363 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---------------------------- GCNILPSched.cpp - -----------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-scheduler"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class GCNILPScheduler {
 | 
						|
  struct Candidate : ilist_node<Candidate> {
 | 
						|
    SUnit *SU;
 | 
						|
 | 
						|
    Candidate(SUnit *SU_)
 | 
						|
      : SU(SU_) {}
 | 
						|
  };
 | 
						|
 | 
						|
  SpecificBumpPtrAllocator<Candidate> Alloc;
 | 
						|
  typedef simple_ilist<Candidate> Queue;
 | 
						|
  Queue PendingQueue;
 | 
						|
  Queue AvailQueue;
 | 
						|
  unsigned CurQueueId = 0;
 | 
						|
 | 
						|
  std::vector<unsigned> SUNumbers;
 | 
						|
 | 
						|
  /// CurCycle - The current scheduler state corresponds to this cycle.
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
 | 
						|
  unsigned getNodePriority(const SUnit *SU) const;
 | 
						|
 | 
						|
  const SUnit *pickBest(const SUnit *left, const SUnit *right);
 | 
						|
  Candidate* pickCandidate();
 | 
						|
 | 
						|
  void releasePending();
 | 
						|
  void advanceToCycle(unsigned NextCycle);
 | 
						|
  void releasePredecessors(const SUnit* SU);
 | 
						|
 | 
						|
public:
 | 
						|
  std::vector<const SUnit*> schedule(ArrayRef<const SUnit*> TopRoots,
 | 
						|
                                     const ScheduleDAG &DAG);
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
static unsigned
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
 | 
						|
  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Extra = 0;
 | 
						|
  for (const SDep &Pred : SU->Preds) {
 | 
						|
    if (Pred.isCtrl()) continue;  // ignore chain preds
 | 
						|
    SUnit *PredSU = Pred.getSUnit();
 | 
						|
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
 | 
						|
    if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
      SethiUllmanNumber = PredSethiUllman;
 | 
						|
      Extra = 0;
 | 
						|
    }
 | 
						|
    else if (PredSethiUllman == SethiUllmanNumber)
 | 
						|
      ++Extra;
 | 
						|
  }
 | 
						|
 | 
						|
  SethiUllmanNumber += Extra;
 | 
						|
 | 
						|
  if (SethiUllmanNumber == 0)
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
// Lower priority means schedule further down. For bottom-up scheduling, lower
 | 
						|
// priority SUs are scheduled before higher priority SUs.
 | 
						|
unsigned GCNILPScheduler::getNodePriority(const SUnit *SU) const {
 | 
						|
  assert(SU->NodeNum < SUNumbers.size());
 | 
						|
  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
 | 
						|
    // If SU does not have a register use, i.e. it doesn't produce a value
 | 
						|
    // that would be consumed (e.g. store), then it terminates a chain of
 | 
						|
    // computation.  Give it a large SethiUllman number so it will be
 | 
						|
    // scheduled right before its predecessors that it doesn't lengthen
 | 
						|
    // their live ranges.
 | 
						|
    return 0xffff;
 | 
						|
 | 
						|
  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
 | 
						|
    // If SU does not have a register def, schedule it close to its uses
 | 
						|
    // because it does not lengthen any live ranges.
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return SUNumbers[SU->NodeNum];
 | 
						|
}
 | 
						|
 | 
						|
/// closestSucc - Returns the scheduled cycle of the successor which is
 | 
						|
/// closest to the current cycle.
 | 
						|
static unsigned closestSucc(const SUnit *SU) {
 | 
						|
  unsigned MaxHeight = 0;
 | 
						|
  for (const SDep &Succ : SU->Succs) {
 | 
						|
    if (Succ.isCtrl()) continue;  // ignore chain succs
 | 
						|
    unsigned Height = Succ.getSUnit()->getHeight();
 | 
						|
    // If there are bunch of CopyToRegs stacked up, they should be considered
 | 
						|
    // to be at the same position.
