987 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			987 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64TargetTransformInfo.h"
 | |
| #include "MCTargetDesc/AArch64AddressingModes.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/BasicTTIImpl.h"
 | |
| #include "llvm/CodeGen/CostTable.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64tti"
 | |
| 
 | |
| static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
 | |
|                                                cl::init(true), cl::Hidden);
 | |
| 
 | |
| bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
 | |
|                                          const Function *Callee) const {
 | |
|   const TargetMachine &TM = getTLI()->getTargetMachine();
 | |
| 
 | |
|   const FeatureBitset &CallerBits =
 | |
|       TM.getSubtargetImpl(*Caller)->getFeatureBits();
 | |
|   const FeatureBitset &CalleeBits =
 | |
|       TM.getSubtargetImpl(*Callee)->getFeatureBits();
 | |
| 
 | |
|   // Inline a callee if its target-features are a subset of the callers
 | |
|   // target-features.
 | |
|   return (CallerBits & CalleeBits) == CalleeBits;
 | |
| }
 | |
| 
 | |
| /// Calculate the cost of materializing a 64-bit value. This helper
 | |
| /// method might only calculate a fraction of a larger immediate. Therefore it
 | |
| /// is valid to return a cost of ZERO.
 | |
| int AArch64TTIImpl::getIntImmCost(int64_t Val) {
 | |
|   // Check if the immediate can be encoded within an instruction.
 | |
|   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
 | |
|     return 0;
 | |
| 
 | |
|   if (Val < 0)
 | |
|     Val = ~Val;
 | |
| 
 | |
|   // Calculate how many moves we will need to materialize this constant.
 | |
|   unsigned LZ = countLeadingZeros((uint64_t)Val);
 | |
|   return (64 - LZ + 15) / 16;
 | |
| }
 | |
| 
 | |
| /// Calculate the cost of materializing the given constant.
 | |
| int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return ~0U;
 | |
| 
 | |
|   // Sign-extend all constants to a multiple of 64-bit.
 | |
|   APInt ImmVal = Imm;
 | |
|   if (BitSize & 0x3f)
 | |
|     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
 | |
| 
 | |
|   // Split the constant into 64-bit chunks and calculate the cost for each
 | |
|   // chunk.
 | |
|   int Cost = 0;
 | |
|   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | |
|     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | |
|     int64_t Val = Tmp.getSExtValue();
 | |
|     Cost += getIntImmCost(Val);
 | |
|   }
 | |
|   // We need at least one instruction to materialze the constant.
 | |
|   return std::max(1, Cost);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
 | |
|                                   const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   unsigned ImmIdx = ~0U;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // Always hoist the base address of a GetElementPtr.
 | |
|     if (Idx == 0)
 | |
|       return 2 * TTI::TCC_Basic;
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::Store:
 | |
|     ImmIdx = 0;
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::ICmp:
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   // Always return TCC_Free for the shift value of a shift instruction.
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     if (Idx == 1)
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::Load:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Idx == ImmIdx) {
 | |
|     int NumConstants = (BitSize + 63) / 64;
 | |
|     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
|     return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                ? static_cast<int>(TTI::TCC_Free)
 | |
|                : Cost;
 | |
|   }
 | |
|   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | |
|                                   const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     if (Idx == 1) {
 | |
|       int NumConstants = (BitSize + 63) / 64;
 | |
|       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
|       return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                  ? static_cast<int>(TTI::TCC_Free)
 | |
|                  : Cost;
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   }
 | |
|   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::PopcntSupportKind
 | |
| AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   if (TyWidth == 32 || TyWidth == 64)
 | |
|     return TTI::PSK_FastHardware;
 | |
|   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
 | |
|   return TTI::PSK_Software;
 | |
| }
 | |
| 
 | |
| bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
 | |
|                                            ArrayRef<const Value *> Args) {
 | |
| 
 | |
|   // A helper that returns a vector type from the given type. The number of
 | |
|   // elements in type Ty determine the vector width.
 | |
|   auto toVectorTy = [&](Type *ArgTy) {
 | |
|     return VectorType::get(ArgTy->getScalarType(),
 | |
|                            DstTy->getVectorNumElements());
 | |
|   };
 | |
| 
 | |
|   // Exit early if DstTy is not a vector type whose elements are at least
 | |
|   // 16-bits wide.
 | |
|   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
 | |
|     return false;
 | |
| 
 | |
|   // Determine if the operation has a widening variant. We consider both the
 | |
|   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
 | |
|   // instructions.
 | |
|   //
 | |
|   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
 | |
|   //       verify that their extending operands are eliminated during code
 | |
|   //       generation.
