133 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			LLVM
		
	
	
	
; RUN: llc < %s -march=nvptx -mcpu=sm_20 -verify-machineinstrs | FileCheck %s
 | 
						|
 | 
						|
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | 
						|
 | 
						|
declare i16 @llvm.ctlz.i16(i16, i1) readnone
 | 
						|
declare i32 @llvm.ctlz.i32(i32, i1) readnone
 | 
						|
declare i64 @llvm.ctlz.i64(i64, i1) readnone
 | 
						|
 | 
						|
; There should be no difference between llvm.ctlz.i32(%a, true) and
 | 
						|
; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0.
 | 
						|
 | 
						|
; CHECK-LABEL: myctlz(
 | 
						|
define i32 @myctlz(i32 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone
 | 
						|
  ret i32 %val
 | 
						|
}
 | 
						|
; CHECK-LABEL: myctlz_2(
 | 
						|
define i32 @myctlz_2(i32 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i32 @llvm.ctlz.i32(i32 %a, i1 true) readnone
 | 
						|
  ret i32 %val
 | 
						|
}
 | 
						|
 | 
						|
; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit
 | 
						|
; value, so here we have to zero-extend it.
 | 
						|
; CHECK-LABEL: myctlz64(
 | 
						|
define i64 @myctlz64(i64 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b64
 | 
						|
; CHECK-NEXT: cvt.u64.u32
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
 | 
						|
  ret i64 %val
 | 
						|
}
 | 
						|
; CHECK-LABEL: myctlz64_2(
 | 
						|
define i64 @myctlz64_2(i64 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b64
 | 
						|
; CHECK-NEXT: cvt.u64.u32
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i64 @llvm.ctlz.i64(i64 %a, i1 true) readnone
 | 
						|
  ret i64 %val
 | 
						|
}
 | 
						|
 | 
						|
; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the
 | 
						|
; natural return width of ptx's clz.b64 instruction.  No conversions should be
 | 
						|
; necessary in the PTX.
 | 
						|
; CHECK-LABEL: myctlz64_as_32(
 | 
						|
define i32 @myctlz64_as_32(i64 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b64
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
 | 
						|
  %trunc = trunc i64 %val to i32
 | 
						|
  ret i32 %trunc
 | 
						|
}
 | 
						|
; CHECK-LABEL: myctlz64_as_32_2(
 | 
						|
define i32 @myctlz64_as_32_2(i64 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: clz.b64
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
 | 
						|
  %trunc = trunc i64 %val to i32
 | 
						|
  ret i32 %trunc
 | 
						|
}
 | 
						|
 | 
						|
; ctlz.i16 is implemented by extending the input to i32, computing the result,
 | 
						|
; and then truncating the result back down to i16.  But the NVPTX ABI
 | 
						|
; zero-extends i16 return values to i32, so the final truncation doesn't appear
 | 
						|
; in this function.
 | 
						|
; CHECK-LABEL: myctlz_ret16(
 | 
						|
define i16 @myctlz_ret16(i16 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: cvt.u32.u16
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-NEXT: sub.
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
 | 
						|
  ret i16 %val
 | 
						|
}
 | 
						|
; CHECK-LABEL: myctlz_ret16_2(
 | 
						|
define i16 @myctlz_ret16_2(i16 %a) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: cvt.u32.u16
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-NEXT: sub.
 | 
						|
; CHECK-NEXT: st.param.
 | 
						|
; CHECK-NEXT: ret;
 | 
						|
  %val = call i16 @llvm.ctlz.i16(i16 %a, i1 true) readnone
 | 
						|
  ret i16 %val
 | 
						|
}
 | 
						|
 | 
						|
; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should
 | 
						|
; remain.
 | 
						|
; CHECK-LABEL: myctlz_store16(
 | 
						|
define void @myctlz_store16(i16 %a, i16* %b) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: cvt.u32.u16
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-DAG: cvt.u16.u32
 | 
						|
; CHECK-DAG: sub.
 | 
						|
; CHECK: st.{{[a-z]}}16
 | 
						|
; CHECK: ret;
 | 
						|
  %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
 | 
						|
  store i16 %val, i16* %b
 | 
						|
  ret void
 | 
						|
}
 | 
						|
; CHECK-LABEL: myctlz_store16_2(
 | 
						|
define void @myctlz_store16_2(i16 %a, i16* %b) {
 | 
						|
; CHECK: ld.param.
 | 
						|
; CHECK-NEXT: cvt.u32.u16
 | 
						|
; CHECK-NEXT: clz.b32
 | 
						|
; CHECK-DAG: cvt.u16.u32
 | 
						|
; CHECK-DAG: sub.
 | 
						|
; CHECK: st.{{[a-z]}}16
 | 
						|
; CHECK: ret;
 | 
						|
  %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
 | 
						|
  store i16 %val, i16* %b
 | 
						|
  ret void
 | 
						|
}
 |