 | 
						|
    if (Height > MaxHeight)
 | 
						|
      MaxHeight = Height;
 | 
						|
  }
 | 
						|
  return MaxHeight;
 | 
						|
}
 | 
						|
 | 
						|
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | 
						|
/// for scratch registers, i.e. number of data dependencies.
 | 
						|
static unsigned calcMaxScratches(const SUnit *SU) {
 | 
						|
  unsigned Scratches = 0;
 | 
						|
  for (const SDep &Pred : SU->Preds) {
 | 
						|
    if (Pred.isCtrl()) continue;  // ignore chain preds
 | 
						|
    Scratches++;
 | 
						|
  }
 | 
						|
  return Scratches;
 | 
						|
}
 | 
						|
 | 
						|
// Return -1 if left has higher priority, 1 if right has higher priority.
 | 
						|
// Return 0 if latency-based priority is equivalent.
 | 
						|
static int BUCompareLatency(const SUnit *left, const SUnit *right) {
 | 
						|
  // Scheduling an instruction that uses a VReg whose postincrement has not yet
 | 
						|
  // been scheduled will induce a copy. Model this as an extra cycle of latency.
 | 
						|
  int LHeight = (int)left->getHeight();
 | 
						|
  int RHeight = (int)right->getHeight();
 | 
						|
 | 
						|
  // If either node is scheduling for latency, sort them by height/depth
 | 
						|
  // and latency.
 | 
						|
 | 
						|
  // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
 | 
						|
  // is enabled, grouping instructions by cycle, then its height is already
 | 
						|
  // covered so only its depth matters. We also reach this point if both stall
 | 
						|
  // but have the same height.
 | 
						|
  if (LHeight != RHeight)
 | 
						|
    return LHeight > RHeight ? 1 : -1;
 | 
						|
 | 
						|
  int LDepth = left->getDepth();
 | 
						|
  int RDepth = right->getDepth();
 | 
						|
  if (LDepth != RDepth) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
 | 
						|
                      << ") depth " << LDepth << " vs SU (" << right->NodeNum
 | 
						|
                      << ") depth " << RDepth << "\n");
 | 
						|
    return LDepth < RDepth ? 1 : -1;
 | 
						|
  }
 | 
						|
  if (left->Latency != right->Latency)
 | 
						|
    return left->Latency > right->Latency ? 1 : -1;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
const SUnit *GCNILPScheduler::pickBest(const SUnit *left, const SUnit *right)
 | 
						|
{
 | 
						|
  // TODO: add register pressure lowering checks
 | 
						|
 | 
						|
  bool const DisableSchedCriticalPath = false;
 | 
						|
  int MaxReorderWindow = 6;
 | 
						|
  if (!DisableSchedCriticalPath) {
 | 
						|
    int spread = (int)left->getDepth() - (int)right->getDepth();
 | 
						|
    if (std::abs(spread) > MaxReorderWindow) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
 | 
						|
                        << left->getDepth() << " != SU(" << right->NodeNum
 | 
						|
                        << "): " << right->getDepth() << "\n");
 | 
						|
      return left->getDepth() < right->getDepth() ? right : left;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool const DisableSchedHeight = false;
 | 
						|
  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
 | 
						|
    int spread = (int)left->getHeight() - (int)right->getHeight();
 | 
						|
    if (std::abs(spread) > MaxReorderWindow)
 | 
						|
      return left->getHeight() > right->getHeight() ? right : left;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
 | 
						|
  unsigned LPriority = getNodePriority(left);
 | 
						|
  unsigned RPriority = getNodePriority(right);
 | 
						|
 | 
						|
  if (LPriority != RPriority)
 | 
						|
    return LPriority > RPriority ? right : left;
 | 
						|
 | 
						|
  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | 
						|
  // e.g.