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
 | |
|   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
 | |
|     break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // To be a widening instruction (either the "wide" or "long" versions), the
 | |
|   // second operand must be a sign- or zero extend having a single user. We
 | |
|   // only consider extends having a single user because they may otherwise not
 | |
|   // be eliminated.
 | |
|   if (Args.size() != 2 ||
 | |
|       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
 | |
|       !Args[1]->hasOneUse())
 | |
|     return false;
 | |
|   auto *Extend = cast<CastInst>(Args[1]);
 | |
| 
 | |
|   // Legalize the destination type and ensure it can be used in a widening
 | |
|   // operation.
 | |
|   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
 | |
|   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
 | |
|   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
 | |
|     return false;
 | |
| 
 | |
|   // Legalize the source type and ensure it can be used in a widening
 | |
|   // operation.
 | |
|   Type *SrcTy = toVectorTy(Extend->getSrcTy());
 | |
|   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
 | |
|   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
 | |
|   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
 | |
|     return false;
 | |
| 
 | |
|   // Get the total number of vector elements in the legalized types.
 | |
|   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
 | |
|   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
 | |
| 
 | |
|   // Return true if the legalized types have the same number of vector elements
 | |
|   // and the destination element type size is twice that of the source type.
 | |
|   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 | |
|                                      const Instruction *I) {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // If the cast is observable, and it is used by a widening instruction (e.g.,
 | |
|   // uaddl, saddw, etc.), it may be free.
 | |
|   if (I && I->hasOneUse()) {
 | |
|     auto *SingleUser = cast<Instruction>(*I->user_begin());
 | |
|     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
 | |
|     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
 | |
|       // If the cast is the second operand, it is free. We will generate either
 | |
|       // a "wide" or "long" version of the widening instruction.
 | |
|       if (I == SingleUser->getOperand(1))
 | |
|         return 0;
 | |
|       // If the cast is not the second operand, it will be free if it looks the
 | |
|       // same as the second operand. In this case, we will generate a "long"
 | |
|       // version of the widening instruction.
 | |
|       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
 | |
|         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
 | |
|             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
 | |
|           return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(DL, Src);
 | |
|   EVT DstTy = TLI->getValueType(DL, Dst);
 | |
| 
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   static const TypeConversionCostTblEntry
 | |
|   ConversionTbl[] = {
 | |
|     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
 | |
|     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
 | |
|     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
 | |
|     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
 | |
| 
 | |
|     // The number of shll instructions for the extension.
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
| 
 | |
|     // LowerVectorINT_TO_FP:
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
| 
 | |
|     // Complex: to v2f32
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
 | |
| 
 | |
|     // Complex: to v4f32
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
 | |
| 
 | |
|     // Complex: to v8f32
 | |
|     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
 | |
|     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
 | |
| 
 | |
|     // Complex: to v16f32
 | |
|     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
 | |
|     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
 | |
| 
 | |
|     // Complex: to v2f64
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
| 
 | |
|     // LowerVectorFP_TO_INT
 | |
|     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
| 
 | |
|     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
 | |
| 
 | |
|     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
 | |
|     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
 | |
| 
 | |
|     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
 | |
|     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
 | |
|   };
 | |
| 
 | |
|   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
 | |
|                                                  DstTy.getSimpleVT(),
 | |
|                                                  SrcTy.getSimpleVT()))
 | |
|     return Entry->Cost;
 | |
| 
 | |
|   return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 | |
|                                              VectorType *VecTy,
 | |
|                                              unsigned Index) {
 | |
| 
 | |
|   // Make sure we were given a valid extend opcode.
 | |
|   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
 | |
|          "Invalid opcode");
 | |
| 
 | |
|   // We are extending an element we extract from a vector, so the source type
 | |
|   // of the extend is the element type of the vector.
 | |
|   auto *Src = VecTy->getElementType();
 | |
| 
 | |
|   // Sign- and zero-extends are for integer types only.
 | |
|   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
 | |
| 
 | |
|   // Get the cost for the extract. We compute the cost (if any) for the extend
 | |
|   // below.
 | |
|   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
 | |
| 
 | |
|   // Legalize the types.
