloca intrinsic use.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (IntrinsicInst *Intr : DeferredIntrs) {
 | 
						|
    Builder.SetInsertPoint(Intr);
 | 
						|
    Intrinsic::ID ID = Intr->getIntrinsicID();
 | 
						|
    assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
 | 
						|
 | 
						|
    MemTransferInst *MI = cast<MemTransferInst>(Intr);
 | 
						|
    auto *B =
 | 
						|
      Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
 | 
						|
                                    MI->getRawSource(), MI->getSourceAlign(),
 | 
						|
                                    MI->getLength(), MI->isVolatile());
 | 
						|
 | 
						|
    for (unsigned I = 0; I != 2; ++I) {
 | 
						|
      if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
 | 
						|
        B->addDereferenceableParamAttr(I, Bytes);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Intr->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
 | 
						|
  // Array allocations are probably not worth handling, since an allocation of
 | 
						|
  // the array type is the canonical form.
 | 
						|
  if (!I.isStaticAlloca() || I.isArrayAllocation())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
 | 
						|
 | 
						|
  Module *Mod = I.getParent()->getParent()->getParent();
 | 
						|
  return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
 | 
						|
}
 | 
						|
 | 
						|
bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
 | 
						|
  if (DisablePromoteAllocaToVector)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
 | 
						|
  if (!ST.isPromoteAllocaEnabled())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned MaxVGPRs;
 | 
						|
  if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
 | 
						|
    const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
 | 
						|
    MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
 | 
						|
    // A non-entry function has only 32 caller preserved registers.
 | 
						|
    // Do not promote alloca which will force spilling.
 | 
						|
    if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
 | 
						|
      MaxVGPRs = std::min(MaxVGPRs, 32u);
 | 
						|
  } else {
 | 
						|
    MaxVGPRs = 128;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  BasicBlock &EntryBB = *F.begin();
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 16> Allocas;
 | 
						|
  for (Instruction &I : EntryBB) {
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
 | 
						|
      Allocas.push_back(AI);
 | 
						|
  }
 | 
						|
 | 
						|
  for (AllocaInst *AI : Allocas) {
 | 
						|
    if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
 | 
						|
      Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | 
						|
    return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  bool Changed = promoteAllocasToVector(F, TM);
 | 
						|
  if (Changed) {
 | 
						|
    PreservedAnalyses PA;
 | 
						|
    PA.preserveSet<CFGAnalyses>();
 | 
						|
    return PA;
 | 
						|
  }
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createAMDGPUPromoteAlloca() {
 | 
						|
  return new AMDGPUPromoteAlloca();
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
 | 
						|
  return new AMDGPUPromoteAllocaToVector();
 | 
						|
}
 |