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // and the following instructions are both ready.
 | 
						|
  // t2 = op c3
 | 
						|
  // t4 = op c4
 | 
						|
  //
 | 
						|
  // Then schedule t2 = op first.
 | 
						|
  // i.e.
 | 
						|
  // t4 = op c4
 | 
						|
  // t2 = op c3
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // This creates more short live intervals.
 | 
						|
  unsigned LDist = closestSucc(left);
 | 
						|
  unsigned RDist = closestSucc(right);
 | 
						|
  if (LDist != RDist)
 | 
						|
    return LDist < RDist ? right : left;
 | 
						|
 | 
						|
  // How many registers becomes live when the node is scheduled.
 | 
						|
  unsigned LScratch = calcMaxScratches(left);
 | 
						|
  unsigned RScratch = calcMaxScratches(right);
 | 
						|
  if (LScratch != RScratch)
 | 
						|
    return LScratch > RScratch ? right : left;
 | 
						|
 | 
						|
  bool const DisableSchedCycles = false;
 | 
						|
  if (!DisableSchedCycles) {
 | 
						|
    int result = BUCompareLatency(left, right);
 | 
						|
    if (result != 0)
 | 
						|
      return result > 0 ? right : left;
 | 
						|
    return left;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (left->getHeight() != right->getHeight())
 | 
						|
      return (left->getHeight() > right->getHeight()) ? right : left;
 | 
						|
 | 
						|
    if (left->getDepth() != right->getDepth())
 | 
						|
      return (left->getDepth() < right->getDepth()) ? right : left;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(left->NodeQueueId && right->NodeQueueId &&
 | 
						|
        "NodeQueueId cannot be zero");
 | 
						|
  return (left->NodeQueueId > right->NodeQueueId) ? right : left;
 | 
						|
}
 | 
						|
 | 
						|
GCNILPScheduler::Candidate* GCNILPScheduler::pickCandidate() {
 | 
						|
  if (AvailQueue.empty())
 | 
						|
    return nullptr;
 | 
						|
  auto Best = AvailQueue.begin();
 | 
						|
  for (auto I = std::next(AvailQueue.begin()), E = AvailQueue.end(); I != E; ++I) {
 | 
						|
    auto NewBestSU = pickBest(Best->SU, I->SU);
 | 
						|
    if (NewBestSU != Best->SU) {
 | 
						|
      assert(NewBestSU == I->SU);
 | 
						|
      Best = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return &*Best;
 | 
						|
}
 | 
						|
 | 
						|
void GCNILPScheduler::releasePending() {
 | 
						|
  // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
  // so, add them to the available queue.
 | 
						|
  for(auto I = PendingQueue.begin(), E = PendingQueue.end(); I != E;) {
 | 
						|
    auto &C = *I++;
 | 
						|
    if (C.SU->getHeight() <= CurCycle) {
 | 
						|
      PendingQueue.remove(C);
 | 
						|
      AvailQueue.push_back(C);
 | 
						|
      C.SU->NodeQueueId = CurQueueId++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Move the scheduler state forward by the specified number of Cycles.