 | |
|   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
 | |
|   auto DstVT = TLI->getValueType(DL, Dst);
 | |
|   auto SrcVT = TLI->getValueType(DL, Src);
 | |
| 
 | |
|   // If the resulting type is still a vector and the destination type is legal,
 | |
|   // we may get the extension for free. If not, get the default cost for the
 | |
|   // extend.
 | |
|   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
 | |
|     return Cost + getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   // The destination type should be larger than the element type. If not, get
 | |
|   // the default cost for the extend.
 | |
|   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
 | |
|     return Cost + getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Opcode should be either SExt or ZExt");
 | |
| 
 | |
|   // For sign-extends, we only need a smov, which performs the extension
 | |
|   // automatically.
 | |
|   case Instruction::SExt:
 | |
|     return Cost;
 | |
| 
 | |
|   // For zero-extends, the extend is performed automatically by a umov unless
 | |
|   // the destination type is i64 and the element type is i8 or i16.
 | |
|   case Instruction::ZExt:
 | |
|     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
 | |
|       return Cost;
 | |
|   }
 | |
| 
 | |
|   // If we are unable to perform the extend for free, get the default cost.
 | |
|   return Cost + getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                        unsigned Index) {
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
| 
 | |
|   if (Index != -1U) {
 | |
|     // Legalize the type.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned Width = LT.second.getVectorNumElements();
 | |
|     Index = Index % Width;
 | |
| 
 | |
|     // The element at index zero is already inside the vector.
 | |
|     if (Index == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // All other insert/extracts cost this much.
 | |
|   return ST->getVectorInsertExtractBaseCost();
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
 | |
|     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
 | |
|     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
 | |
|   // add in the widening overhead specified by the sub-target. Since the
 | |
|   // extends feeding widening instructions are performed automatically, they
 | |
|   // aren't present in the generated code and have a zero cost. By adding a
 | |
|   // widening overhead here, we attach the total cost of the combined operation
 | |
|   // to the widening instruction.
 | |
|   int Cost = 0;
 | |
|   if (isWideningInstruction(Ty, Opcode, Args))
 | |
|     Cost += ST->getWideningBaseCost();
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
| 
 | |
|   switch (ISD) {
 | |
|   default:
 | |
|     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
 | |
|                                                 Opd1PropInfo, Opd2PropInfo);
 | |
|   case ISD::SDIV:
 | |
|     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
 | |
|       // On AArch64, scalar signed division by constants power-of-two are
 | |
|       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
 | |
|       // The OperandValue properties many not be same as that of previous
 | |
|       // operation; conservatively assume OP_None.
 | |
|       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       return Cost;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::UDIV:
 | |
|     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
 | |
|       auto VT = TLI->getValueType(DL, Ty);
 | |
|       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
 | |
|         // Vector signed division by constant are expanded to the
 | |
|         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
 | |
|         // to MULHS + SUB + SRL + ADD + SRL.
 | |
|         int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
 | |
|                                              Opd2Info,
 | |
|                                              TargetTransformInfo::OP_None,
 | |
|                                              TargetTransformInfo::OP_None);
 | |
|         int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
 | |
|                                              Opd2Info,
 | |
|                                              TargetTransformInfo::OP_None,
 | |
|                                              TargetTransformInfo::OP_None);
 | |
|         int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
 | |
|                                              Opd2Info,
 | |
|                                              TargetTransformInfo::OP_None,
 | |
|                                              TargetTransformInfo::OP_None);
 | |
|         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
 | |
|                                           Opd1PropInfo, Opd2PropInfo);
 | |
|     if (Ty->isVectorTy()) {
 | |
|       // On AArch64, vector divisions are not supported natively and are
 | |
|       // expanded into scalar divisions of each pair of elements.
 | |
|       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
 | |
|                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
 | |
|       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
 | |
|                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
 | |
|       // TODO: if one of the arguments is scalar, then it's not necessary to
 | |
|       // double the cost of handling the vector elements.
 | |
|       Cost += Cost;
 | |
|     }
 | |
|     return Cost;
 | |
| 
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::XOR:
 | |
|   case ISD::OR:
 | |
|   case ISD::AND:
 | |
|     // These nodes are marked as 'custom' for combining purposes only.
 | |
|     // We know that they are legal. See LowerAdd in ISelLowering.
 | |
|     return (Cost + 1) * LT.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
 | |
|                                               const SCEV *Ptr) {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
|   int MaxMergeDistance = 64;
 | |
| 
 | |
|   if (Ty->isVectorTy() && SE &&
 | |
|       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   // In many cases the address computation is not merged into the instruction
 | |
|   // addressing mode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                        Type *CondTy, const Instruction *I) {
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   // We don't lower some vector selects well that are wider than the register
 | |
|   // width.