 | 
						|
void GCNILPScheduler::advanceToCycle(unsigned NextCycle) {
 | 
						|
  if (NextCycle <= CurCycle)
 | 
						|
    return;
 | 
						|
  CurCycle = NextCycle;
 | 
						|
  releasePending();
 | 
						|
}
 | 
						|
 | 
						|
void GCNILPScheduler::releasePredecessors(const SUnit* SU) {
 | 
						|
  for (const auto &PredEdge : SU->Preds) {
 | 
						|
    auto PredSU = PredEdge.getSUnit();
 | 
						|
    if (PredEdge.isWeak())
 | 
						|
      continue;
 | 
						|
    assert(PredSU->isBoundaryNode() || PredSU->NumSuccsLeft > 0);
 | 
						|
 | 
						|
    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge.getLatency());
 | 
						|
 | 
						|
    if (!PredSU->isBoundaryNode() && --PredSU->NumSuccsLeft == 0)
 | 
						|
      PendingQueue.push_front(*new (Alloc.Allocate()) Candidate(PredSU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<const SUnit*>
 | 
						|
GCNILPScheduler::schedule(ArrayRef<const SUnit*> BotRoots,
 | 
						|
                          const ScheduleDAG &DAG) {
 | 
						|
  auto &SUnits = const_cast<ScheduleDAG&>(DAG).SUnits;
 | 
						|
 | 
						|
  std::vector<SUnit> SUSavedCopy;
 | 
						|
  SUSavedCopy.resize(SUnits.size());
 | 
						|
 | 
						|
  // we cannot save only those fields we touch: some of them are private
 | 
						|
  // so save units verbatim: this assumes SUnit should have value semantics
 | 
						|
  for (const SUnit &SU : SUnits)
 | 
						|
    SUSavedCopy[SU.NodeNum] = SU;
 | 
						|
 | 
						|
  SUNumbers.assign(SUnits.size(), 0);
 | 
						|
  for (const SUnit &SU : SUnits)
 | 
						|
    CalcNodeSethiUllmanNumber(&SU, SUNumbers);
 | 
						|
 | 
						|
  for (auto SU : BotRoots) {
 | 
						|
    AvailQueue.push_back(
 | 
						|
      *new (Alloc.Allocate()) Candidate(const_cast<SUnit*>(SU)));
 | 
						|
  }
 | 
						|
  releasePredecessors(&DAG.ExitSU);
 | 
						|
 | 
						|
  std::vector<const SUnit*> Schedule;
 | 
						|
  Schedule.reserve(SUnits.size());
 | 
						|
  while (true) {
 | 
						|
    if (AvailQueue.empty() && !PendingQueue.empty()) {
 | 
						|
      auto EarliestSU = std::min_element(
 | 
						|
        PendingQueue.begin(), PendingQueue.end(),
 | 
						|
        [=](const Candidate& C1, const Candidate& C2) {
 | 
						|
        return C1.SU->getHeight() < C2.SU->getHeight();
 | 
						|
      })->SU;
 | 
						|
      advanceToCycle(std::max(CurCycle + 1, EarliestSU->getHeight()));
 | 
						|
    }
 | 
						|
    if (AvailQueue.empty())
 | 
						|
      break;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "\n=== Picking candidate\n"
 | 
						|
                         "Ready queue:";
 | 
						|
               for (auto &C
 | 
						|
                    : AvailQueue) dbgs()
 | 
						|
               << ' ' << C.SU->NodeNum;
 | 
						|
               dbgs() << '\n';);
 | 
						|
 | 
						|
    auto C = pickCandidate();
 | 
						|
    assert(C);
 | 
						|
    AvailQueue.remove(*C);
 | 
						|
    auto SU = C->SU;
 | 
						|
    LLVM_DEBUG(dbgs() << "Selected "; DAG.dumpNode(*SU));
 | 
						|
 | 
						|
    advanceToCycle(SU->getHeight());
 | 
						|
 | 
						|
    releasePredecessors(SU);
 | 
						|
    Schedule.push_back(SU);
 | 
						|
    SU->isScheduled = true;
 | 
						|
  }
 | 
						|
  assert(SUnits.size() == Schedule.size());
 | 
						|
 | 
						|
  std::reverse(Schedule.begin(), Schedule.end());
 | 
						|
 | 
						|
  // restore units
 | 
						|
  for (auto &SU : SUnits)
 | 
						|
    SU = SUSavedCopy[SU.NodeNum];
 | 
						|
 | 
						|
  return Schedule;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
std::vector<const SUnit*> makeGCNILPScheduler(ArrayRef<const SUnit*> BotRoots,
 | 
						|
                                              const ScheduleDAG &DAG) {
 | 
						|
  GCNILPScheduler S;
 | 
						|
  return S.schedule(BotRoots, DAG);
 | 
						|
}
 | 
						|
}
 |