 | |
|   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | |
|     // We would need this many instructions to hide the scalarization happening.
 | |
|     const int AmortizationCost = 20;
 | |
|     static const TypeConversionCostTblEntry
 | |
|     VectorSelectTbl[] = {
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
 | |
|       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
 | |
|     };
 | |
| 
 | |
|     EVT SelCondTy = TLI->getValueType(DL, CondTy);
 | |
|     EVT SelValTy = TLI->getValueType(DL, ValTy);
 | |
|     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | |
|       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
 | |
|                                                      SelCondTy.getSimpleVT(),
 | |
|                                                      SelValTy.getSimpleVT()))
 | |
|         return Entry->Cost;
 | |
|     }
 | |
|   }
 | |
|   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
 | |
|                                     unsigned Alignment, unsigned AddressSpace,
 | |
|                                     const Instruction *I) {
 | |
|   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
 | |
|       LT.second.is128BitVector() && Alignment < 16) {
 | |
|     // Unaligned stores are extremely inefficient. We don't split all
 | |
|     // unaligned 128-bit stores because the negative impact that has shown in
 | |
|     // practice on inlined block copy code.
 | |
|     // We make such stores expensive so that we will only vectorize if there
 | |
|     // are 6 other instructions getting vectorized.
 | |
|     const int AmortizationCost = 6;
 | |
| 
 | |
|     return LT.first * 2 * AmortizationCost;
 | |
|   }
 | |
| 
 | |
|   if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
 | |
|     unsigned ProfitableNumElements;
 | |
|     if (Opcode == Instruction::Store)
 | |
|       // We use a custom trunc store lowering so v.4b should be profitable.
 | |
|       ProfitableNumElements = 4;
 | |
|     else
 | |
|       // We scalarize the loads because there is not v.4b register and we
 | |
|       // have to promote the elements to v.2.
 | |
|       ProfitableNumElements = 8;
 | |
| 
 | |
|     if (Ty->getVectorNumElements() < ProfitableNumElements) {
 | |
|       unsigned NumVecElts = Ty->getVectorNumElements();
 | |
|       unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
 | |
|       // We generate 2 instructions per vector element.
 | |
|       return NumVectorizableInstsToAmortize * NumVecElts * 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return LT.first;
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
 | |
|                                                unsigned Factor,
 | |
|                                                ArrayRef<unsigned> Indices,
 | |
|                                                unsigned Alignment,
 | |
|                                                unsigned AddressSpace) {
 | |
|   assert(Factor >= 2 && "Invalid interleave factor");
 | |
|   assert(isa<VectorType>(VecTy) && "Expect a vector type");
 | |
| 
 | |
|   if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
 | |
|     unsigned NumElts = VecTy->getVectorNumElements();
 | |
|     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
 | |
| 
 | |
|     // ldN/stN only support legal vector types of size 64 or 128 in bits.
 | |
|     // Accesses having vector types that are a multiple of 128 bits can be
 | |
|     // matched to more than one ldN/stN instruction.
 | |
|     if (NumElts % Factor == 0 &&
 | |
|         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
 | |
|       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
 | |
|   }
 | |
| 
 | |
|   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                            Alignment, AddressSpace);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
 | |
|   int Cost = 0;
 | |
|   for (auto *I : Tys) {
 | |
|     if (!I->isVectorTy())
 | |
|       continue;
 | |
|     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
 | |
|       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
 | |
|         getMemoryOpCost(Instruction::Load, I, 128, 0);
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | |
|   return ST->getMaxInterleaveFactor();
 | |
| }
 | |
| 
 | |
| // For Falkor, we want to avoid having too many strided loads in a loop since
 | |
| // that can exhaust the HW prefetcher resources.  We adjust the unroller
 | |
| // MaxCount preference below to attempt to ensure unrolling doesn't create too
 | |
| // many strided loads.
 | |
| static void
 | |
| getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 | |
|                               TargetTransformInfo::UnrollingPreferences &UP) {
 | |
|   enum { MaxStridedLoads = 7 };
 | |
|   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
 | |
|     int StridedLoads = 0;
 | |
|     // FIXME? We could make this more precise by looking at the CFG and
 | |
|     // e.g. not counting loads in each side of an if-then-else diamond.
 | |
|     for (const auto BB : L->blocks()) {
 | |
|       for (auto &I : *BB) {
 | |
|         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
 | |
|         if (!LMemI)
 | |
|           continue;
 | |
| 
 | |
|         Value *PtrValue = LMemI->getPointerOperand();
 | |
|         if (L->isLoopInvariant(PtrValue))
 | |
|           continue;
 | |
| 
 | |
|         const SCEV *LSCEV = SE.getSCEV(PtrValue);
 | |
|         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
 | |
|         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
 | |
|           continue;
 | |
| 
 | |
|         // FIXME? We could take pairing of unrolled load copies into account
 | |
|         // by looking at the AddRec, but we would probably have to limit this
 | |
|         // to loops with no stores or other memory optimization barriers.
 | |
|         ++StridedLoads;
 | |
|         // We've seen enough strided loads that seeing more won't make a
 | |
|         // difference.
 | |
|         if (StridedLoads > MaxStridedLoads / 2)
 | |
|           return StridedLoads;
 | |
|       }
 | |
|     }
 | |
|     return StridedLoads;
 | |
|   };
 | |
| 
 | |
|   int StridedLoads = countStridedLoads(L, SE);
 | |
|   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
 | |
|                     << " strided loads\n");
 | |
|   // Pick the largest power of 2 unroll count that won't result in too many
 | |
|   // strided loads.
 | |
|   if (StridedLoads) {
 | |
|     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
 | |
|     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
 | |
|                       << UP.MaxCount << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 | |
|                                              TTI::UnrollingPreferences &UP) {
 | |
|   // Enable partial unrolling and runtime unrolling.
 | |
|   BaseT::getUnrollingPreferences(L, SE, UP);
 | |
| 
 | |
|   // For inner loop, it is more likely to be a hot one, and the runtime check
 | |
|   // can be promoted out from LICM pass, so the overhead is less, let's try
 | |
|   // a larger threshold to unroll more loops.
 | |
|   if (L->getLoopDepth() > 1)
 | |
|     UP.PartialThreshold *= 2;
 | |
| 
 | |
|   // Disable partial & runtime unrolling on -Os.
 | |
|   UP.PartialOptSizeThreshold = 0;
 | |
| 
 | |
|   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
 | |
|       EnableFalkorHWPFUnrollFix)
 | |
|     getFalkorUnrollingPreferences(L, SE, UP);
 | |
| }
 | |
| 
 | |
| Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 | |
|                                                          Type *ExpectedType) {
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|   case Intrinsic::aarch64_neon_st4: {
 | |
|     // Create a struct type
 | |
|     StructType *ST = dyn_cast<StructType>(ExpectedType);
 | |
|     if (!ST)
 | |
|       return nullptr;
 | |
|     unsigned NumElts = Inst->getNumArgOperands() - 1;
 | |
|     if (ST->getNumElements() != NumElts)
 | |
|       return nullptr;
 | |
|     for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | |
|       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
 | |
|         return nullptr;
 | |
|     }
 | |
|     Value *Res = UndefValue::get(ExpectedType);
 | |
|     IRBuilder<> Builder(Inst);
 | |
|     for (unsigned i = 0, e = NumElts; i != e; ++i) {
 | |
|       Value *L = Inst->getArgOperand(i);
 | |
|       Res = Builder.CreateInsertValue(Res, L, i);
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|     if (Inst->getType() == ExpectedType)
 | |
|       return Inst;
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
 | |
|                                         MemIntrinsicInfo &Info) {
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|     Info.ReadMem = true;
 | |
|     Info.WriteMem = false;
 | |
|     Info.PtrVal = Inst->getArgOperand(0);
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|   case Intrinsic::aarch64_neon_st4:
 | |
|     Info.ReadMem = false;
 | |
|     Info.WriteMem = true;
 | |
|     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (Inst->getIntrinsicID()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Intrinsic::aarch64_neon_ld2:
 | |
|   case Intrinsic::aarch64_neon_st2:
 | |
|     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld3:
 | |
|   case Intrinsic::aarch64_neon_st3:
 | |
|     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
 | |
|     break;
 | |
|   case Intrinsic::aarch64_neon_ld4:
 | |
|   case Intrinsic::aarch64_neon_st4:
 | |
|     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// See if \p I should be considered for address type promotion. We check if \p
 | |
| /// I is a sext with right type and used in memory accesses. If it used in a
 | |
| /// "complex" getelementptr, we allow it to be promoted without finding other
 | |
| /// sext instructions that sign extended the same initial value. A getelementptr
 | |
| /// is considered as "complex" if it has more than 2 operands.
 | |
| bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
 | |
|     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
 | |
|   bool Considerable = false;
 | |
|   AllowPromotionWithoutCommonHeader = false;
 | |
|   if (!isa<SExtInst>(&I))
 | |
|     return false;
 | |
|   Type *ConsideredSExtType =
 | |
|       Type::getInt64Ty(I.getParent()->getParent()->getContext());
 | |
|   if (I.getType() != ConsideredSExtType)
 | |
|     return false;
 | |
|   // See if the sext is the one with the right type and used in at least one
 | |
|   // GetElementPtrInst.
 | |
|   for (const User *U : I.users()) {
 | |
|     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       Considerable = true;
 | |
|       // A getelementptr is considered as "complex" if it has more than 2
 | |
|       // operands. We will promote a SExt used in such complex GEP as we
 | |
|       // expect some computation to be merged if they are done on 64 bits.
 | |
|       if (GEPInst->getNumOperands() > 2) {
 | |
|         AllowPromotionWithoutCommonHeader = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Considerable;
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getCacheLineSize() {
 | |
|   return ST->getCacheLineSize();
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getPrefetchDistance() {
 | |
|   return ST->getPrefetchDistance();
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getMinPrefetchStride() {
 | |
|   return ST->getMinPrefetchStride();
 | |
| }
 | |
| 
 | |
| unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
 | |
|   return ST->getMaxPrefetchIterationsAhead();
 | |
| }
 | |
| 
 | |
| bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
 | |
|                                            TTI::ReductionFlags Flags) const {
 | |
|   assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
 | |
|   unsigned ScalarBits = Ty->getScalarSizeInBits();
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Mul:
 | |
|     return false;
 | |
|   case Instruction::Add:
 | |
|     return ScalarBits * Ty->getVectorNumElements() >= 128;
 | |
|   case Instruction::ICmp:
 | |
|     return (ScalarBits < 64) &&
 | |
|            (ScalarBits * Ty->getVectorNumElements() >= 128);
 | |
|   case Instruction::FCmp:
 | |
|     return Flags.NoNaN;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled reduction opcode");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
 | |
|                                                bool IsPairwiseForm) {
 | |
| 
 | |
|   if (IsPairwiseForm)
 | |
|     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
 | |
| 
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
|   MVT MTy = LT.second;
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // Horizontal adds can use the 'addv' instruction. We model the cost of these
 | |
|   // instructions as normal vector adds. This is the only arithmetic vector
 | |
|   // reduction operation for which we have an instruction.
 | |
|   static const CostTblEntry CostTblNoPairwise[]{
 | |
|       {ISD::ADD, MVT::v8i8,  1},
 | |
|       {ISD::ADD, MVT::v16i8, 1},
 | |
|       {ISD::ADD, MVT::v4i16, 1},
 | |
|       {ISD::ADD, MVT::v8i16, 1},
 | |
|       {ISD::ADD, MVT::v4i32, 1},
 | |
|   };
 | |
| 
 | |
|   if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
 | |
|     return LT.first * Entry->Cost;
 | |
| 
 | |
|   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
 | |
| }
 | |
| 
 | |
| int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                    Type *SubTp) {
 | |
|   if (Kind == TTI::SK_Transpose || Kind == TTI::SK_Select ||
 | |
|       Kind == TTI::SK_PermuteSingleSrc) {
 | |
|     static const CostTblEntry ShuffleTbl[] = {
 | |
|       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
 | |
|       // 'zip1/zip2' instructions.
 | |
|       { TTI::SK_Transpose, MVT::v8i8,  1 },
 | |
|       { TTI::SK_Transpose, MVT::v16i8, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v4i16, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v8i16, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v2i32, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v4i32, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v2i64, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v2f32, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v4f32, 1 },
 | |
|       { TTI::SK_Transpose, MVT::v2f64, 1 },
 | |
|       // Select shuffle kinds.
 | |
|       // TODO: handle vXi8/vXi16.
 | |
|       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
 | |
|       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
 | |
|       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
 | |
|       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
 | |
|       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
 | |
|       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
 | |
|       // PermuteSingleSrc shuffle kinds.
 | |
|       // TODO: handle vXi8/vXi16.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
 | |
|       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
 | |
|     };
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | |
|     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| }
 |